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Figure
from the Planck collaboration.
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What does a complete cosmological model require?

Observational:

� inflation

� perturbations: ζ, n, r , f
NL
...

� reheating

� dark matter

� baryogenesis

� ...

Theoretical:

� specify all fields in the
theory

� consider all interactions

� quantum corrections

� explain initial conditions

� ...

Minimal extensions to the standard model allow precise
calculations of cosmological processes
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Where is SUSY?
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What is a curvaton model?

Single field inflaton:
A single field φ both drives
inflation and is the source of the
perturbations.

Curvaton paradigm:
One field φ drives inflation but
has negligible perturbations; a
second field σ is the source of
perturbations but is negligible
during inflation.
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Energy densities in the curvaton paradigm

Figure
from Dimopoulos, Kohri, and Matsuda, Phys. Rev. D 85, 123541
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Why study curvaton models?

� because they exist!

� because they can give measurable non-Gaussianity and
isocurvature

� because light scalar fields (m < H) might exist and it is
important to calculate their consequences

� because the curvaton mechanism gives more freedom for the
inflation model

� because they have interesting, constrainable dynamics after
inflation
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The minimal curvaton-higgs (MCH) model

MCH Lagrangian

L = LSM +
1

2
∂µσ∂

µσ +
1

2
m

2
σσ

2 +
λ

4!
σ4 +

1

2
g
2σ2Φ†Φ

� assume σ → −σ symmetry

� assume λ = 0

� assume instant inflaton decay

� free parameters: g ,mσ,H∗, σ∗
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Consequences of coupling g

� correction to V (σ)

∆V (σ) =

�
g
2σ2 +m

2
h

�2

64π2
log

�
g
2σ2 +m

2
h

µ2

�

[choose µ = mh = 126 GeV]

� σ can feel any thermal background of Higges

m
2
σ → m

2
σ +

1

12
g
2
T

2

� homogeneous σ can decay: Γeff = ΓNP + Γpert + Γ5
1. non-perturbative decay
2. perturbative scattering with thermal bath
3. dimension-5 operators
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Decay 1: non-perturbative decay

Summary

� after inflation, higgs is thermalised and gains large thermal
mass ∝ g

T
T , where g

2
T
= 0.1

� curvaton couples to higgs and could also get a thermal mass

� these thermal masses block resonant preheating until T falls
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Decay 1: Broad and narrow resonances

� After inflation, usually in broad resonance regime,

q(t) =
�
gΣ(t)
2mσ

�2
� 1

� We found that the broad resonance is almost always blocked

� Curvaton amplitude Σ(t) decreases and we eventually reach
narrow resonance region with q � 1

� narrow resonance is a continuous process; excites modes
within a thin momentum band

� this is where we start our (outline) calculation

� assume we have already calculated the decaying Σ(t) and
form of oscillations in the relevant background.
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Decay 1: The narrow resonance

� Higgs equation of motion:

φ̈α + 3Hφ̇α +
�
k
2

a2
+ g

2Σ2(t) sin2
�
mσt +

π
8

�
+ g

2
T
T

2
�
φα = 0

� conservation of energy: 2mσ = 2E (k)

� energy of produced higgs:
E (k) = k

2

a2
+ 4q(t)m2

σ sin
2
�
mσt +

π
8

�
+ g

2
T
T

2

� Require: g2
T
T

2 + 4q(t)m2
σ sin

2
�
mσt +

π
8

�
≤ m

2
σ

� Remember that q � 1

� Thus, narrow resonance can only occur for T ≤
mσ
g
T
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Decay 1: Thermal blocking

From previous slide

g
2
T
T

2 + 4q(t)m2
σ sin

2
�
mσt +

π

8

�
≤ m

2
σ

Notes

� If the higgs had no coupling to the thermal background
(g

T
= 0), then there would be no blocking of the resonance!

� Rate of energy transfer typically very slow

� Thermal blocking typically lasts for a huge number of
oscillations

� The curvaton’s thermal mass modifies Σ(t) (see paper)

� Without thermal blocking, the curvaton would quickly
disappear and may not be a good curvaton candidate
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Decay 2: perturbative scattering with thermal bath

Simple calculation:

Γpert =
1

576π

g
4
T

2

mσ(T )

� process efficient at Γ(t) ≥ H(t)

� H ∝ T
2

� so if mσ(T ) = mσ, occurs immediately or never!

� if mσ(T ) = 1√
12
gT , efficient process if

g ≥ 4.9g1/8
∗

�
mσ

M
Pl

�1/4
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Decay 2: perturbative scattering with thermal bath

Simple calculation:

Γpert =
1

576π

g
4
T

2

mσ(T )

� this is a very simple calculation

� ignores e.g. fact that momenta are soft

� many recent papers give improvement e.g. Mukaida,
Nakayama,Takimoto [1308.4394]
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Decay 3: dimension-5 operators

Example dimension-5 coupling:

L5 ∝
1

MP

σf̄ Φf

Gives:

Γ5 ≈
m

3
σ

M2
P
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Other constraints

� big bang nucleosynthesis (BBN)
� neutrinos decouple at 4 MeV
� avoid spoiling BBN if curvaton decay occurs before this
� requires mσ > 8× 104 GeV

� dark matter
� isocurvature if dark matter freezes out before curvaton decay
� large isocurvature is ruled out by WMAP and Planck
� standard WIMP scenario with decoupling at T = 10 GeV gives

Γ > 10−16 GeV
� from Γ5, we get mσ = 107 GeV

Rose Lerner The minimal curvaton-higgs (MCH) model



Motivation
The MCH model
Initial conditions

Summary

Lagrangian and assumptions
Three decay modes
Parameter space: ζ and f

NL

Methodology

� split into two
solutions

� include full
V = V0+∆V +V (T )

� numerically follow
oscillations

� use scaling law
evolution between
transitions

� use δN formalism to
obtain ζ, f

NL
and g

NL

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

108 109 1010 1011 1012 1013 1014 1015 1016 101710-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ζ

rdec

σ* (GeV)

H* = 1012 GeV
H* = 1010 GeV
H* = 108  GeV 

rdec

Rose Lerner The minimal curvaton-higgs (MCH) model



Motivation
The MCH model
Initial conditions

Summary

Lagrangian and assumptions
Three decay modes
Parameter space: ζ and f

NL

Parameter space for large σ∗
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f
NL

for large σ∗
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� H∗ = 1012 GeV
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Constraints including f
NL

for small σ∗
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fNL
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-5

� pale blue is
allowed

� H∗ = 109 GeV
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Constraints including f
NL

for small σ∗
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� H∗ = 1011 GeV
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Remaining unknowns are (in principle!) calculable

Including:

� numerical (lattice) consideration of thermal blocking

� baryogenesis

� dark matter

� running of coupling constant and other quantum corrections

� spectral index n and tensor-to-scalar ratio r , once inflaton
specified

� ...

� value of initial condition (?)
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Thermal blocking on the lattice (PRELIMINARY!)

� Is the analytical analysis of thermal blocking sufficient?
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Thermal blocking on the lattice (PRELIMINARY!)

� Is the analytical analysis of thermal blocking sufficient?

� Preliminary results say ”yes”
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The questions

1. if (non-inflaton) scalar fields exist in a theory, do they either
rule out the theory or otherwise affect observational
predictions?

2. if we design a curvaton model, does this have natural or
fine-tuned initial conditions?
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Initial Condition

The curvaton field value σ∗ when
observable scales exit the horizon
determines the observational
predictions
(given model parameters).
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We did this:
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Specify model: minimal curvaton-higgs (MCH)

Reminder: MCH Lagrangian

L = LSM +
1

2
∂µσ∂

µσ +
1

2
m

2
σσ

2 +
λ

4!
σ4 +

1

2
g
2σ2Φ†Φ
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Specify model: effective mass from the Higgs

� during inflation, curvaton gets a contribution to effective mass
from interaction with higgs

� m
2
eff

= m
2
σ + 1

2g
2
h
2
∗

� after inflation the higgs contribution quickly disappears

Two regimes:

1. gh∗ � mσ: g determines meff , mσ determines Γeff

2. gh∗ � mσ: mσ determines both
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Interpretation of P(σ)

1. set up background inflation

2. add a curvaton

3. curvaton experiences slow roll and random quantum kicks

4. find value of σ∗ in our patch

5. run the simulation many times

6. plot final σ∗ from all runs — this is P(σ)
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The distribution of σ∗

Fokker-Planck equation
Ṗ(σ,N) = 1

3H2
∗
V

��(σ)P(σ,N) + 1
3H2

∗
V

�(σ)P �(σ,N) + H
2
∗

8π2P
��(σ,N)

Derivation:

� Integrate out short wavelength modes with k � H∗

� Langevin equation σ̇ = V
�(σ)
3H∗

+ ξ(t)

� random Gaussian noise: �ξ(t)ξ(t �)� = δ(t − t
�) H

3
∗

8π2
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Evolution of P(σ,N) for V (σ) = 1
2m

2
eff
σ2

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

P(
σ

 / 
H

*, 
N

)

σ / H*

(N = 1, 10, 100; meff = 0.2H∗; σ0 = 0.)
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Solution for quadratic potential V (σ) = 1
2m

2
eff
σ2

P(σ,N) =
1�

2πw2(N)
exp

�
−
(σ − σc(N))2

2H2
∗w

2(N)

�

where

σc(N) = σc(0) exp

�
−
m

2
eff

3H2
∗
N

�

and

w
2(N) =

3H2
∗

8π2m2
eff

−

�
3H2

∗
8π2m2

eff

−
w

2(0)

H2
∗

�
exp

�
−
2m2

eff

3H2
∗
N

�

� initial central value of the distribution: σc(0) ≡ σ0
� initial width: w(0)
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Translate to ζ: valid for V (σ) = 1
2m

2
eff
σ2

� Probability distribution of ζ given by

P(ζ,N) = P[σ−
∗ ,N]

����
dσ∗
dζ

����
σ−
∗

+ P[σ+
∗ ,N]

����
dσ∗
dζ

����
σ+
∗

� . . . resulting in

P(ζ,N) = 1√
2πw2(N)

exp

�
−

��
H∗
6πζ (1−Y (ζ))

�
−σc (N)

�2

2H2
∗w

2(N)

�
H∗(1−Y (ζ))
6πζ2Y (ζ)

+ 1√
2πw2(N)

exp

�
−

(
�

H∗
6πζ (1+Y (ζ))

�
−σc (N))2

2H2
∗w

2(N)

�
H∗(1+Y (ζ))
6πζ2Y (ζ)

� Y (ζ) ≡

�
1−

288π2M
Pl
mσζ2

H2
∗

� . . . and something similar for f
NL
.
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Add opinion: defining “observable”, “negligible” and
“excluded”

As working definitions, we take:

observable
0.1ζWMAP ≤ ζ ≤ ζWMAP or 5 < f

NL
< 14.3

negligible
ζ < 0.1ζWMAP and f

NL
< 5

excluded
ζ > ζWMAP or f

NL
> 14.3

� Note that we must integrate over ζ to obtain
P(0.1ζWMAP < ζcurvaton < ζWMAP)
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Wait ages and ages: P(observable)

g

mσ / GeV

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
4

10
5

10
6

10
7

10
8

observable

0.1

0.01

0.5

0.5

0.8
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Wait ages and ages: P(negligible)

g

mσ / GeV

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
4

10
5

10
6

10
7

10
8

negligible

0.5
0.99

0.1

0.01
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Wait ages and ages: P(excluded)

g

mσ / GeV

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
4

10
5

10
6

10
7

10
8

excluded

0.1

0
.
1

0.5
0.8

0.010.5
0.8
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Wait just a little

� ζ is calculated when the perturbations leave the horizon,
about 60 e-foldings before the end of inflation

� the N shown here is the number of e-foldings before horizon
exit

� timescale to reach equilibrium given by Ndec = 3H2
∗

2m2
σ

� Ndec can be large
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P(observable) for σ0 = 0; N = 10

observable

N
=
1
0
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P(observable) for σ0 = 0; N = 102

N
=
1
0
2
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P(observable) for σ0 = 0; N = 104

N
=
1
0
4
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P(observable) for σ0 = 0; N = 106

N
=
1
0
6
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P(observable) for σ0 = 0; N = 1012

N
=
1
0
1
2
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P(negligible) for σ0 = 0; N = 10

negligible
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P(negligible) for σ0 = 0; N = 102
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P(negligible) for σ0 = 0; N = 104
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P(negligible) for σ0 = 0; N = 106
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P(negligible) for σ0 = 0; N = 1012
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P(excluded) for σ0 = 0; N = 10

excluded
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P(excluded) for σ0 = 0; N = 102
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P(excluded) for σ0 = 0; N = 104
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P(excluded) for σ0 = 0; N = 106
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P(excluded) for σ0 = 0; N = 1012
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P(observable) for σ0 = MP ; N = 104

observable

N
=
1
0
4
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P(observable) for σ0 = MP ; N = 106

N
=
1
0
6
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P(observable) for σ0 = MP ; N = 108

N
=
1
0
8
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P(observable) for σ0 = MP ; N = 1010

N
=
1
0
1
0
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P(observable) for σ0 = MP ; N = 1012

N
=
1
0
1
2
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Notes
g

mσ / GeV

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
4

10
5

10
6

10
7

10
8

observable

0.1

0.01

0.5

0.5

0.8

� “probable” regions of
parameter space exist for
some range of model
parameters

� large masses mσ > 2× 107

GeV are (dis)favoured

� mσ < 8× 104 GeV are
excluded due to a late
curvaton decay

� results valid for
g < (mσ/MP)1/4

� very little dependence on the
initial conditions for large
effective mass
m

2
eff

= m
2
σ + g

2
h
2
∗

� scalars with certain
properties should not be
ignored as possible
curvatons!
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Speculate: new observations
g

mσ / GeV

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
4

10
5

10
6

10
7

10
8

observable

0.1

0.01

0.5

0.5

0.8

New information?

� tensor-to-scalar ratio r →

H∗
� Planck → f

NL

� Planck → spectral index ns

→ constrains g and mσ

(once Vinf specified)

� WIMP dark matter
detection → increased lower
bound on mσ
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Speculate: linking N , g and mσ
g

mσ / GeV

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
4

10
5

10
6

10
7

10
8

observable

0.1

0.01

0.5

0.5

0.8

� if large mσ favoured, would
need very large N.

� if small mσ and large g was
instead favoured,
N = O(10− 100) would be
sufficient, if σ0 = 0 justified.

� Conversely, knowledge from
fundamental theories about
N could give information
about mσ and g .

Rose Lerner The minimal curvaton-higgs (MCH) model



Motivation
The MCH model
Initial conditions

Summary

The questions

1. if (non-inflaton) scalar fields exist in a theory, do they either
rule out the theory or otherwise affect observational
predictions?

2. if we design a curvaton model, does this have natural or
fine-tuned initial conditions?
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See also arxiv/1402.3176

Rose Lerner The minimal curvaton-higgs (MCH) model



Motivation
The MCH model
Initial conditions

Summary

The MCH model: summary

� MCH model is standard model + one real scalar curvaton

� non-perturbative decay into higgses is thermally blocked

� decay via dimension-5 operators determines predictions

� BBN, DM and interactions with the thermal background
impose constraints

� distribution of initial field value σ∗ could be determined under
assumptions

� scalars with certain properties should not be ignored as
possible curvatons!
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