

1. Introduction

Particle production from vacuum

■ It is known that a varying background causes production of particles

Oscillating Electric field \rightarrow pair production of electrons

[E. Brezin and C. Itzykson, *Phys. Rev.* **D 2**,1191 (1970)]

Changing metric \rightarrow gravitational particle production

[L. Parker, *Phys. Rev.* **183**, 1057 (1969)]

[L. H. Ford, *Phys. Rev.* **D 35**, 2955 (1987)]

Oscillating inflaton \rightarrow (p)reheating

[L. Kofman, A. D. Linde, A. A. Starobinsky, *Phys. Rev. Lett.* **73**, 3195 (1994)] [L. Kofman, A. D. Linde, A. A. Starobinsky, *Phys. Rev.* **D 56**, 3258 (1997)]

[L.Kofman, A.Linde, X.Liu, A.Maloney, L.McAllister, E.Silverstein, JHEP **0405**, 030 (2004)]

 \rightarrow kinetic energy of ϕ converts to χ

[L.Kofman, A.Linde, X.Liu, A.Maloney, L.McAllister, E.Silverstein, JHEP **0405**, 030 (2004)]

(massless point)

ENERGY

 ρ_χ

 $\sqrt{\text{Im }\phi}$

 $Re \phi$

 \bar{t}

[L.Kofman, A.Linde, X.Liu, A.Maloney, L.McAllister, E.Silverstein, JHEP **0405**, 030 (2004)]

- **If** ϕ **goes near the origin...**
	- \rightarrow mass of χ ($m_{\chi} = g\phi$) becomes small around $|\phi| = 0$
	- \rightarrow kinetic energy of ϕ converts to χ

[L.Kofman, A.Linde, X.Liu, A.Maloney, L.McAllister, E.Silverstein, JHEP **0405**, 030 (2004)]

 \rightarrow kinetic energy of ϕ converts to χ

Equations of motion for
$$
\chi
$$
:
\n
$$
0 = (\partial^2 + g^2 |\phi|^2) \chi \circ \mathcal{O} \left(\frac{\phi = \phi(t)}{\phi - \phi(t)} \right)
$$
\nplane wave
\nexpansion:
$$
\chi = \int \frac{d^3 k}{(2\pi)^3} e^{ik \cdot x} \left(\chi_k(t) a_k + \chi_k^*(t) a_{-\mathbf{k}}^\dagger \right)
$$
\nplane wave
\n
$$
\mathbf{time-dependent wave func.}
$$
\n
$$
0 = \partial_0^2 \chi_k + \omega_k^2(t) \chi_k \qquad (\chi_k, \chi_k) = 1
$$
\n
$$
\omega_k = \sqrt{k^2 + g^2 |\phi|^2}, \qquad (A, B) = i(A^\dagger B - A^\dagger B)
$$

■ If χ_k^{in} is a solution, a linear combination χ_k^{in} and $\chi_k^{\text{in}*}$ is also a solution

$$
\chi_k^{\text{out}} = \alpha_k^* \chi_k^{\text{in}} - \beta_k^* \chi_k^{\text{in}*}
$$

$$
(|\alpha_k|^2 - |\beta_k|^2 = 1)
$$

$$
\chi_k^{\text{in}} : i \partial_0 \chi_k^{\text{in}} \sim + \omega_k \chi_k^{\text{in}} \quad \text{or} \quad t = -\infty
$$

$$
\chi_k^{\text{out}} : i \partial_0 \chi_k^{\text{out}} \sim + \omega_k \chi_k^{\text{out}} \quad \text{or} \quad t = +\infty
$$

20/4/2015 Seminar (Fundamental Interactions) @ UW

Transformation law for operators $\int \frac{d^3k}{(2\pi)^3} e^{ik\cdot x} \left(\chi_k^{\text{out}} a_{\mathbf{k}}^{\text{out}} + \chi_k^{\text{out}*} a_{-\mathbf{k}}^{\text{out}*}\right)$ $=\int \frac{d^3k}{(2\pi)^3} e^{ik\cdot x} \left(\chi^{\text{in}}_k \left(\frac{\alpha_k^* a^{out}_k - \beta_k a^{out\dagger}_{-k}}{\alpha_k} \right) + \chi^{\text{in}*}_k \left(\frac{-\beta_k^* a^{out}_k + \alpha_k a^{out\dagger}_{-k}}{\alpha_k} \right) \right)$ $\chi_k^{\text{out}} = \alpha_k^* \chi_k^{\text{in}} - \beta_k^* \chi_k^{\text{in}*}$ $= a_{\mathbf{k}}^{\text{in}}$ $= a_{-\mathbf{k}}^{\text{int}}$

■ Transformation law (*Bogoliubov transformation*)

$$
\chi_k^{\text{out}} = \alpha_k^* \chi_k^{\text{in}} - \beta_k^* \chi_k^{\text{in}*}, \qquad a_k^{\text{out}} = \alpha_k a_k^{\text{in}} + \beta_k a_{-\mathbf{k}}^{\text{in}+}
$$

$$
(|\alpha_k|^2 - |\beta_k|^2 = 1)
$$

Produced number (occupation number)

$$
n_k \equiv \left\langle 0^{\text{in}} \middle| a_{\mathbf{k}}^{\text{out} \dagger} a_{\mathbf{k}}^{\text{out}} \middle| 0^{\text{in}} \right\rangle = V \cdot \underline{\left| \beta_k \right|^2}
$$

With WKB method

$$
|\beta_k|^2 \sim \exp \left[2 \operatorname{Im} \int dt \, \omega(t) \right] = \exp \left[-\pi \frac{k^2 + g^2 \mu^2}{gv} \right] \longrightarrow
$$

 $Re \phi$

 $\overline{\mu}$

 $\text{Im}\,\phi$

 $v \downharpoonright \phi(t)$

 $g\overline{v}$

 $\beta_k|^2 \sim \exp[2 \text{ Im } \int dt \omega(t)] = \exp \left[-\pi \right]$

 $Re \phi$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

$$
\mathcal{H} = |\dot{\phi}|^{2} + \frac{1}{2}\dot{\chi}^{2} + \frac{1}{2}(\nabla\chi)^{2} + \frac{1}{2}g^{2}|\phi|^{2}\chi^{2}
$$

$$
= \rho_{\chi} \sim n_{\chi} \cdot g|\phi|
$$

★ Brief summary of introduction

Our focus

How do (quantum) interaction terms affect particle production?

- Usually production rates are calculated in the purely classical background
- \rightarrow We would like to estimate the contribution of the quantum interaction term

Our focus

- How do (quantum) interaction terms affect particle production?
	- Usually production rates are calculated in the purely classical background
	- \rightarrow We would like to estimate the contribution of the quantum interaction term

Our focus

- How do (quantum) interaction terms affect particle production?
	- Usually production rates are calculated in the purely classical background
	- \rightarrow We would like to estimate the contribution of the quantum interaction term

In this talk we consider a simple SUSY model

2. Bogoliubov transformation law with interaction terms

■Our aim:

 $\phi \psi_{\phi} \chi \psi_{\chi}$

Evaluation of produced particle number for all species

$$
n_k(t^{\text{out}}) \equiv \langle 0^{\text{in}} | a_{\mathbf{k}}^{\text{out} \dagger} a_{\mathbf{k}}^{\text{out}} | 0^{\text{in}} \rangle
$$

 \rightarrow To find the Bogoliubov transformation law in the interacting theory

■Method

An example with a real scalar field $\Psi(1/4)$ mass, **Operator field equation :** $0 = (\partial^2 + M^2(x))\Psi(x) + I(x)$ Commutation relation : $[\Psi(x), \dot{\Psi}(y)] = i\delta^3(x-y)$ → Formal solution (*Yang-Feldman equations*) $\Psi(x) = \sqrt{Z} \Psi^{as}(x) - iZ \Big|$ d^4y $y^0 = x^0$ $y^0=t^{as}$ $\Psi^{\text{as}}(x), \Psi^{\text{as}}(y)]$ $J(y)$ $y^0 = t^{as} \implies \Psi(x^{as}) = \sqrt{Z} \Psi^{as}(x^{as})$ $Z:$ const. $\left| \begin{array}{cc} \end{array} \right|$ $\left| \begin{array}{cc} \Psi^{as} \end{array} \right|$ asymptotic field $0 = (\partial^2 + M^2)\Psi^{as}$ c -number \int source, operator Ψ ^{as} (x) $x + x^2$ $J(y)$ $J(y)$ $J(y)$ (y) +

If we take $t^{as} = t^{in} = -\infty$ or $t^{as} = t^{out} = +\infty$.

$$
\Psi^{\text{out}}(x^{\text{out}}) = \Psi^{\text{in}}(x^{\text{out}}) - i\sqrt{Z} \int d^4y \left[\Psi^{\text{in}}(x^{\text{out}}), \Psi^{\text{in}}(y) \right] J(y)
$$

An example with a real scalar field Ψ (1/4) Operator field equation : $0 = (\partial^2 + M^2(x))\Psi(x) + J(x)$ Commutation relation : $[\Psi(x), \dot{\Psi}(y)] = i\delta^3(x-y)$ → Formal solution (*Yang-Feldman equations*) $\Psi(x) = \sqrt{Z} \Psi^{as}(x) - iZ \Big|$ d^4y $y^0 = x^0$ $y^0=t^{as}$ $\Psi^{\text{as}}(x), \Psi^{\text{as}}(y)]$ $J(y)$ $\sum_{\mathbf{I}}$ $\sum_{\$ Take $t^{as} = t^{ib}$ from $t^{as} = t^{out} = +\infty$, $\Psi^{\text{out}}(x^{\text{out}}) = \Psi^{\text{in}}(x^{\text{out}}) - i\sqrt{Z} \int d^4y \left[\Psi^{\text{in}}(x^{\text{out}}), \Psi^{\text{in}}(y) \right] f(y)$ $Z:$ const. $\begin{array}{|c|c|} \hline \end{array}$ $\begin{array}{|c|c|} \Psi^{as}:$ asymptotic field $D = 2$ γ γ as $a_{\mathbf{k}}^{\mathbf{0}}$ out $a_{\mathbf{k}}^{\mathrm{ll}}$ in mass, c -number \int source, operator Ψ ^{as} (x) $x + x^2$ $\int (y)$ $J(y)$ $J(y)$ $\int (y)$ +

An example with a real scalar field Ψ (2/4)

An example with a real scalar field Ψ (3/4)

E Relation between $a_{\mathbf{k}}^{\text{in}}$ and $a_{\mathbf{k}}^{\text{out}}$

$$
a_{k}^{\text{out}} = Z \int d^{3}x e^{-i k \cdot x} (\psi_{k}^{\text{out}}, \psi^{\text{out}})
$$
\n
$$
\left\{\n\begin{array}{c}\n\left\{\n\begin{array}{c}\n\left(-\int d^{3}x e^{-i k \cdot x} (\psi_{k}^{\text{out}}, \psi^{\text{out}}) \right) - i \sqrt{Z} \int d^{4}y [\psi^{\text{in}}(x^{\text{out}}), \psi^{\text{in},*}(y)] f(y)\n\end{array}\n\right\}\n\\
a_{k}^{\text{out}} = \frac{\alpha_{k} a_{k}^{\text{in}} + \beta_{k} a_{-k}^{\text{in} \dagger} - i \sqrt{Z} \int d^{4}x e^{-i k \cdot x} (\alpha_{k} \psi_{k}^{\text{in} *} - \beta_{k} \psi_{k}^{\text{in}}) f(y)\n\end{array}\n\right\}
$$
\n(usual) Bogoliubov tfn law
\n
$$
\left\{\n\begin{array}{c}\n\alpha_{k} \equiv Z(\psi_{k}^{\text{out}}, \psi_{k}^{\text{in}}) & \psi_{k}^{\text{in}} = \alpha_{k} \psi_{k}^{\text{out}} + \beta_{k} \psi_{k}^{\text{out}} \\
\beta_{k} \equiv Z(\psi_{k}^{\text{out}}, \psi_{k}^{\text{in}}) & \psi_{k}^{\text{out}} = \alpha_{k}^{*} \psi_{k}^{\text{in}} - \beta_{k}^{*} \psi_{k}^{\text{in}} \\
|\alpha_{k}|^{2} - |\beta_{k}|^{2} = 1\n\end{array}\n\right\}
$$

An example with a real scalar field Ψ **(4/4)**

■ Produced (occupation) number :

$$
n_k = \langle 0^{\text{in}} | a_k^{\text{out} \dagger} a_k^{\text{out}} | 0^{\text{in}} \rangle
$$

= $| (\beta_k a_{-k}^{\text{in} \dagger} - i \sqrt{Z} \int d^4 x e^{-i \mathbf{k} \cdot \mathbf{x}} (\alpha_k \Psi_k^{\text{in}*} - \beta_k \Psi_k^{\text{in}}) J) | 0^{\text{in}} \rangle|^2$
= $\begin{cases} V \cdot |\beta_k|^2 + \cdots & (\beta_k \neq 0) \\ 0 & + Z | \int d^4 x e^{-i \mathbf{k} \cdot \mathbf{x}} \Psi_k^{\text{in}*} J | 0^{\text{in}} \rangle |^2 & (\beta_k = 0) \end{cases}$

 \rightarrow Particles can be produced even if $\beta_k = 0$!

In case of a fermionic field

Inner product becomes

 $(A,B)\equiv i\big(A^{\dagger}\dot{B}-\dot{A}^{\dagger}B\big)\quad\Longrightarrow\quad (A,B)_{F}\equiv \bar{A}\gamma^{0}B\;$ $(\;A,B:$ 4-component)

■ In case of Majorana fermions, the formulae are more complicated

★ Brief summary of this section

1. Bogoliubov transformation law with interaction effects

$$
a_{\mathbf{k}}^{\text{out}} = \alpha_k a_{\mathbf{k}}^{\text{in}} + \beta_k a_{-\mathbf{k}}^{\text{in} \dagger} - i\sqrt{Z} \int d^4x \ e^{-i\mathbf{k} \cdot \mathbf{x}} \left(\alpha_k \Psi_k^{\text{in}*} - \beta_k \Psi_k^{\text{in}} \right) J(y)
$$

(usual) Bogoliubov tfn law
Interaction effects

Wave functions' law keeps ordinary form

$$
\Psi_k^{\text{out}} = \alpha_k^* \Psi_k^{\text{in}} - \beta_k^* \Psi_k^{\text{in}*}
$$

2. The particle production can happen even if $\beta_k = 0$

3. Application to our model

■ Model (again)

$$
\mathcal{L}_{int} = -g^2 |\phi|^2 |\chi|^2 - \frac{1}{4} g^2 |\chi|^4 - g \left(\frac{1}{2} \phi \psi_\chi \psi_\chi + \psi_\phi \psi_\chi \chi + (h.c.) \right)
$$

■ Equation of Motion :

$$
\phi : 0 = (\partial^2 + g^2|\chi|^2)\phi + \frac{1}{2}g\psi_{\chi}^{\dagger}\psi_{\chi}^{\dagger}
$$
\n
$$
\chi : 0 = (\partial^2 + g^2|\phi|^2 + \frac{1}{2}g^2|\chi|^2)\chi + g\psi_{\phi}^{\dagger}\psi_{\chi}^{\dagger}
$$
\n
$$
\psi_{\phi} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\phi} + ig\chi^{\dagger}\psi_{\chi}^{\dagger}
$$
\n
$$
\psi_{\chi} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\chi} + ig\phi^{\dagger}\psi_{\chi}^{\dagger} + ig\chi^{\dagger}\psi_{\phi}^{\dagger}
$$
\n
$$
\phi \text{ has a background}
$$
\n
$$
\phi^{\text{as}} : 0 = \partial^2 \phi^{\text{as}}
$$
\n
$$
\chi^{\text{as}} : 0 = (\partial^2 + g^2|\langle\phi\rangle|^2)\chi^{\text{as}}
$$
\n
$$
\psi_{\phi}^{\text{as}} : 0 = (\partial^2 + g^2|\langle\phi\rangle|^2)\chi^{\text{as}}
$$
\n
$$
\psi_{\chi}^{\text{as}} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\phi}^{\text{as}}
$$
\n
$$
\psi_{\chi}^{\text{as}} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\chi}^{\text{as}}
$$
\n
$$
\psi_{\chi}^{\text{as}} : 0 = \bar{\sigma}^{\mu}\partial_{\mu}\psi_{\chi}^{\text{as}} + ig\langle\phi^{\dagger}\rangle\psi_{\chi}^{\text{as}\dagger}
$$
\n
$$
\left(\langle\phi\rangle \equiv \langle0^{\text{in}}|\phi|0^{\text{in}}\rangle\right)_{31/41}^{31/41}
$$

Definition of wave functions (Assuming $\langle \phi \rangle = \langle \phi(t) \rangle$)

$$
\begin{split}\n\Phi^{as} &= \langle \phi^{as} \rangle + \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k} \cdot \mathbf{x}} \Big(\phi_{k}^{as} a_{\phi}^{+,as} + \phi_{k}^{as*} a_{\phi - \mathbf{k}}^{-,as\dag} \Big) \\
0 &= \ddot{\phi}_{k}^{as} + \mathbf{k}^{2} \phi_{k}^{as} \Rightarrow \phi_{k}^{in} = \phi_{k}^{out} \propto e^{-ikt} \Rightarrow \left(\frac{\left| \beta_{\phi k} \right|^{2} = 0}{\left| \beta_{\phi k} \right|^{2} = 0} \right) \\
\mathbf{x}^{as} &= \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k} \cdot \mathbf{x}} \Big(\chi_{k}^{as} a_{\chi k}^{as} + \chi_{k}^{as*} b_{\chi - \mathbf{k}}^{as\dag} \Big) \\
0 &= \ddot{\chi}_{k}^{as} + (\mathbf{k}^{2} + g^{2} | \langle \phi \rangle |^{2}) \chi_{k}^{as} \Rightarrow \left[\beta_{\chi k} \right]^{2} = \left| Z_{\chi} \Big(\chi_{k}^{out}, \chi_{k}^{in*} \Big) \right|^{2} \neq 0 \\
\mathbf{u} \phi_{\phi}^{as} &= \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k} \cdot \mathbf{x}} \Big(e_{\mathbf{k}}^{+} \psi_{\phi k}^{+,as} a_{\psi_{\phi k}}^{+as} + e_{\mathbf{k}}^{-} \psi_{\phi k}^{-,as*} a_{\psi_{\phi - \mathbf{k}}}^{-as\dag} \Big) \\
0 &= \dot{\psi}_{\phi k}^{as} + i | \mathbf{k} | \psi_{\phi k}^{as} \Rightarrow \psi_{\phi k}^{in} = \psi_{\phi k}^{out} \propto e^{-ikt} \Rightarrow \left[\beta_{\psi_{\phi k}} \Big|^{2} = 0 \right. \\
\mathbf{u} \psi_{\chi}^{as} &= \sum_{s=\pm} \int \frac{d^{3}k}{(2\pi)^{3}} e^{i\mathbf{k} \cdot \mathbf{x}} e_{\mathbf{k}}^{s} \Big(\psi_{\chi k}^{(+)s,as} a_{\psi_{\chi k}}^{s} - s e^{-i\
$$

Analytical results (massive particles χ , ψ_{χ} ; $\beta_{k} \neq 0$)

$$
\begin{aligned}\n\blacksquare \ n_{\chi k} / V &\equiv \left\langle 0^{\text{in}} \left| a_{\chi k}^{+,\text{out} \dagger} a_{\chi k}^{+,\text{out}} \right| 0^{\text{in}} \right\rangle / V + \left\langle 0^{\text{in}} \left| a_{\chi k}^{-,\text{out} \dagger} a_{\chi k}^{-,\text{out}} \right| 0^{\text{in}} \right\rangle / V \\
&= 2 \left| \beta_{\chi k} \right|^2 + \cdots \\
&= 2 \exp \left[2 \left[\text{Im} \int dt \sqrt{k^2 + g^2 |\langle \phi \rangle|^2} \right] + \cdots \\
&= 2 \exp \left[-\pi \frac{k^2 + g^2 \mu^2}{g \nu} \right] + \cdots\n\end{aligned}
$$

$$
n_{\psi_{\chi}k}/V \equiv \sum_{s} \left\langle 0^{\text{in}} \left| a_{\psi_{\chi}k}^{s,\text{out} \dagger} a_{\psi_{\chi}k}^{s,\text{out}} \right| 0^{\text{in}} \right\rangle / V
$$

$$
= \sum_{s} \left| \beta_{\psi_{\chi}k}^{s} \right|^{2} + \cdots
$$

$$
= 2 \exp \left[-\pi \frac{k^{2} + g^{2} \mu^{2}}{g v} \right] + \cdots
$$

Analytical results (massless particle $\tilde{\phi}$; $\beta_{\phi k} = 0$)

$$
n_{\phi k}/V \equiv \left\langle 0^{\text{in}} \left| \tilde{a}_{\phi k}^{+, \text{out} \dagger} \tilde{a}_{\phi k}^{+, \text{out}} \right| 0^{\text{in}} \right\rangle / V + \left\langle 0^{\text{in}} \left| \tilde{a}_{\phi k}^{-, \text{out} \dagger} \tilde{a}_{\phi k}^{-, \text{out}} \right| 0^{\text{in}} \right\rangle / V
$$

$$
\left(\tilde{a} \equiv a - \left\langle 0^{\text{in}} \left| a \right| 0^{\text{in}} \right\rangle \right)
$$

:

$$
= g^2 \int \frac{d^3 p}{(2\pi)^3} \Big[Z_\phi Z_\chi^2 \Big(\Big| \int dt \, \phi_k^{\text{out}} \, \chi_{|\mathbf{k}+\mathbf{p}|}^{\text{in}} \, \chi_p^{\text{in}} \cdot g \langle \phi \rangle \Big|^2 + \Big| \int dt \, \phi_k^{\text{out}} \, \chi_{|\mathbf{k}+\mathbf{p}|}^{\text{in}} \, \chi_p^{\text{in}} \cdot g \langle \phi^{\dagger} \rangle \Big|^2 \Big) + \frac{1}{4} Z_\phi Z_{\psi_\chi}^2 \sum_{s,r,q} \Big(1 + sr \frac{\mathbf{p} \cdot (\mathbf{k}+\mathbf{p})}{p|\mathbf{k}+\mathbf{p}|} \Big) \Big| \int dt \, \phi_k^{\text{out}} \, \psi_{\chi|\mathbf{k}+\mathbf{p}|}^{(q)s,\text{in}} \, \psi_{\chi p}^{(q)r,\text{in}} \Big|^2 \Big) + \cdots
$$

Analytical results (massless particle ψ_{ϕ} **;** $\beta_{\psi_{\phi}k} = 0$)

$$
n_{\psi_{\phi}k}/V \equiv \sum_{s} \left\langle 0^{in} \left| a_{\psi_{\phi}k}^{s,out} a_{\psi_{\phi}k}^{s,out} \right| 0^{in} \right\rangle / V
$$

\n
$$
\vdots \qquad \qquad \circ \bigcirc \bigcirc \left\langle n_{k} \sim Z \right| \int d^{4}x \, e^{-ikx} \, \psi_{k}^{in} \, J \left| 0^{in} \right\rangle
$$

\n
$$
= g^{2} \int \frac{d^{3}p}{(2\pi)^{3}} Z_{\chi} Z_{\psi_{\phi}} Z_{\psi_{\chi}} \sum_{s,r} \frac{1}{2} \left(1 - s r \frac{p \cdot k}{pk} \right) \times \left| \int dt \, \psi_{\phi}^{out} \, \chi_{\left| \mathbf{k} + \mathbf{p} \right|}^{\left| \mathbf{k} \right\rangle} \psi_{\chi p}^{out} \right|^{2} + \cdots
$$

\n
$$
\sim \left| \begin{array}{c} \kappa + \mathbf{p} \\ \kappa + \mathbf{p} \\ \chi^{\text{in}} \end{array} \right| \times \mathbf{p} \qquad \qquad + \quad \text{(anti-particle diagram)}
$$

★ The main channel of massless particles production is "inverse decay"

Numerical results : case 1 ($g = 1$, $v = 0.5$, $\mu = 0.05$)

■ Numerical results : case 2 ($g = 2$, $v = 0.5$, $\mu = 0.05$)

4. Summary

- 1. We have found the Bogoliubov transformation law in the interacting theory using the Yang-Feldman formalism **I** In general, particle production is possible even if $\beta_k = 0$
- 2. We calculated produced particle's (occupation) number

$$
\frac{n_{\chi k}}{V} = \frac{n_{\psi_{\chi} k}}{V} \sim 2 \exp\left[-\pi \frac{k^2 + g^2 \mu^2}{g v}\right]
$$
 (analytical results)

$$
\frac{n_{\phi k}}{V}, \frac{n_{\psi_{\phi} k}}{V} \propto \frac{g^2}{4\pi} \times \text{(Eq. distribution)}
$$
 (fitting)

- Massive and massless particles are produced at the same time
- The main channel of massless particle production is inverse decay
- Although the produced number of massless particles is suppressed by $q^2/4\pi$, it is possible to create a sizable amount of particles if the coupling is reasonably strong