

One-Loop Flavour Observables and Two-Loop Higgs Masses for *free*

Florian Staub

CERN

Seminarium Teorii Oddziaływań Elementarnych Warsaw, 04./05. May 2015

Disclaimer

The tools I'm speaking about are not restricted to supersymmetric models. Nevertheless, I'll focus mainly on supersymmetry!

Outline

Today:

- 1. Introduction: there is life beyond the MSSM
- 2. The SARAH framework to explore models
- 3. Flavour observables at one-loop

Tomorrow:

4. Higgs masses at two-loop

Supersymmetry

Supersymmetry is one of the best studied extensions of the SM.

Appealing features

- \blacktriangleright Solves the hierarchy problem
- \blacktriangleright Predicts gauge coupling unification
- \blacktriangleright Provides a dark matter candidate
- \triangleright Relates EWSB and large top mass

Supersymmetry

Supersymmetry is one of the best studied extensions of the SM.

Appealing features

- \blacktriangleright Solves the hierarchy problem
- \blacktriangleright Predicts gauge coupling unification
- \blacktriangleright Provides a dark matter candidate
- \triangleright Relates EWSB and large top mass

The focus was usually on the MSSM

Public tools

Widely used SUSY tools (SoftSUSY, Suspect, Superiso, Susy_Flavor, FeynHiggs,...) are restricted to the MSSM (and a few extensions).

Reasons to look beyond the MSSM

- \blacktriangleright Higgs mass/Naturalness \rightarrow *F* or *D*-term enhanced tree mass?
- \triangleright Missing signals for SUSY at LHC
	- \rightarrow compressed spectra? *R*-parity violation? split-SUSY? ...
- \blacktriangleright **Neutrino masses** \rightarrow *R*-parity violation? Seesaw mechanism?
- **►** The μ problem \rightarrow effective μ term?
- **In Strong CP problem** \rightarrow (gauged?) Peccei-Quinn symmetry?
- \blacktriangleright R symmetry \implies Dirac Gauginos?
- \blacktriangleright $\mathsf{GUT}/\mathsf{String}$ model \rightarrow extended gauge sector? $Z',\,W'$ in reach?

I ...

Reasons to look beyond the MSSM

- \blacktriangleright Higgs mass/Naturalness \rightarrow *F* or *D*-term enhanced tree mass?
- \triangleright Missing signals for SUSY at LHC
	- \rightarrow compressed spectra? *R*-parity violation? split-SUSY? ...
- \triangleright **Neutrino masses** \rightarrow *R*-parity violation? Seesaw mechanism?
- **►** The μ problem \rightarrow effective μ term?
- **In Strong CP problem** \rightarrow (gauged?) Peccei-Quinn symmetry?
- \blacktriangleright R symmetry \implies Dirac Gauginos?
- \blacktriangleright $\mathsf{GUT}/\mathsf{String}$ model \rightarrow extended gauge sector? $Z',\,W'$ in reach?

Generic SUSY tools needed

To confront many models with experimental data (e.g. Higgs mass measurement, flavour observables, dark matter relic density) a high level of automatization is needed.

 \blacktriangleright ...

The SARAH framework to explore models

SARAH

SARAH [FS,0806.0538,0909.2863,1002.0840,1207.0906,1309.7223,1503.04200]

SARAH is a Mathematica package to get from a minimal input all important properties of SUSY and non-SUSY models. Models are defined by

- \blacktriangleright gauge & global symmetries
- \blacktriangleright particle content
- \blacktriangleright (super)potential

SARAH

SARAH [FS,0806.0538,0909.2863,1002.0840,1207.0906,1309.7223,1503.04200]

SARAH is a Mathematica package to get from a minimal input all important properties of SUSY and non-SUSY models. Models are defined by

- \triangleright gauge & global symmetries
- \blacktriangleright particle content
- \blacktriangleright (super)potential
- \triangleright All gauge (and gaugino) interactions are automatically derived from quantum numbers
- **In Gauge fixing terms in** R_{ϵ} **gauge are automatically derived**
- \triangleright Soft SUSY breaking terms are added automatically

 $(m^2\phi\phi^*, M_\lambda\lambda\lambda, T\phi_i\phi_j\phi_k, B\phi_i\phi_j, L\phi_i)$

Supported models

Matter and gauge sector

The gauge sector can consist of an arbitrary number of groups and all irreducible representations can be used for matter fields.

 $^{\textbf{1}}$ Susyno supports also $SO(N),$ $SP(2N),$ $E_{6,7,8},$ $G_2,$ $F_4,$ but the link is not yet well tested

Supported models

Matter and gauge sector

The gauge sector can consist of an arbitrary number of groups and all irreducible representations can be used for matter fields.

Supported gauge groups

 \triangleright Non-Abelian groups:

SARAH links Susyno to calculate Clebsch-Gordan coefficients, generators and Casimir/Dynkin for non-fundamental irreps of **unbroken** $SU(N)$ ¹ [Fonseca,1106.5016]

 \blacktriangleright Abelian groups: $\bm{{\mathsf{k}}}$ inditional for arbitrary numbers of $U(1)'s$ included

 $^{\textbf{1}}$ Susyno supports also $SO(N),$ $SP(2N),$ $E_{6,7,8},$ $G_2,$ $F_4,$ but the link is not yet well tested

Consistency check of a model

SARAH performs several checks

Physical properties

- \triangleright Check for gauge and Witten anomalies
- \triangleright Check if all terms in the (super)potential are in agreement with charge conservation
- \triangleright Check if other (renormalizable) terms allowed in the (super)potential by (gauge) symmetries
- \triangleright Check if other particles might mix

I ...

Consistency check of a model

SARAH performs several checks

Physical properties

- \triangleright Check for gauge and Witten anomalies
- \triangleright Check if all terms in the (super)potential are in agreement with charge conservation
- \triangleright Check if other (renormalizable) terms allowed in the (super)potential by (gauge) symmetries
- \triangleright Check if other particles might mix

Also formal checks (syntax, self-consistency,. . .) of the implementation in SARAH are done.

Tree-level Relations

- \blacktriangleright all Tadpole equations, Masses and Mass matrices
- \blacktriangleright all Vertices

Tree-level Relations

- \triangleright all Tadpole equations, Masses and Mass matrices
- \blacktriangleright all Vertices

Two-Loop RGEs

SUSY: Full CP and flavour structure [Martin, Vaughn, hep-ph/9311340]

Tree-level Relations

- \triangleright all Tadpole equations, Masses and Mass matrices
- \blacktriangleright all Vertices

Two-Loop RGEs

SUSY: Full CP and flavour structure [Martin, Vaughn, hep-ph/9311340]

- + Support of kinetic mixing **Example 20** [Fonseca, Malinsky, Porod, FS, 1107.2670]
- + Support of Dirac Gauginos
- $+$ **Running VEVs in** R_{ξ} **gauge** [Sperling, Stöckinger, Voigt, 1305.1548,1310.7629]

Tree-level Relations

- \triangleright all Tadpole equations, Masses and Mass matrices
- \blacktriangleright all Vertices

Two-Loop RGEs

SUSY: Full CP and flavour structure [Martin, Vaughn, hep-ph/9311340]

- + Support of kinetic mixing **Example 20** [Fonseca, Malinsky, Porod, FS, 1107.2670]
- + Support of Dirac Gauginos
- $+$ **Running VEVs in** R_{ξ} **gauge** [Sperling, Stöckinger, Voigt, 1305.1548,1310.7629]

General QFT: Full CP and flavour structure [Luo, Wang, Xiao, hep-ph/0211440]

- + Support of kinetic mixing **Example 20** [Fonseca,Malinsky,FS,1308.1674]
- $+$ Running VEVs in R_ξ gauge [Sperling, Stöckinger, Voigt, 1305.1548,1310.7629]

The analytical expressions derived by SARAH can be exported:

Model files for Monte Carlo Tools

 \triangleright CalcHep/CompHep (can be used with MicrOmegas)

WHIZARD [Kilian,Ohl,Reuter,0708.4233],[Moretti,Ohl,Reuter,0102195]

 \triangleright MadGraph & Herwig++ via UFO [Alwall et al.,1106.0522], [Bellm et al.,1310.6877]

[[]Pukhov et al.],[Boos et al.],[Belanger et al.]

The analytical expressions derived by SARAH can be exported:

Model files for Monte Carlo Tools

 \triangleright CalcHep/CompHep (can be used with MicrOmegas)

 \blacktriangleright WHIZARD [Kilian, Ohl, Reuter,0708.4233], [Moretti, Ohl, Reuter,0102195]

 \triangleright MadGraph $\&$ Herwig++ via UFO [Alwall et al.,1106.0522], [Bellm et al.,1310.6877]

Interface to other tools

SARAH writes also model files

- ▶ FeynArts/FormCalc [Hahn,hep-ph/0012260],[Hahn,Victoria,hep-ph/9807565]
-

and generates Fortran code for

■ Vevacious [Camargo-Molina,O'Leary,Porod,FS,1307.1477]

Third-party interface to SoftSUSY: FlexibleSUSY [Athron et al.,1406.2319]

[[]Pukhov et al.],[Boos et al.],[Belanger et al.]

[▶] SPheno [Porod,hep-ph/0301101],[Porod,FS,1104.1573]

The analytical expressions derived by SARAH can be exported:

Model files for Monte Carlo Tools

 \triangleright CalcHep/CompHep (can be used with MicrOmegas)

 \blacktriangleright WHIZARD [Kilian, Ohl, Reuter,0708.4233], [Moretti, Ohl, Reuter,0102195]

 \triangleright MadGraph $\&$ Herwig++ via UFO [Alwall et al.,1106.0522], [Bellm et al.,1310.6877]

Interface to other tools

SARAH writes also model files

-
-

and generates Fortran code for

▶ FeynArts/FormCalc [Hahn,hep-ph/0012260],[Hahn,Victoria,hep-ph/9807565]

■ Vevacious **[Camargo-Molina,O'Leary,Porod,FS,1307.1477**]

Third-party interface to SoftSUSY: FlexibleSUSY [Athron et al.,1406.2319]

[[]Pukhov et al.],[Boos et al.],[Belanger et al.]

[▶] SPheno [Porod,hep-ph/0301101],[Porod,FS,1104.1573]

Interplay: Vevacious

Vevacious ... [Camargo-Molina,O'Leary, Porod, FS,1307.1477]

 \ldots is a tool to find the global minimum of the 1-loop effective potential and checks the stability of the 'correct' vacuum.

 \triangleright Written in Python and C++; includes LHPC [O'Leary]

▶ Makes use of HOM4PS, pyminuit and CosmoTransitions

[Lee, Yi, Tsai,Computing, 83, pp109-133],[Wainwright,1109.4189]]

vevacious.hepforge.org

Interplay: Vevacious

Vevacious ... [Camargo-Molina,O'Leary, Porod, FS,1307.1477]

 \ldots is a tool to find the global minimum of the 1-loop effective potential and checks the stability of the 'correct' vacuum.

 \triangleright Written in Python and C++; includes LHPC [O'Leary]

▶ Makes use of HOM4PS, pyminuit and CosmoTransitions

[Lee, Yi, Tsai,Computing, 83, pp109-133],[Wainwright,1109.4189]]

vevacious.hepforge.org

If you use it, you'll see that thumb rules like

 $A_t^2 < 3(m_{H_u}^2 + m_{\tilde{t}_l}^2 + m_{\tilde{t}_R}^2)$

are not sufficient to identify CCB vacua in the MSSM! [1309.7212,1405.7376]

SARAH and SPheno

'Spectrum Generator Generator'

SARAH writes source-code which can be compiled with SPheno.

 \rightarrow Implementation of new models in SPheno in a modular way without the need to write source code by hand.

SARAH and SPheno

'Spectrum Generator Generator'

SARAH writes source-code which can be compiled with SPheno.

 \rightarrow Implementation of new models in SPheno in a modular way without the need to write source code by hand.

Features of 'SPheno by SARAH' versions

- \triangleright Full 2-loop running of all parameters and all masses at 1-loop
- \blacktriangleright Complete 1-loop thresholds at M_Z
- \triangleright two-loop corrections to Higgs masses
- \triangleright calculation of flavour and precision observables
- \triangleright calculation of decay widths and branching ratios
- \triangleright interface to HiggsBounds and HiggsSignals
- \triangleright estimate of electroweak Fine-Tuning

SARAH and SPheno

'Spectrum Generator Generator'

SARAH writes source-code which can be compiled with SPheno.

 \rightarrow Implementation of new models in SPheno in a modular way without the need to write source code by hand.

Features of 'SPheno by SARAH' versions

- \triangleright Full 2-loop running of all parameters and all masses at 1-loop
- \blacktriangleright Complete 1-loop thresholds at M_Z
- \triangleright two-loop corrections to Higgs masses
- \triangleright calculation of flavour and precision observables
- \triangleright calculation of decay widths and branching ratios
- \triangleright interface to HiggsBounds and HiggsSignals
- \triangleright estimate of electroweak Fine-Tuning

The SARAH [framework to explore models](#page-7-0) **[Toolchain](#page-26-0)**

Flavour observables at one-loop

in collaboration with Werner Porod & Avelino Vicente

Calculation of Flavour observables in a nutshell

To calculate flavour observables in a given model one needs

- 1. Expressions for vertices and masses
- 2. Expressions for Wilson coefficients²
- 3. Expressions for observables
- 4. Numerical values for everything

Calculation of Flavour observables in a nutshell

To calculate flavour observables in a given model one needs

- 1. Expressions for vertices and masses \rightarrow SARAH
- 2. Expressions for Wilson coefficients² \rightarrow FeynArts/FormCalc
- 3. Expressions for observables \rightarrow literature
- 4. Numerical values for everything \rightarrow SPheno
-
- -

 $2a$.k.a. formfactors for LFV

Calculation of Flavour observables in a nutshell

To calculate flavour observables in a given model one needs

- 1. Expressions for vertices and masses \rightarrow SARAH
- 2. Expressions for Wilson coefficients² \rightarrow FeynArts/FormCalc
- 3. Expressions for observables \rightarrow literature
- 4. Numerical values for everything \rightarrow SPheno

Let's combine the different tools!

 $2a$.k.a. formfactors for LFV

FlavorKit

[Porod,FS,Vicente,1405.1434]

- 1. SARAH calculates the necessary vertices & masses and includes them in the SPheno output
- 2. SPheno provides routines for the numerical evaluation of Passarino-Veltman integrals
- 3. The necessary expressions for the form factors and observables are still needed

FlavorKit

[Porod,FS,Vicente,1405.1434]

- 1. SARAH calculates the necessary vertices & masses and includes them in the SPheno output
- 2. SPheno provides routines for the numerical evaluation of Passarino-Veltman integrals
- 3. The necessary expressions for the form factors and observables are still needed

FlavorKit

The calculation of flavour observables is based on external files parsed by SARAH which . . .

- \blacktriangleright ... provide the generic expressions of form factors (function of masses, vertices, loop integrals)
- \blacktriangleright ... the formulae for the observables (function of form factors, masses, (hadronic) parameters, constants)

New observables

To calculate new observables the user has to provide two files

 \triangleright A steering file:

defines the necessary form factors and the desired position in the SPheno output

New observables

To calculate new observables the user has to provide two files

 \triangleright A steering file:

defines the necessary form factors and the desired position in the SPheno output

 \triangleright A Fortran file:

gives Fortran code to combine form factors to observables

New observables

To calculate new observables the user has to provide two files

 \triangleright A steering file:

defines the necessary form factors and the desired position in the SPheno output

 \triangleright A Fortran file:

gives Fortran code to combine form factors to observables

Both files have to be put into the FlavorKit subdirectory of SARAH

 \rightarrow The observables are included automatically in the SPheno output.

 $\frac{2}{3}$

 $\begin{array}{c} 6 \\ 7 \end{array}$

8

Example $l \rightarrow l_i \gamma$: Steering file

```
The Steering file reads
```

```
1 \mid NameProcess = "LLpGamma";
3 NameObservables = \{{muEgamma, 701, "BR(mu->e gamma)"},<br>4 \{tauEgamma 702 "BR(tau->e gamma)"}
4 {tauEgamma , 7 0 2 , "BR( tau>e gamma) "} ,
                 5 {tauMuGamma , 7 0 3 , "BR( tau>mu gamma ) "} };
   7 NeededOperators = {K2L , K2R} ;
   Body = "LLpGamma . f90" ;
```
K2L, K2R are the coefficients of the dipole operator

$$
\mathcal{L}_{\ell\ell\gamma} = e \,\bar{\ell}_{\beta} \left[im_{\ell_{\alpha}} \sigma^{\mu\nu} q_{\nu} \left(K_2^{L,\beta\alpha} P_L + K_2^{R,\beta\alpha} P_R \right) \right] \ell_{\alpha} A_{\mu} + h.c.
$$

which are known by SARAH.

Example $l \to l_i \gamma$: Fortran file

```
\begin{array}{c} 1 \\ 2 \end{array} Real \begin{array}{ccc} \text{d}p \\ \text{d}p \end{array} :: width
      Integer :: i1, gt1, gt23
 4 Do i1=1,3<br>5 If (i1.eq
 5 If (i1 \tcdot eq.1) Then ! mu -> e gamma<br>6 gt1 = 2
 \begin{array}{c|c} 6 & \text{gt1} = 2 \\ 7 & \text{gt2} = 1 \end{array}gt2 = 1\begin{array}{c|c} 8 \ B \ 9 \end{array} Elseif (i1 . eq . 2) Then ! tau \rightarrow e gamma
         9 ...
10 End if
11
12 | wid th = 0.25 - d p * m f = 1 (gt1) * * 5 * (Abs (K2L (gt1, gt2)) ** 2) * 2 \& + Abs (K2R (gt1, gt2)) ** 2) * Aloha& 4 +Abs (K2R(gt1,gt2)) **2) *Alpha
14
15 | If (i1 \cdot eq.1) Then
16 muEgamma = width / (width+GammaMu)
17 | Elseif (i1.eq.2) Then
1819 End if
20 End do
```


2
3
4

8 ...

Example $l \to l_i \gamma$: Result

After running SARAH and compiling the SPheno module the spectrum files produced by SPheno include the new observable:

```
1 \neq SUSY Les Houches Accord 2 - NMSSM
   # SPheno module generated by SARAH
   Block FlavorKitLFV # lepton flavor violating observables
5 701 1.61451131E-14 # BR(mu->e gamma)<br>6 702 5.67628390E-16 # BR(tau->e gamma
6 702 5.67628390E16 # BR( tau>e gamma)
                2.15514014E-17 # BR( tau->mu gamma)
```


Coefficients of new operators
Input files for form factors look much more complicated:

```
1 \begin{array}{c|c} 1 & \text{Switch [prop ,} \\ 2 & \text{V, (* Vector} \\ 3 & \text{Switch [top ,} \end{array}V, (* Vector penguins *)3 Switch [top, (* Check topology *)<br>4 1.
 \begin{array}{c|c} 4 & 1, \\ 5 & \text{Sv} \end{array}5 Switch [ type, (* Check the generic type of the diagram *)<br>6 SFF,
 \begin{array}{c|c}\n6 & \text{SFF} \\
7 & \text{V} \\
8 & \text{V}\n\end{array}WriteString [file ," int1=B0(0._dp, mF12, mF22) \n" ];
 8 WriteString [file ," int2=COO(mF22, mF12, mS12)\n, writeString [file "int3=CO(mF22, mF12, mS12)\n, m
9 WriteString [file ," int3=C0(mF22, mF12, mS12)\n"];<br>10 WriteString [file ." PVOddllVRR=PVOddllVRR+ \hookrightarrowWriteString[file, "PVOddlIVRR=PVOddlIVRR+ <math>\rightarrow\leftrightarrow chargefactor * coup1R * coup2L * coup4R * IMP2 * \leftrightarrow\leftrightarrow (-1.*coup3R*int3*mF1*mF2 + coup3L*(int1 - \leftrightarrow\leftrightarrow 2.*int2 + int3*mS12))\n" ];
11
```
(the files for $(\bar{d}\Gamma d)(\bar{\ell}\Gamma \ell)$ have about 5000 lines like this)

Coefficients of new operators
Input files for form factors look much more complicated:

```
1 \begin{array}{c} Switch [prop,<br>2 \begin{array}{c} V, (*) Vector<br>3 Switch [top,
      V, (* Vector penguins *)
 3 Switch [top, (* Check topology *)<br>4 1.
 \begin{array}{c|c} 4 & 1, \\ 5 & \text{Sv} \end{array}5 Switch [ type, (* Check the generic type of the diagram *)<br>6 SFF,
 \begin{array}{c|c}\n6 & \text{SFF} \\
7 & \text{V} \\
8 & \text{V}\n\end{array}WriteString [file ," int1=B0(0._dp, mF12, mF22) \n" ];
 8 WriteString [file ," int2=COO(mF22, mF12, mS12)\n, writeString [file "int3=CO(mF22, mF12, mS12)\n, m
9 WriteString [file ," int3=C0(mF22, mF12, mS12)\n"];<br>10 WriteString [file ." PVOddllVRR=PVOddllVRR+ \hookrightarrowWriteString[file, "PVOddlIVRR=PVOddlIVRR+ <math>\rightarrow\leftrightarrow chargefactor * coup1R * coup2L * coup4R * IMP2 * \leftrightarrow\leftrightarrow (-1.*coup3R*int3*mF1*mF2 + coup3L*(int1 - \leftrightarrow\leftrightarrow 2.*int2 + int3*mS12))\n" ];
11
```
(the files for $(\bar{d}\Gamma d)(\bar{\ell}\Gamma \ell)$ have about 5000 lines like this)

\rightarrow Nothing you want to implement by hand!

PreSARAH

The generic expressions for the coefficients of new operators can be calculated with an additional package (PreSARAH):

- \blacktriangleright Easy way to define operators and colour flow
- \triangleright Uses FeynArts/FormCalc to calculate generic expressions
- \triangleright Writes all necessary files for SARAH

PreSARAH

The generic expressions for the coefficients of new operators can be calculated with an additional package (PreSARAH):

- \blacktriangleright Easy way to define operators and colour flow
- \triangleright Uses FeynArts/FormCalc to calculate generic expressions
- \triangleright Writes all necessary files for SARAH

```
1 | NameProcess="2d2L";
 \frac{2}{3}Considered Process = "4Fermion":
 4 FermionOrderExternal={2,1,4,3};
     5 NeglectMasses={1,2,3,4};
\frac{6}{7}7 Exte rnalFields= {DownQuark , bar [ DownQuark ] ,
                                         8 ChargedLepton , bar [ ChargedLepton ] } ;
9
10 A l l O perators = {{OddllSLL, Op [7]. Op [7]}, (* [d PL d][ l PL l] *)<br>11 {QddllSRL, Op [6]. Op [7]}, (* [d PR d l [ l PL | 1 *)
                        {OddIISRL}, Op[6]. Op[7], (* [d PR djl PL 11 *)
12
13 } ;
```


[Flavour observables at one-loop](#page-27-0) **[Setup](#page-31-0)**

Implemented observables

We made use of this to (re-) implement in SARAH

- \blacktriangleright Br($l_i \rightarrow l_j \gamma$), Br($l \rightarrow 3l'$), Br($Z \rightarrow ll'$)
- \blacktriangleright CR($\mu e, N$) (N=Al,Ti,Sr,Sb,Au,Pb), Br($\tau \rightarrow l + P$) (P= π , η , η')
- \blacktriangleright Br($B \to X_s \gamma$), Br($B^0_{s,d} \to l\bar{l}$), Br($B \to s l\bar{l}$), Br($K \to \mu \nu$)
- \triangleright Br($B \to q\nu\nu$), Br($K^+ \to \pi^+\nu\nu$), Br($K_L \to \pi^0\nu\nu$)
- \blacktriangleright $\Delta M_{B_0, B_1}$, ΔM_K , ϵ_K , $Br(B \to K \mu \bar{\mu})$
- \triangleright Br($B \to l\nu$), Br($D_s \to l\nu$)

[Flavour observables at one-loop](#page-27-0) [Validation](#page-45-0)

Florian Staub 26 / 50

LFV in low-scale Seesaw models

[Abada,Krauss,Porod,FS,Vicente,Weiland,1408.0138]

inverse Seesaw

MSSM extended by 3 generations of right-handed neutrinos $(\hat{\nu}^C)$ and gauge singlets (\hat{X})

$$
W = W_{\text{MSSM}} + \varepsilon_{ab} Y_{\nu}^{ij} \hat{\nu}_i^C \hat{L}_j^a \hat{H}_u^b + M_{R_{ij}} \hat{\nu}_i^C \hat{X}_j + \frac{1}{2} \mu_{X_{ij}} \hat{X}_i \hat{X}_j.
$$

 \rightarrow Neutrino masses $M_{\nu} \simeq \frac{v_u^2}{2} Y_{\nu}^T M_R^{T-1} \mu_X M_R^{-1} Y_{\nu}$,

 $\mu \rightarrow e \gamma$

$$
m_0 = M_{1/2} = 1 \text{ TeV},\, A_0 = -1.5 \text{ TeV},\, M_R = 2 \text{ TeV},\, \tan\beta = 10, \mu > 0
$$

- limits: 5.7×10^{-13} (present), 6×10^{-14} (future)
- \blacktriangleright light right-handed neutrinos can give dominant contributions
- ▶ Dependence of non-SUSY contributions on SUSY scale because of charged Higgs mass

$\mu \rightarrow 3e$ and $\mu-e$ conversion

 $m_0 = M_{1/2} = 1$ TeV, $A_0 = -1.5$ TeV, $M_R = 2$ TeV, $\tan \beta = 10, \mu > 0$

\blacktriangleright Limits

- ▶ μ → 3*e*: 1.0×10^{-12} (present), 10^{-16} (future)
- \triangleright CR(μ –*e*, Al): 10^{-15} – 10^{-18} (future)
- non-SUSY box contributions can dominate
- \triangleright Higgs penguins contributions usually negligible

Summary of Part I

- I have presented a framework to study non-minimal SUSY models based on the Mathematica package SARAH
- \triangleright Many aspects needed to study BSM models are automatized

Summary of Part I

- I have presented a framework to study non-minimal SUSY models based on the Mathematica package SARAH
- ► Many aspects needed to study BSM models are automatized
- \blacktriangleright I discussed today how SARAH in combination with SPheno and FeynArts/FormCalc automatizes the calculation of flavour observables at one-loop:
	- \triangleright SPheno version created by SARAH provide many flavour observables out of the box
	- \blacktriangleright The user can easily extend the list of observables by combining the existing Wilson coefficients
	- \triangleright Also new coefficients at full one-loop can be included

Summary of Part I

- I have presented a framework to study non-minimal SUSY models based on the Mathematica package SARAH
- ► Many aspects needed to study BSM models are automatized
- \blacktriangleright I discussed today how SARAH in combination with SPheno and FeynArts/FormCalc automatizes the calculation of flavour observables at one-loop:
	- \triangleright SPheno version created by SARAH provide many flavour observables out of the box
	- \blacktriangleright The user can easily extend the list of observables by combining the existing Wilson coefficients
	- \triangleright Also new coefficients at full one-loop can be included
- \blacktriangleright I have shown at the example of the inverse seesaw that new/different features compared to standard seesaw scenarios can show up

Higgs masses at two-loop

in collaboration with Mark D. Goodsell & Kilian Nickel

[Higgs masses at two-loop](#page-52-0)

Higgs mass calculations 2015

- \triangleright All BSM models have to be confronted today with the Higgs mass measurements.
- ▶ However, including only new effects compared to the MSSM in an one-loop effective potentiall approach introduces are very large uncertainty.
- \rightarrow It is necessary to push non-minimal models to the MSSM precision!

Higgs mass calculation with SARAH and SPheno

Thresholds corrections

Full one-loop thresholds at *M^Z* to get running SM gauge and Yukawa couplings, in particular *Ytop*

Higgs mass calculation with SARAH and SPheno

Thresholds corrections

Full one-loop thresholds at *M^Z* to get running SM gauge and Yukawa couplings, in particular *Ytop*

One-loop corrections

All one-loop diagrams contributing to mass corrections of any particle in the model including full p^2 dependence

Higgs mass calculation with SARAH and SPheno

Thresholds corrections

Full one-loop thresholds at *M^Z* to get running SM gauge and Yukawa couplings, in particular *Ytop*

One-loop corrections

All one-loop diagrams contributing to mass corrections of any particle in the model including full p^2 dependence

Two-loop contributions [Goodsell,Nickel,FS,1411.0675]

Dominant two-loop contributions to CP even Higgs via effective potential approach

 \rightarrow corresponds to precision available for the MSSM when using SoftSUSY, Suspect or SPheno

 \blacktriangleright Generic expressions for all two-loop diagrams are known

[Martin,hep-ph/0111209]

 \blacktriangleright Expressions have been translated into 4-component notation

[Goodsell,Nickel,FS,1411.0675]

SS FFV FFS FFS

SV FFV SSS SSV

Florian Staub 35 $/$ 50 $\,$

 \blacktriangleright Generic expressions for all two-loop diagrams are known

[Martin,hep-ph/0111209]

 \blacktriangleright Expressions have been translated into 4-component notation

[Goodsell,Nickel,FS,1411.0675]

 \triangleright ew gauge contributions usually neglected

VV VVS GGV

 \triangleright Generic expressions for all two-loop diagrams are known

[Martin,hep-ph/0111209]

 \blacktriangleright Expressions have been translated into 4-component notation

[Goodsell,Nickel,FS,1411.0675]

- \triangleright ew gauge contributions usually neglected
- \blacktriangleright Two-loop corrections calculated by

$$
\begin{array}{rcl} \delta t_i^{(2)} & = & \displaystyle{\frac{\partial V^{(2)}}{\partial v_i}} \\ \Pi_{ij}^{(2)} & = & \displaystyle{\frac{\partial^2 V^{(2)}}{\partial v_i \partial v_j}} \end{array}
$$

Florian Staub 35 $/$ 50 $\,$

First implementation in SARAH/SPheno

[Goodsell,Nickel,FS,1411.0675]

- 1. Generic expressions are implemented in SARAH
- 2. SARAH generates all possible diagrams for included topologies in SPheno output
- 3. Self-energies / tadpoles are calculated numerically:
	- 3.1 Numerical derivation of the entire two-loop effective potential with respect to VEVs
	- 3.2 Chain rule: Analytical derivation of loop-functions which respect to masses; derivative of masses/couplings with respect to VEVs numerically

Numerical stability

\triangleright Numerical derivation dependence on initial step-size

- \triangleright There is a large plateau which can be used
- we implemented a 'safe mode' which varies the step-size and checks the stability

Numerical stability

- \triangleright Numerical derivation dependence on initial step-size
	- \triangleright There is a large plateau which can be used
	- \triangleright we implemented a 'safe mode' which varies the step-size and checks the stability
- **Numerics worse for** $M_{SUSY} \gg v$ No SUSY calculation should be used anyway!)

Numerical stability

- \triangleright Numerical derivation dependence on initial step-size
	- \triangleright There is a large plateau which can be used
	- we implemented a 'safe mode' which varies the step-size and checks the stability
- **I** Numerics worse for $M_{SUSY} \gg v$ No SUSY calculation should be used anyway!)
- Problems can appear for models with small VEVs (e.g. *RpV*)

Diagrammatic calculation

Fully analytically expressions [Goodsell, Nickel, FS, 1503.03098]

One can take *all* derivatives of the eff. pot. analytically using e.g.

$$
\frac{\partial}{\partial S_r} \left(\frac{1}{q^2 + \mathbf{m}^2} \right)_{ij} = -\left(\frac{1}{q^2 + \mathbf{m}^2} \right)_{ik} \frac{\partial m_{kk'}^2}{\partial S_r} \left(\frac{1}{q^2 + \mathbf{m}^2} \right)_{k'j}
$$

$$
m_{ij}^2(S) = \frac{\partial^2}{\partial S_i \partial S_j} V = m_i^2 \delta_{ij} + \lambda^{ijk} S_k + \frac{1}{2} \lambda^{ijkl} S_k S_l
$$

 \rightarrow each derivative introduces an additional propagator

- \rightarrow equivalent to a diagrammatic calculation in the limit $p^2 \rightarrow 0$.
	- \triangleright We derived a new set of generic expressions
	- \triangleright The expressions are equivalent to S. Martin results in the limit $p^2 \rightarrow 0$ but sometimes significantly shorter
	- \triangleright Results have been implemented in SARAH as third option to calculate two-loop masses

Two-loop masses with SARAH/SPheno

There are three options to calculate the two-loop masses in SARAH/SPheno which can easily be switched in the numerical session:

- 1. Effective potential with fully numerical derivation
- 2. Effective potential with semi-analytical derivation
- 3. Diagrammatic approach in the limit $p^2 \to 0$

Double check

The third option uses a different ansatz and was completely independently implemented as the other two

 \rightarrow possibility to internally double checks results by just using SARAH/SPheno!

That's necessary because there are hardly other two-loop results to compare with. However, a few are there . . .

full lines: SARAH, dots: Brignole,Dedes,Degrassi, Slavich, Zwirner ([hep-ph/0112177,0206101,0212132,0305127])

1–loop / $\alpha_S(\alpha_b + \alpha_t)$ / full 2-loop

Validation II

NMSSM:

1–loop / $\alpha_S(\alpha_b + \alpha_t)$

Validation II

NMSSM:

full lines: SARAH, dots: Degrassi, Slavich ([0907.4682])

1–loop / $\alpha_S(\alpha_b + \alpha_t)$

Dirac Gauginos: full agreement with non-public code for $\alpha_S(\alpha_b + \alpha_t)$ corrections

[Goodsell,Slavich]

Problems with massless states

There is an intrinsic problem in the eff. pot. in Landau gauge

Goldstone boson catastrophe

The second derivative of the one-loop effective potential

 $V^{(1)} \sim (m^2)^2 \left[\log(m^2/Q^2) + c \right]$

diverges for massless particles

$$
\Pi^{(1)} \equiv \frac{\partial^2 V^{(1)}}{\partial m^2 \partial m^2} \to \infty \quad \text{for} \quad m^2 \to 0
$$

At two-loop already the first derivative diverges for $m^2 \to 0$

Problems with massless states

There is an intrinsic problem in the eff. pot. in Landau gauge

Goldstone boson catastrophe

The second derivative of the one-loop effective potential

 $V^{(1)} \sim (m^2)^2 \left[\log(m^2/Q^2) + c \right]$

diverges for massless particles

$$
\Pi^{(1)} \equiv \frac{\partial^2 V^{(1)}}{\partial m^2 \partial m^2} \to \infty \quad \text{for} \quad m^2 \to 0
$$

At two-loop already the first derivative diverges for $m^2 \to 0$

 \triangleright Problematic are the Goldstones of broken groups \rightarrow ew corrections are not considered in the MSSM at 2-loop

Problems with massless states

There is an intrinsic problem in the eff. pot. in Landau gauge

Goldstone boson catastrophe

The second derivative of the one-loop effective potential

 $V^{(1)} \sim (m^2)^2 \left[\log(m^2/Q^2) + c \right]$

diverges for massless particles

$$
\Pi^{(1)} \equiv \frac{\partial^2 V^{(1)}}{\partial m^2 \partial m^2} \to \infty \quad \text{for} \quad m^2 \to 0
$$

At two-loop already the first derivative diverges for $m^2 \to 0$

- \triangleright Problematic are the Goldstones of broken groups \rightarrow ew corrections are not considered in the MSSM at 2-loop
- \triangleright In BMSSM also other very light scalars can cause similar problems

Outlook

The diagrammatic calculation gives not only a very important cross check, but allows for future improvements:

- \triangleright Corrections to CP odd states can be included
- \blacktriangleright Full coverage of CP violation at two-loop
- \triangleright To include momentum dependence, only the loop functions but not the generic structures have to be changed

We hope that we can release improvements in these directions in the not too far future!

Vectorlike top partners

[Goodsell,Nickel,FS,in prep.]

MSSM with vectorlike top partners

$$
W = W_{MSSM} + Y^i_{t'} \hat{Q}_i \hat{T}' \hat{H}_u + M_{T'} \hat{T}' \hat{T}' + m^i_{t'} \hat{U}_i \hat{T}'.
$$

 \rightarrow it is well know that $Y_{t'}^3 \equiv Y_{t'}$ can give a large push to the Higgs mass.

Using SARAH/SPheno one can easily improve existing calculations in three aspects:

- 1. one-loop thresholds to calculate *Ytop* at *M^Z*
- 2. momentum dependence at one-loop
- 3. dominant two-loop corrections

[Higgs masses at two-loop](#page-52-0) **[Results](#page-74-0)**

top left: 1-loop eff.pot, 1-loop with p^2 , 1-loop p^2 and thresholds, two-loop top right: shift by momentum dependence, thresholds, two-loop bottom: absolute shifts (left) by 1- and 2-loop corrections, and normalized to MSSM contributions (right)

NMSSM results I: heavy singlet & moderate λ

[Goodsell,Nickel,FS,1411.4665]

1–loop / $\alpha_S(\alpha_b + \alpha_t)$ / full

- ► Corrections beyond $\alpha_S(\alpha_t + \alpha_b)$ give negative contribution of a few GeV
- \triangleright Corrections often MSSM-like and dominated by (s)quarks

NMSSM results II: heavy singlet & large λ

[Goodsell,Nickel,FS,1411.4665]

 $\kappa = 1.6$ tan $\beta = 3$ $T_{\lambda} = 600$ GeV $T_{\kappa} = -2650$ GeV $\mu_{eff} = 614$ GeV $m_{\tilde{f}}^2 = 2 \cdot 10^6$ GeV² *T*_i = 0 *M*₁ = 200 GeV *M*₂ = 400 GeV *M*₃ = 2000 GeV

1–loop / $\alpha_S(\alpha_b + \alpha_t)$ / full / MSSM approx.

- Additional corrections can be positive for very large λ
- \triangleright Using MSSM results not a good approximation any more

NMSSM results III: light singlet

[Goodsell,Nickel,FS,1411.4665]

1–loop $\frac{\alpha_S(\alpha_b + \alpha_t)}{f}$ full

- **If** Corrections can be larger than the ones $\sim \alpha_S$
- \triangleright Again, using MSSM results not a good approximation any more

MSSM with trilinear *R*pV

[Dreiner,Nickel,FS,1411.3731]

MSSM with trilinear *R*pV

$$
W = W_{MSSM} + \frac{1}{2} \lambda_{ijk} \mathbf{L}_i \mathbf{L}_j \mathbf{\bar{E}}_k + \lambda'_{ijk} \mathbf{L}_i \mathbf{Q}_j \mathbf{\bar{D}}_k + \frac{1}{2} \lambda''_{ijk} \mathbf{\bar{U}}_i \mathbf{\bar{D}}_j \mathbf{\bar{D}}_k.
$$

- ▶ *R*pV contributions to Yukawas at one-loop
- \triangleright *R*pV contributions to effective potential at two-loop

MSSM with trilinear *R*pV

 λ_{313}' , λ_{312}' , λ_{213}' , λ_{333}' (dashed), λ_{331}' (dashed), λ_{313}' (dashed)

- \triangleright Corrections only important if stops are involved
- For light stops the corrections can be several GeV
- Often couplings beyond the perturbativity limit needed

Summary Part II

- \triangleright The precise measurement of the Higgs mass is a challenge for many BSM models
- \triangleright To confront models with this measurement a precise prediction of the Higgs mass in a given model is necessary
- \triangleright The combination SARAH/SPheno provides a prediction for a wide range of SUSY models which is comparable with the MSSM precision of standard spectrum generators by including:
	- \triangleright All new effects in the one-loop thresholds to determine the running gauge and Yukawa couplings
	- \blacktriangleright The full momentum dependence at one-loop
	- \triangleright The (most likely!) dominant two-loop corrections

► By providing $O((α_λ + α_κ)α_λ)$ ($x = s, t, b, τ, λ, κ$) corrections, the NMSSM version of SPheno generated by SARAH is even more precise than dedicated tools