Natural SUSY, Muon g-2, and Higgs Measurements at Future e⁻e⁺ Colliders

Kechen Wang

DESY, Hamburg, Germany

20th Planck Conference, U of Warsaw May 25, 2017

Based on [Phys. Rev. D 93 (2016) 055040], with T. Li, S. Raza

Outline

★ Parameter Space Scan

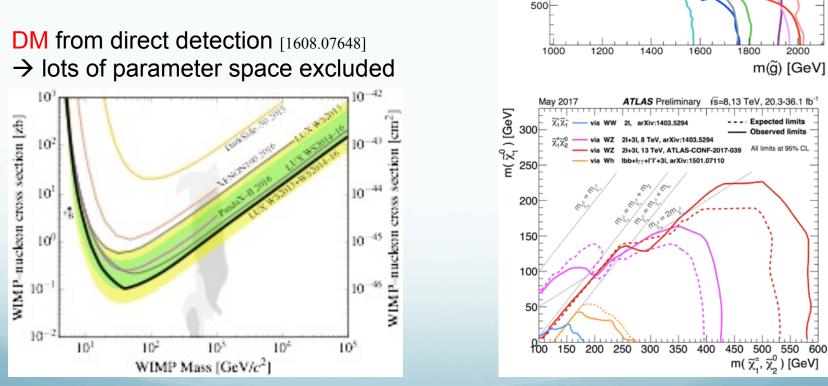
- Introduction
- Theoretical Dependences
- Input Constraints

★ Numerical Results

- Electroweak Fine-tuning
- Higgs Coupling Measurements
- Muon Magnetic Moment Measurement
- Collider Phenomenology

★ Summary

Kechen Wang


Current Status of BSM Searches

[V000] (GeV] س(يرأ)

1500

1000

SUSY from LHC: → m_gluino > 1.9 TeV → m_stop > 950 GeV → m_chargino > 600 GeV

\rightarrow No clear Hints of New Physics so far.

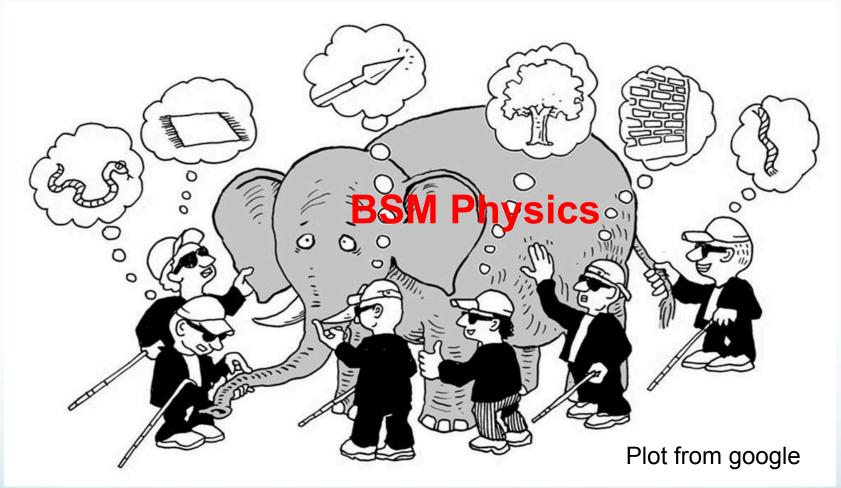
Kechen Wang

Natural SUSY, Muon g-2, and Higgs Measurements at Future e⁻e⁺ Colliders

May 2017

\s = 13 TeV, 14.8-36.1 fb¹

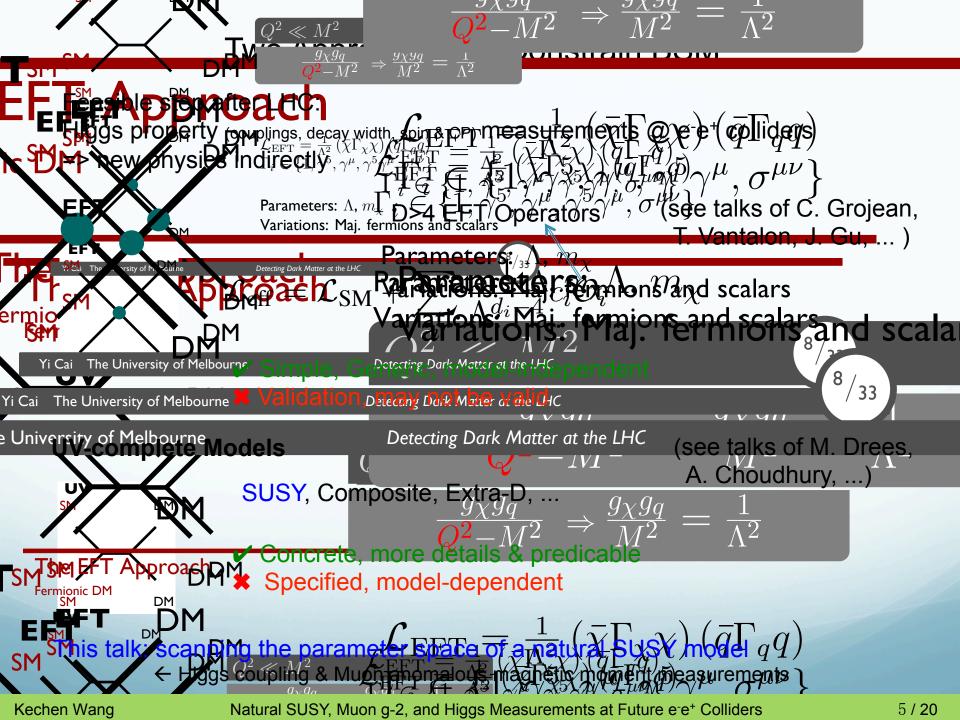
/Z[´]χ⁰₁, ≥ 7-11 jets, ATLAS-CONF-2017-033 /Z[´]χ¹₁, SS leptons, ATLAS-CONF-2017-030 SS leptons, ATLAS-CONF-2017-030


0-lepton, ATLAS-CONF-2017-022 1-lepton, ATLAS-CONF-2016-054

→ $tt \tilde{\chi}_{1}^{0}$, ≥ 3b jets, ATLAS-CONF-2017-021 → $bb \tilde{\chi}_{1}^{0}$, ≥ 3b jets, ATLAS-CONF-2017-021

→ qq², 0-lepton, ATLAS-CONF-2017-022

reliminary


Current Status of BSM Searches

Perhaps we will have to face the "nightmare scenario" after LHC

- \rightarrow no clear hints of BSM physics.
- \rightarrow no definite guidance to BSM physics.
- => have to search for all possible directions.

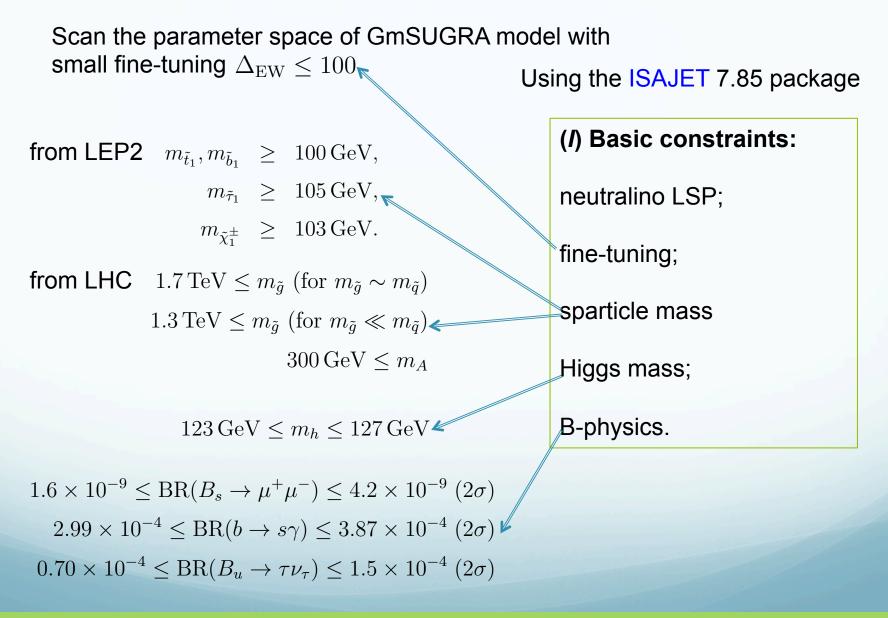
Kechen Wang

Theoretical Dependences

Higgs Couplings in MSSM model

In the decoupling limit of
$$m_A \gg m_Z$$

 $k_V \equiv \frac{g_{hVV}^{SUSY}}{g_{hVV}^{SM}} = \sin(\alpha + \beta) \sim 1 - \mathcal{O}\left(\frac{m_Z^4}{m_A^4} \frac{2}{\tan^2 \beta}\right)$, for $V = W, Z$
 $k_{b,\tau} \sim 1 - \mathcal{O}\left(\frac{m_Z^4}{m_A^4} \frac{2}{\tan^2 \beta}\right) + \mathcal{O}\left(\frac{m_Z^2}{m_A^2} \frac{2}{\tan \beta} \tan \beta\right) \sim 1 + \mathcal{O}\left(\frac{2m_Z^2}{m_A^2}\right)$
 $k_t \sim 1 - \mathcal{O}\left(\frac{m_Z^4}{m_A^4} \frac{2}{\tan^2 \beta}\right) - \mathcal{O}\left(\frac{m_Z^2}{m_A^2} \frac{2}{\tan \beta} \cot \beta\right) \sim 1 - \mathcal{O}\left(\frac{m_Z^2}{m_A^2} \frac{2}{\tan^2 \beta}\right)$
 $k_g \approx 1 + \frac{m_t^2}{4}\left[\frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} - \frac{X_t^2}{m_{\tilde{t}_1}^2}\right] \qquad X_t = |A_t - \mu/\tan\beta|$


Muon anomalous magnetic moment from $\tilde{e}_{R,L} - \tilde{\chi}_1^0$ and $\tilde{\nu} - \tilde{\chi}_1^{\pm}$ loops

$$\Delta a_{\mu}^{\rm SUSY} \sim \frac{M_i \mu \tan \beta}{m_{\rm SUSY}^4}$$

 $\begin{array}{l} M_{1,2} \rightarrow \text{ weak-scale gaugino masses;} \\ \mu \rightarrow \text{Higgsino mass parameter;} \\ m_{\text{SUSY}} \rightarrow \text{ sparticle mass circulating in the loop} \end{array}$

Kechen Wang

Input Constraints

Kechen Wang

Input Constraints

(II) Muon magnetic moment constraint

 $4.7 \times 10^{-10} \le \Delta a_{\mu} \le 52.7 \times 10^{-10} \ (3\sigma)$

Collider	HL-LHC	ILC	CEPC (2 IP)	FCC-ee (4 IP)
$\sqrt{s} \; (\text{GeV})$	14000	500	240	240
$\mathcal{L} (\mathrm{fb}^{-1})$	3000	500	5000	10000
polarization (e^-, e^+)	_	(-0.8, +0.3)	(0, 0)	(0, 0)
k_g	9.1	2.3	1.5	1.1
k_W	5.1	1.2	1.2	0.85
k_Z	4.4	1.0	0.26	0.16
k_γ	4.9	8.4	4.7	1.7
k_b	12	1.7	1.3	0.88
$k_{ au}$	9.7	2.4	1.4	0.94
k_t	11	14	\-/	-
able 1: Summary for the pr	ociciona of]	Uirra basan a		monta in norcontara
fferent colliders.	ecisions of 1	niggs boson c	oupling measure	ements in percentage
lierent conders.	V			

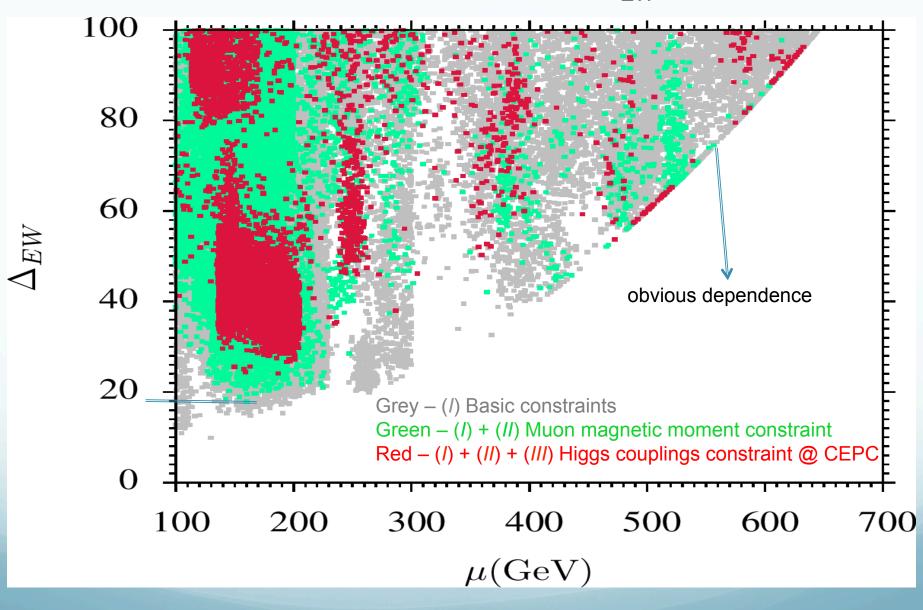
For ILC, 250 GeV running & luminosity upgrade \rightarrow better precisions.

Kechen Wang

Outline

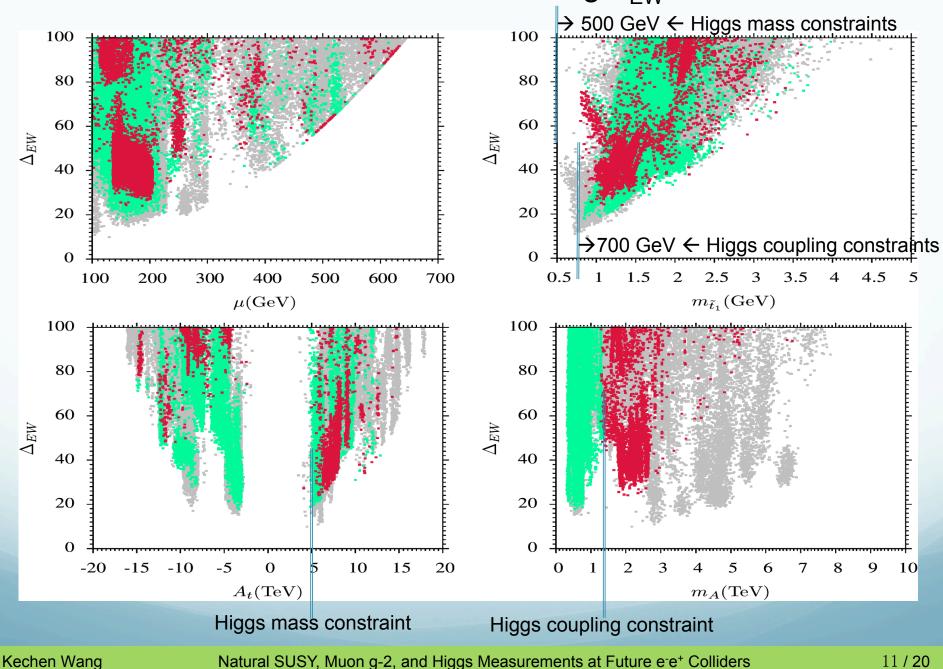
★ Parameter Space Scan

- Introduction
- Theoretical Dependences
- Input Constraints

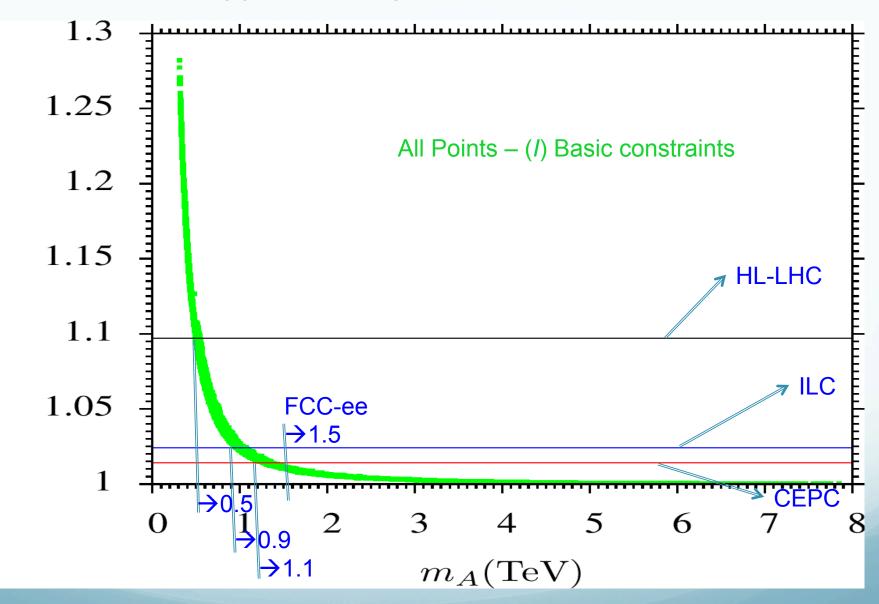

★ Numerical Results

- Electroweak Fine-tuning
- Higgs Coupling Measurements
- Muon Magnetic Moment Measurement
- Collider Phenomenology

★ Summary

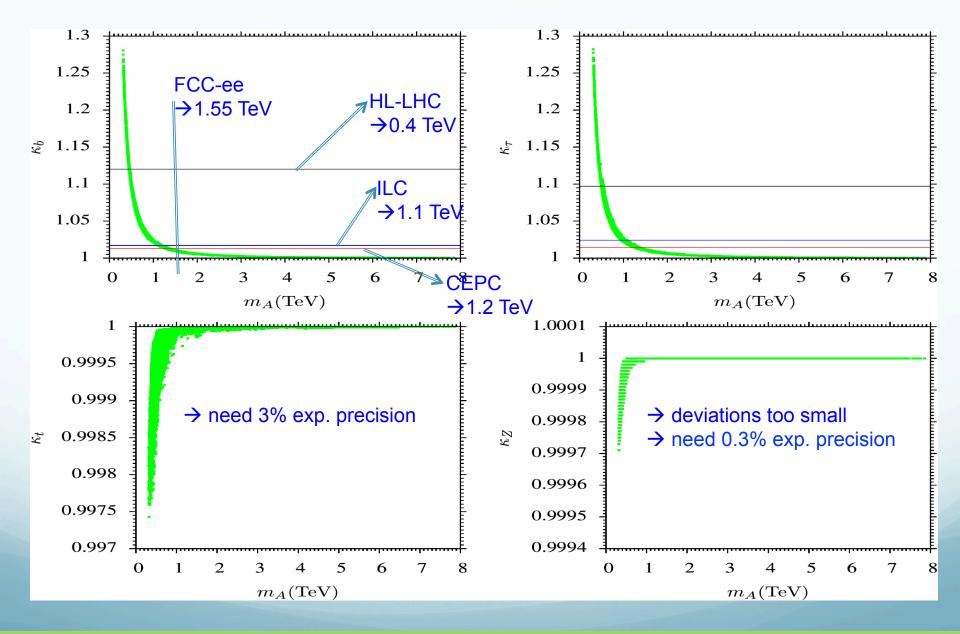

Kechen Wang

Electroweak Fine-tuning Δ_{EW}

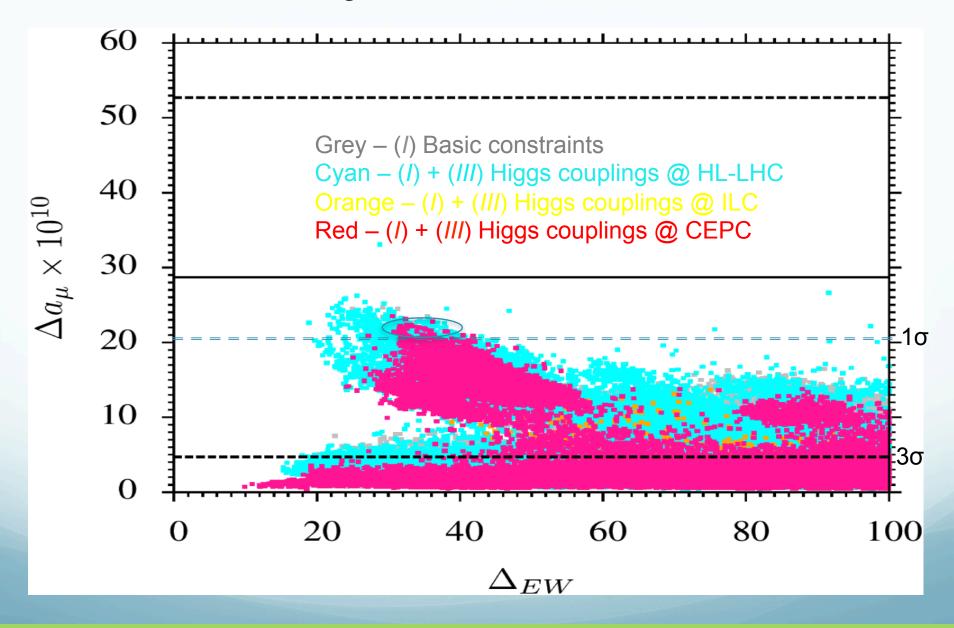


Kechen Wang

Electroweak Fine-tuning Δ_{EW}

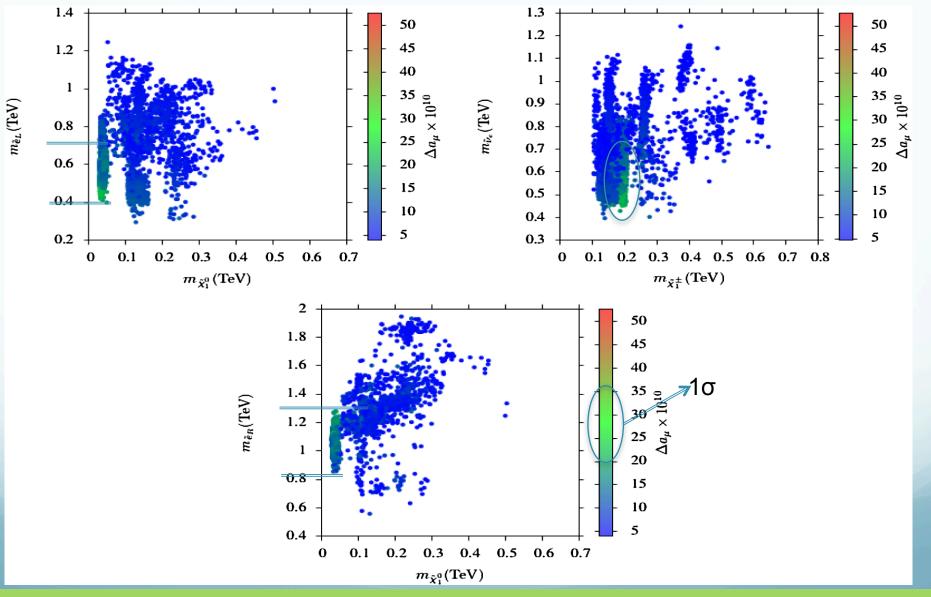

Higgs Coupling Measurements

Kechen Wang

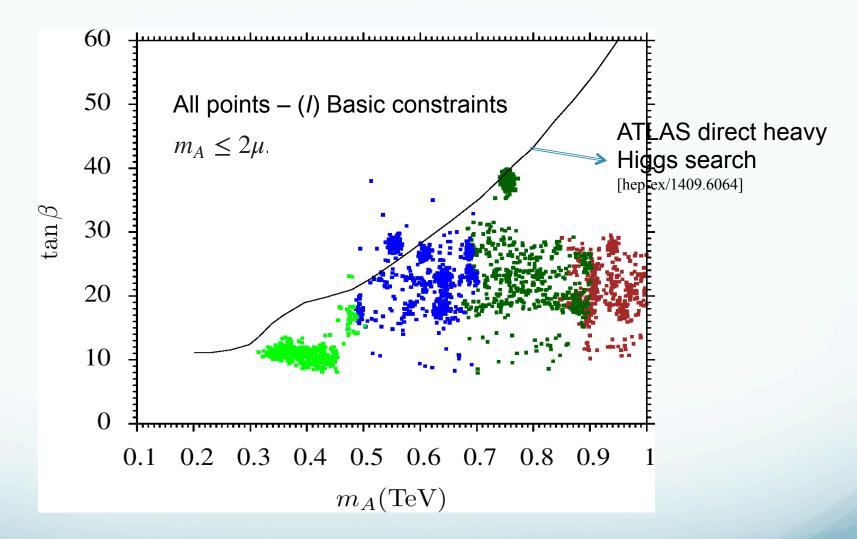

 $\mathcal{F}_{\mathcal{T}}$

Higgs Coupling Measurements

Kechen Wang


Muon Magnetic Moment Measurement

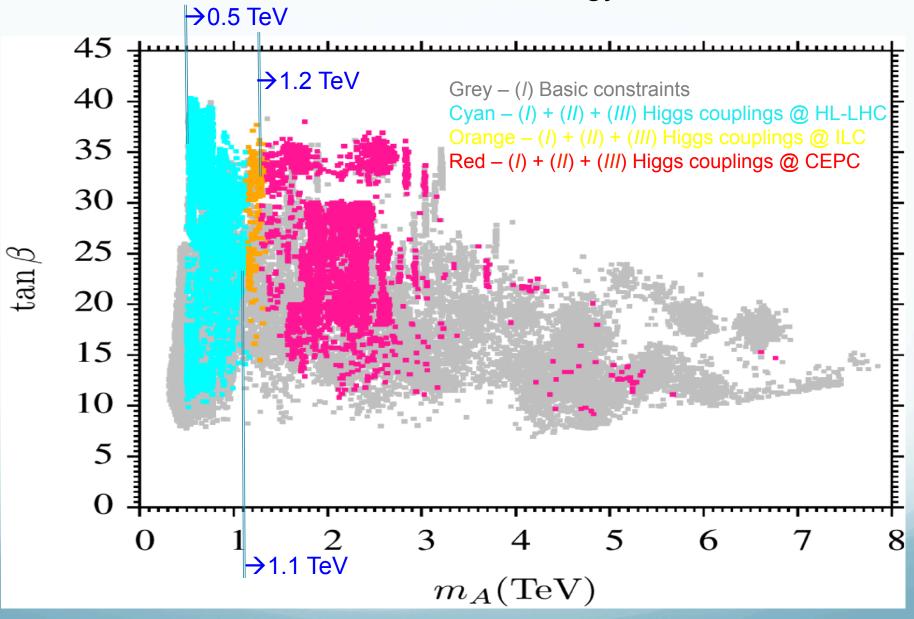
Kechen Wang


Muon Magnetic Moment Measurement

All points -(I) + (II) + (III) Higgs couplings @ CEPC

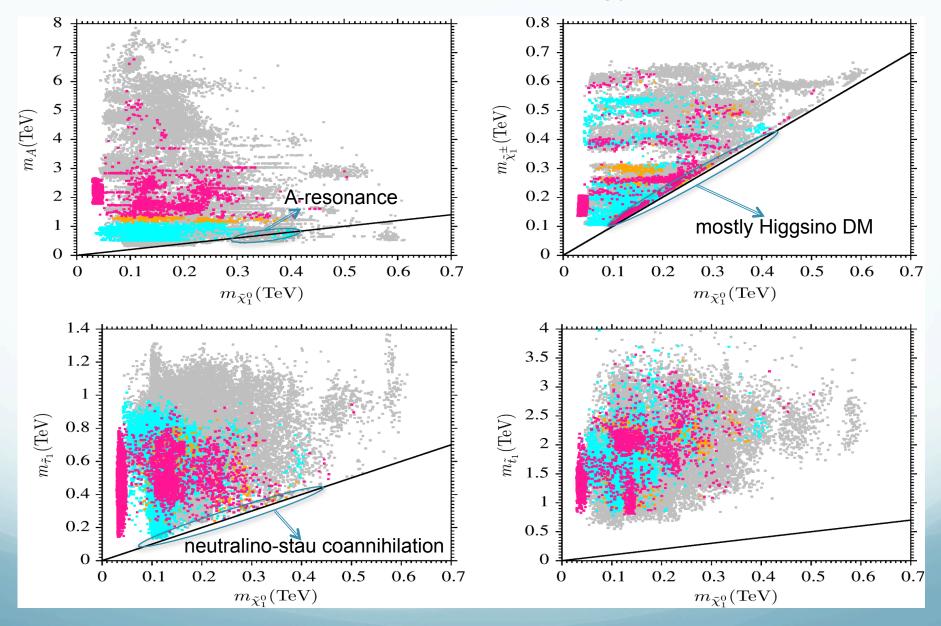
Kechen Wang

Collider Phenomenology



Precisions of Hbb coupling: > 10%, 5%~10%, 3%~5%, < 3%

 \rightarrow Complementary to the direct collider searches


Kechen Wang

Collider Phenomenology

Kechen Wang

Collider Phenomenology

Kechen Wang

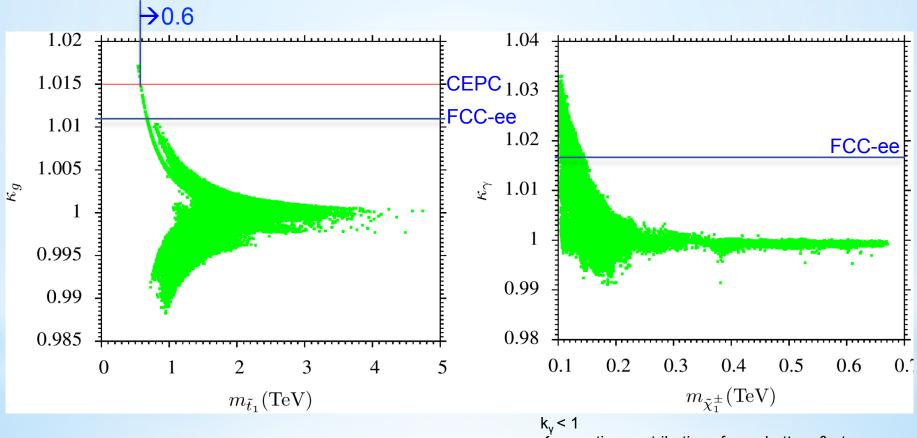
Benchmark Points

I	arge Higgs deviations	large Δa_{μ}	A resonance	stau-neutralino coannihilatio	
	Point 1	Point 2	Point 3	Point 4	
m_{0^U}	1037	2582	5057	5327	
m _õ	1003.3	2366.4	4631	4879.2	
$m_{\tilde{U}^c}^Q$	1162.1	3306.7	6487	6830.6	
$m_{\tilde{D}^c}$	1311.7	3326.3	6474.9	6841.3	
$m_{\tilde{L}}^{D}$	328.1	264.8	1023	858.2	
$m_{\tilde{E}^c}^L$	814.1	514.8	900.9	978.6	
M_1^L	857.1	350.9	602.7	686.5	
M_2	656	993	634.3	828.8	
$\tilde{M_3}$	1158.8	-612.25	555.3	473.05	
$A_t = A_b$	-3292	5390	-9095	-9684	
$A_{\tilde{\tau}}$	-691.6	1192	-1570	-2937	
$\tan \beta$	11.6	33.8	19.7	21.4	
u ,	183	172.5	377.5	168.2	
m_A	<u>338.9</u>	754.9	603	846	
$\Delta_{\rm HS}$	1883	3151	10873	11993.67	
$\Delta_{\rm EW}$	27	23	87	87	
Δa_{μ}	4.731×10^{-10}	16.63×10^{-10}	7.683×10^{-10}	12.161×10^{-10}	
m_h	123	123	125	125	
m_H	342	751	607	856	
$n_{H^{\pm}}$	348	750	608	850	
κ_b, κ_t	1.22541, 0.99817	1.04295, 0.99996	1.06459, 0.99983	1.03296, 0.99992	
$\kappa_{\tau}, \kappa_{W} = \kappa$		1.04787, 0.99999	1.06644, 0.99999	1.03454, 0.99999	
κ_g, κ_γ	0.99083, 1.00369	1.00473, 0.99763	0.99954, 1.00008	1.00038, 0.99714	
$n_{ ilde{\chi}_{1,2}^0}$	171, 191	131, 183	260, 376	161, 178	
$n_{\tilde{\chi}_{3,4}^0}^{\chi_{1,2}}$	368, 541	195, 834	390, 567	312, 717	
$m_{\widetilde{\chi}_{1,2}^{\pm}}^{\chi_{3,4}}$	185, 534	179, 823	378, 555	175, 702	
$m_{\tilde{g}}^{\chi_{1,2}}$	2548	1539	1498	1317	
$m_{\tilde{u}_{L,R}}^{g}$	2419, 2558	2705, 3476	4721, 6513	4942, 6832	
$m_{\tilde{t}_{1,2}}$	1036, 1798	1151, 1762	2311, 3401	2326, 3543	
$n_{\tilde{d}_{L,R}}$	2421, 2532	2706, 3547	4722, 6595	4943, 6938	
$m_{\tilde{b}_{1,2}}^{a_{L,R}}$	1771, 2468	1212, 3089	2380, 6340	2401, 6630	
$m_{\tilde{\nu}_{1,2}}^{b_{1,2}}$	726	521	698	507	
$m_{\tilde{\nu}_3}$	718	343	645	308	
$m_{\tilde{e}_{L,R}}$	737, 525	514, 787	651, 1409	398, 1487	
$m_{\tilde{\tau}_{1,2}}$	518, 728	353, 568	627, 1338	185, 1333	
$\Omega_{ m CDM}^{ au_{1,2}}h^2$	0.0014	0.0846	0.1017	0.0099	

Kechen Wang

Summary

★ Higgs & Other Low Energy Measurements => BSM physics
 → If no clear hints of BSM after LHC
 → EFT or a UV-complete model


★ Scanning Parameter Space of a Natural SUSY Model → Using Higgs coupling @ HL-LHC, ILC, CEPC & muon g-2 → $\Delta_{EW} \sim 30$ → $m_A > 1.2$ (1.1) TeV from $k_b (k_\tau)$ at CEPC → $\tilde{l}_R : [0.6 - 2]$ TeV, $\tilde{l}_L , \tilde{V} : [0.4 - 1.2]$ TeV with $\tilde{\chi}_1^0 : < 400$ GeV from Δa_μ → tan β vs. m_A : complementary to the direct collider searches → 4 Benchmark points

Thank you for your attention !

Any Questions ?

Backup Slide

Higgs Coupling Measurements

 \leftarrow negative contributions from sbottom & stau

Backup Slide

General Minimal Supergravity (GmSUGRA) Model

Scanning the parameter space

- $0 \,\mathrm{GeV} \leq m_0^U \leq 9000 \,\mathrm{GeV},$
- $100 \,\mathrm{GeV} \leq M_1 \leq 2000 \,\mathrm{GeV},$
- $100 \,\mathrm{GeV} \leq M_2 \leq 2100 \,\mathrm{GeV},$
- $100 \,\mathrm{GeV} \leq m_{\tilde{L}} \leq 1200 \,\mathrm{GeV},$
- $100 \,\mathrm{GeV} \leq m_{\tilde{E}^c} \leq 1200 \,\mathrm{GeV},$
- $100 \,\mathrm{GeV} \leq \mu \leq 1500 \,\mathrm{GeV},$
 - $0 \,\mathrm{GeV} \leq m_A \leq 9500 \,\mathrm{GeV},$
- $-16000 \,\mathrm{GeV} \leq A_U = A_D \leq 18000 \,\mathrm{GeV}$
- $-6000 \,\mathrm{GeV} \leq A_E \leq 6000 \,\mathrm{GeV},$
 - $2 \leq \tan\beta \leq 60.$

- → sleptons, charginos, bino, wino, Higgsinos within one TeV;
- \rightarrow squarks, gluinos can be in several TeV mass

Backup Slide

Electroweak Fine-turning

Use ISAJET 7.85 to calculate the fine- tuning measure at the EW scale M_{EW} \rightarrow lower values of ΔEW corresponds to less fine-tuning

Z boson mass M_Z , after including the one-loop effective potential contributions to the tree-level MSSM Higgs potential

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2$$

 $\Delta_{\rm EW} \equiv \max(C_k) / (M_Z^2/2)$