Current status of MSSM Higgs sector with LHC 13 TeV data

Arghya Choudhury

Consortium for Fundamental Physics Department of Physics and Astronomy University of Sheffield, UK

May 24, 2017

"PLANCK 2017" (May 22-27, 2017)

University of Warsaw, Warsaw, Poland

Arghya Choudhury

- Brief introduction to MSSM Higgs Sector.
- Global analysis and available pMSSM parameter space.
- Present status of MSSM from LHC Run-I & RUN-II data.
- Conclusions.

Talk based on: R. K. Barman, B. Bhattacherjee, A. Choudhury, D. Chowdhury, J. Lahiri, S. Ray [arXiv:1608.02573].

- Data consistent with SM hypothesis.
- This 125 GeV Higgs → SM Higgs ?????
- Room for New Physics → Still 10 - 20 % deviation of Higgs coupling from SM is allowed.

Higgs sector of Minimal Supersymmetric SM (MSSM):

$$\mathcal{W}_{MSSM} = \widehat{U}^{c} Y_{u} \widehat{Q} \widehat{H}_{u} - \widehat{D}^{c} Y_{d} \widehat{Q} \widehat{H}_{d} - \widehat{E}^{c} Y_{e} \widehat{L} \widehat{H}_{d} + \mu \widehat{H}_{d} \widehat{H}_{u}.$$

Superfield	<i>SU</i> (3)	$SU(2)_L$	$U(1)_Y$	Particles
\widehat{H}_d	1	2	$-\frac{1}{2}$	(H_d, \widetilde{H}_d)
\widehat{H}_u	1	2	$\frac{1}{2}$	(H_u, \widetilde{H}_u)

$$H_d = \begin{pmatrix} h_d^0 \\ h_d^- \end{pmatrix}, \text{ and } H_u = \begin{pmatrix} h_u^+ \\ h_u^0 \end{pmatrix},$$
$$\widetilde{H}_d = \begin{pmatrix} \widetilde{h}_d^0 \\ \widetilde{h}_d^- \end{pmatrix}, \text{ and } \widetilde{H}_u = \begin{pmatrix} \widetilde{h}_u^+ \\ \widetilde{h}_u^0 \end{pmatrix}.$$

- minimality signifies that this model contains only SM particles with their superpartners and the minimum number (two) of Higgs doublets.
- Higgsinos are chiral fermions. Second Higgs superfield with opposite hypercharge is needed to make the theory anomaly free.
- After the EW symmetry breaking → We are left with 5 physical Higgs bosons:
 - Two charged Higgs bosons : H^{\pm} ,
 - Two CP-even Higgs bosons : h^0 (lighter) and H^0 (heavier),
 - One CP-odd Higgs boson : A^0 .

At the tree level, the Higgs sector of MSSM is described by two parameters :

- α and β
 - $\alpha \rightarrow$ mixing angle in the neutral CP even sector.
 - $\tan\beta \rightarrow$ ratio of the vacuum expectation values.
- Or by pseudoscalar mass M_A and $\tan \beta$.

•
$$tan2\alpha = \frac{M_h^2 + M_H^2}{M_A^2 - M_Z^2} tan2\beta$$

- Tree level parameters: (α and $\tan \beta$) \rightarrow (M_A and $\tan \beta$).
- Related By: $tan2\alpha = \frac{M_h^2 + M_H^2}{M_A^2 M_Z^2} tan2\beta$
- Radiative corrections to the Higgs boson mass matrix involving various SUSY parameters can modify the tree level value of α significantly.

•
$$\tan 2\alpha = \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2 + \epsilon/\cos 2\beta} \tan 2\beta$$
, where $\epsilon = \frac{3G_F}{\sqrt{2}\pi^2} \frac{m_t^4}{\sin^2\beta} \log \left[1 + \frac{M_S^2}{m_t^2}\right]$ (corrections in the leading m_t^4 - one-loop approximation)

 Global fit analysis considering various Higgs coupling measurements may constrain the MSSM parameter space.

Global χ^2 - Experimental inputs from LHC RUN-I:

Decay channel	Production Mode	ATLAS	Production Mode	CMS
	ggF	$1.32^{+0.38}_{-0.38}$ [58]	ggF	$1.12^{+0.37}_{-0.32}$ [59]
	VBF	$0.8^{+0.7}_{-0.7}[58]$	VBF	$1.58^{+0.77}_{-0.68}$ [59]
$\gamma\gamma$	Wh	$1.0^{+1.60}_{-1.60}[58]$	Wh	$-0.16^{+1.16}_{-0.79}$ [59]
	$t\bar{t}h$	$1.60^{+2.70}_{-1.80} [{\bf 58}]$	$t\bar{t}h$	$2.69^{+2.51}_{-1.81}$ [59]
	Zh	$0.1\substack{+3.70\\-0.10}[58]$	-	-
77	VBF + Vh	$0.26^{+1.64}_{-0.94}$ [60]	VBF + Vh	$1.70^{+2.2}_{-2.1}$ [61]
	$ggF + t\bar{t}h + b\bar{b}h$	$1.66^{+0.51}_{-0.44}$ [60]	$ggF + t\bar{t}h$	$0.80^{+0.46}_{-0.36}$ [61]
	ggF	$1.02^{+0.29}_{-0.26}$ [62]	0/1 jet (97% ggF, 3% VBF)	$0.74^{+0.22}_{-0.20}$ [63]
W^+W^-	VBF	$1.27^{+0.53}_{-0.45}$ [62]	(17% ggF, 83% VBF)	$0.60^{+0.57}_{-0.46}$ [63]
	Vh	$3.0^{+1.64}_{-1.30}$ [64]	Vh tagged	$0.39^{+1.97}_{-1.87}$ [63]
	-	-	Wh tagged	$0.56^{+1.27}_{-0.95}$ [63]
$b\bar{b}$	Vh	$0.51^{+0.40}_{-0.37}$ [65]	Vh	$1.0^{+0.5}_{-0.5}$ [66]
	ggF	$1.93^{+1.45}_{-1.15}$ [67]	0 jet (96.9% ggF, 1% VBF, 2.1% Vh)	$0.34^{+1.09}_{-1.09}$ [68]
	VBF(60%) + Vh(40%)	$1.24^{+0.58}_{-0.54}$ [67]	14% VBF, 10.3% Vh)	$1.07^{+0.46}_{-0.46}$ [68]
$\tau^+\tau^-$	-	-	VBF tagged (19.6% ggF, 80.4% VBF)	$0.94^{+0.41}_{-0.41}$ [68]
	-	-	Vh tagged	$-0.33^{+1.02}_{-1.02}$ [68]

• Signal strength
$$\mu_i^f = \frac{\sigma_i \cdot B^f}{\sigma_{i_{SM}} \cdot B_{SM}^f}$$

- *i* stands for production modes
- f stands for decay modes

Inputs for Global χ^2 analysis:

• Experimental inputs from LHC RUN-II

Decay channel	Production Mode	ATLAS	Production Mode	CMS
$\gamma\gamma$	ggF	$0.62^{+0.30}_{-0.29}[{\color{red}{69}}]$	ggF	$0.77^{+0.25}_{-0.23}[70]$
	VBF	$2.25^{+0.75}_{-0.75}[69]$	VBF	$1.61^{+0.90}_{-0.80}[\textbf{70}]$
	$t\bar{t}h$	$-0.22^{+1.18}_{-0.88} [{\bf 69}]$	$t\bar{t}h$	$1.91^{+1.5}_{-1.2}[70]$
	Vh	$0.30^{+1.21}_{-1.12}[69]$	-	-
ZZ	ggF	$1.34^{+0.39}_{-0.33}[69]$	ggF	$0.96^{+0.40}_{-0.33}[71]$
	VBF	$3.8^{+2.8}_{-2.2}[69]$	VBF	$0.67^{+1.61}_{-0.67}[\textbf{71}]$
	-	-	Vh	$1.84^{+6.36}_{-1.84}$ [71]
	-	-	$t\bar{t}h$	$8.41^{+13.07}_{-8.15}[\textbf{71}]$
$b\bar{b}$	VBF	$-3.9^{+2.8}_{-2.9}$ [72]	VBF	$-3.7^{+2.4}_{-2.5}$ [73]
	$t\bar{t}h$	$2.1^{+1.0}_{-0.9}$ [74]	$t\bar{t}h$	$-2.0^{+1.8}_{-1.8}$ [75]
	Vh	$0.21^{+0.51}_{-0.50}$ [76]	-	-

- Flavour physics constraints:
 - $Br(B \to X_s \gamma)_{exp.} = (3.32 \pm 0.15) \times 10^{-4}$
 - $Br(B_s \to \mu^+ \mu^-)_{exp.} = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$
 - $Br(B^+ \to \tau^+ \nu_{\tau})_{exp} = (1.06 \pm 0.19) \times 10^{-4}$

- we compute χ^2 for all the scanned points, defined as: $\chi^2 = \sum_i \frac{(\overline{\mu}_i \mu_i)^2}{\Delta \mu_i^2}$
- *μ_i* (*μ_i*) experimentally observed signal strength (MSSM) for a particular
 production/decay mode *i*. Δ*μ_i* → experimental error.
- contribution originating from different production mode: $\overline{\mu}_i = \sum T_i^j \widehat{\mu}_j$
- Consider altogether 49 data points.
- A random scan for approximately 100 million points.

Parameter space allowed in M_A - tan β plane:

 $\bullet~$ Orange points \rightarrow Global fit without flavour physics constraints.

 $\bullet \ \ \mathsf{Blue \ points} \to \mathsf{Global \ fit \ with} \\ \mathsf{flavour \ physics \ constraints.}$

Alignment without decoupling:

Couplings (tree level) of the Higgs bosons (h, H):

 $g_{hVV} = \sin(\beta - \alpha) g_V$ $g_{HVV} = \cos(\beta - \alpha) g_V$ $g_{HVV} = \cos(\beta - \alpha) g_V$ $g_{hdd} = -(\sin\alpha/\cos\beta)g_f = (\sin(\beta - \alpha) - \tan\beta\cos(\beta - \alpha)) g_f$ $g_{huu} = -(\cos\alpha/\sin\beta)g_f = (\sin(\beta - \alpha) + \cot\beta\cos(\beta - \alpha)) g_f$ $g_{Hdd} = -(\cos\alpha/\cos\beta)g_f = (\cos(\beta - \alpha) + \tan\beta\sin(\beta - \alpha)) g_f$ $g_{Huu} = -(\sin\alpha/\sin\beta)g_f = (\cos(\beta - \alpha) - \cot\beta\sin(\beta - \alpha)) g_f$ Arghya Choudhury
Current status of MSSM Higgs sector with LHC 13 TeV data

Alignment without decoupling:

- Alignment Limit : h is SM like i.e., $g_{hVV} \sim 1$ and $g_{HVV} \sim 0$.
- Heavier CP even Higgs boson couplings become highly suppressed.
- In decoupling region, $M_A >> M_Z$, $(\beta - \alpha) \sim \pi/2$

- Regions with light M_A (\leq 400 GeV) close to the alignment limit is perfectly allowed by the current data.
- See Talk "Alignment in extended Higgs models" by Howard Haber.

Bounds on heavy Higgses from LHC direct searches:

- Neutral Higgs boson searches:
 - Search for H with $\gamma\gamma$ final states.
 - Search for *H* with *WW*, *ZZ* final state.
 - Search for *H* with *hh* ($b\bar{b}b\bar{b}$, $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\tau$) final states.
 - Search for $H/A \rightarrow \tau^+ \tau^-$ final states.
 - Search for A with Zh final states.
- Charged Higgs boson searches
 - Search for H^{\pm} with $\tau \nu$, $c\bar{s}$ final states.
 - Search for H^{\pm} with $t\bar{b}$ final states.
- Bounds set by the ATLAS and CMS collaborations on the masses and BRs of the neutral and charged Higgs bosons from 8/13 TeV data.

Bounds on heavy Higgses from LHC direct searches:

Channel	Experiment	Mass range (GeV)	Luminosity
	ATLAS 8 TeV [78]	90-1000	$19.5 \cdot 20.3 \text{ fb}^{-1}$
$gg \rightarrow H/A \rightarrow \tau \cdot \tau$	CMS 8 TeV [79]	90-1000	19.7 fb^{-1}
	ATLAS 13 TeV [80]	200-1200	3.2 fb^{-1}
	CMS 13 TeV [81]	100-3000	2.3 fb^{-1}
17 . 11/4 +	ATLAS 8 TeV [78]	90-1000	19.5-20.3 fb ⁻¹
$bb \rightarrow H/A \rightarrow \tau \cdot \tau$	CMS 8 TeV [79]	90-1000	19.7 fb^{-1}
	ATLAS 13 TeV [80]	200-1200	3.2 fb^{-1}
	CMS 13 TeV [81]	100-3000	2.3 fb^{-1}
	ATLAS 8 TeV [82]	65-600	20.3 fb^{-1}
$gg \rightarrow H/A \rightarrow \gamma\gamma$	CMS 8+13 TeV [83]	500-4000	$19.7 + 3.3 \text{ fb}^{-1}$
	ATLAS 13 TeV [84]	200-2000	3.2 fb^{-1}
$pp \rightarrow bH/A(H/A \rightarrow b\bar{b})$	CMS 8 TeV [85]	100-900	19.7 fb ⁻¹
	ATLAS 8 TeV [86]	300-1500	20.3 fb^{-1}
$gg \rightarrow H \rightarrow W \cdot W$	ATLAS 13 TeV [87]	500-3000	3.2 fb^{-1}
10+10-122 · 0 · 0+0-	ATLAS 8 TeV [86]	300-1500	20.3 fb^{-1}
$W : W / ZZ \rightarrow H \rightarrow W : W$	ATLAS 13 TeV[87]	500-3000	3.2 fb^{-1}
$gg \rightarrow H \rightarrow ZZ$	ATLAS 8 TeV [88]	160-1000	20.3 fb^{-1}
$gg \rightarrow H \rightarrow ZZ \rightarrow (\ell \ell)(qq)$	ATLAS 13 TeV [89]	300-1000	3.2 fb^{-1}
$gg \rightarrow H \rightarrow ZZ \rightarrow (\ell \ell)(\nu \nu)$	ATLAS 13 TeV [90]	300-1000	3.2 fb ⁻¹
$pp \rightarrow H \rightarrow Z\gamma$	ATLAS 13 TeV [91]	250-2750	3.2 fb^{-1}
$W^+W^-/ZZ \rightarrow H \rightarrow ZZ$	ATLAS 8 TeV [88]	160-1000	20.3 fb ⁻¹
$pp \rightarrow H \rightarrow ZZ$	CMS 8 TeV [92]	150-1000	5.1 fb ⁻¹
$pp \rightarrow H \rightarrow W^+W^-$	CMS 8 TeV [92]	150-1000	5.1 fb^{-1}
$gg \rightarrow H \rightarrow hh$	ATLAS 8 TeV [93]	260-1000	20.3 fb ⁻¹
$pp \rightarrow H \rightarrow hh \rightarrow (b\bar{b})(b\bar{b})$	ATLAS 13 TeV [94]	500-3000	3.2 fb^{-1}
$pp \rightarrow H \rightarrow hh \rightarrow (\gamma \gamma)(b\bar{b})$	CMS 8 TeV [95]	250-1100	19.7 fb ⁻¹
$pp \rightarrow H \rightarrow hh \rightarrow (b\bar{b})(b\bar{b})$	CMS 8 TeV [96]	270-1100	17.9 fb^{-1}
$gg \rightarrow H \rightarrow hh \rightarrow (b\bar{b})(\tau^{+}\tau^{-})$	CMS 8 TeV [97]	260-350	19.7 fb ⁻¹
$gg \rightarrow A \rightarrow Zh \rightarrow (\tau^+\tau^-)(\ell\ell)$	CMS 8 TeV [97]	220-350	19.7 fb ⁻¹
$gg \rightarrow A \rightarrow Zh \rightarrow (b\bar{b})(\ell\ell)$	CMS 8 TeV [98]	225-600	19.7 fb ⁻¹
$gg \rightarrow A \rightarrow Zh \rightarrow Z(\tau^+\tau^-)$	ATLAS 8 TeV [99]	220-1000	20.3 fb^{-1}
1 00 000	ATLAS 8 TeV [99]	220-1000	20.3 fb ⁻¹
$gg \rightarrow A \rightarrow Zh \rightarrow Z(bb)$	ATLAS 13 TeV [100]	200-2000	3.2 fb^{-1}
$pp \rightarrow Ab\bar{b} \rightarrow Zhb\bar{b} \rightarrow Z(b\bar{b})(b\bar{b})$	ATLAS 13 TeV [100]	200-1000	3.2 fb^{-1}
$pp \rightarrow tH^{\pm}(H^{\pm} \rightarrow \tau^{\pm}\nu) + X$	ATLAS 8 TeV [101]	180-1000	19.5 fb ⁻¹
anticent to	ATLAS 13 TeV [102]	200-2000	3.2 fb^{-1}
$pp \rightarrow lbH^{-}(H^{+} \rightarrow \tau^{+}\nu)$	CMS 8 TeV [103]	200-600	$19.7 \pm 0.5 \text{ fb}^{-1}$
$gb \rightarrow tH^{\pm}(H^{\pm} \rightarrow tb)$	ATLAS 8 TeV [104]	200-600	20.3 fb^{-1}
$qq' \rightarrow H^{\pm}(H^{\pm} \rightarrow tb) \rightarrow (l + jets)$	ATLAS 8 TeV [104]	400-2000	20.3 fb^{-1}
$qq' \rightarrow H^{\pm}(H^{\pm} \rightarrow tb) \rightarrow (all had.)$	ATLAS 8 TeV [104]	400-2000	20.3 fb ⁻¹
$pp \rightarrow \bar{t}bH^{\pm}(H^{\pm} \rightarrow tb)$	CMS 8 TeV [103]	200-600	$19.7 \pm 0.5 \text{ fb}^{-1}$

Channel	Experiment	Mass range(GeV)	Luminosity
$gg \to H \to ZZ(\ell\ell\nu\nu)$	ATLAS 13 TeV [105]	300-1000	$13.3 { m fb^{-1}}$
$gg \rightarrow H \rightarrow ZZ(\nu\nu qq)$	ATLAS 13 TeV [106]	500-3000	$13.2 {\rm ~fb^{-1}}$
$gg/VV \to H \to ZZ(\ell\ell qq)$	ATLAS 13 TeV [106]	500-3000	$13.2 {\rm ~fb^{-1}}$
$gg/VV \rightarrow H \rightarrow ZZ(4\ell)$	ATLAS 13 TeV [107]	500-3000	$14.8 { m ~fb^{-1}}$
$gg/VV \to H \to W^+W^-(\ell\nu\ell\nu)$	ATLAS 13 TeV [108]	200-3000	$13.2 {\rm ~fb^{-1}}$
$gg \rightarrow H \rightarrow W^+W^-(\ell\nu qq)$	ATLAS 13 TeV [109]	500-3000	$13.2 {\rm ~fb^{-1}}$
$gg + VV \rightarrow H \rightarrow W^+W^-(\ell\nu\ell\nu)$	CMS 13 TeV [110]	200-1000	$2.3 { m ~fb^{-1}}$
$pp \rightarrow H \rightarrow \gamma \gamma$	ATLAS 13 TeV [111]	200-2400	$15.4 { m fb^{-1}}$
$pp \rightarrow H \rightarrow \gamma \gamma$	CMS 13 TeV [112]	500-4000	$12.9 { m fb^{-1}}$
$gg/b\bar{b} \rightarrow H \rightarrow \tau^+ \tau^-$	ATLAS 13 TeV [113]	200-1200	$13.3 { m fb^{-1}}$
$gg/b\bar{b} \rightarrow H \rightarrow \tau^+ \tau^-$	ATLAS 13 TeV [114]	90-3200	$12.9 {\rm ~fb^{-1}}$
$gg/b\bar{b} \rightarrow H \rightarrow b\bar{b}$	CMS 13 TeV [115]	550-1200	$2.7 \ {\rm fb}^{-1}$
$pp \rightarrow H \rightarrow hh \rightarrow b\bar{b}b\bar{b}$	ATLAS 13 TeV [116]	300-3000	$13.3 \ {\rm fb}^{-1}$
$pp \rightarrow H \rightarrow hh \rightarrow b\bar{b}\tau^+\tau^-$	CMS 13 TeV [117]	250-900	$12.9 {\rm ~fb^{-1}}$
$pp \to tH^{\pm}(H^{\pm} \to \tau^{\pm}\nu) + X$	ATLAS 13 TeV [118]	200-2000	$14.7 { m fb^{-1}}$
$pp \rightarrow tH^{\pm}(H^{\pm} \rightarrow tb) + X$	CMS 13 TeV [119]	300-1000	$13.2 { m fb^{-1}}$

Search for H^{\pm} with $\tau \nu$ and $t\bar{b}$ final states:

- $g_{H^{\pm}\bar{u}d} \propto m_d \tan \beta (1 + \gamma_5) + m_u \cot \beta (1 \gamma_5).$
- For small tan β, H[±] exclusively decays to tb
- For large values of tan β, Br(H[±] → τ[±]ν_τ) ~ 10%.
- Main production mechanism $pp \rightarrow tbH^{\pm}$.

Search for *H* with *WW*, *ZZ* final states.:

• Due to alignment limit (i.e. $(\beta - \alpha) \sim \frac{\pi}{2}$) $\rightarrow Br(H \rightarrow WW, ZZ)$ highly suppressed.

Arghya Choudhury

Search for *H* with *hh* ($b\bar{b}b\bar{b}$ and $b\bar{b}\tau^+\tau^-$) final state:

- $\sigma_{Obs}^{UL} \rightarrow$ the upper limits on $\sigma_H \times Br(H \rightarrow hh \rightarrow b\bar{b}b\bar{b}/b\bar{b}\tau^+\tau^-)$
- 4b final state $\rightarrow 11.24 \lesssim \sigma_{Obs}^{UL} / \sigma_{MSSM} \lesssim 7.92 \times 10^7$ (ATLAS 13.3 fb⁻¹ data).
- $b\bar{b}\tau^+\tau^-$ final state \rightarrow 13.41 $\lesssim \sigma_{Obs}^{UL}/\sigma_{MSSM} \lesssim 1.71 \times 10^8$ (CMS 12.9 fb⁻¹ data).
- $Br(H \rightarrow hh)$ sizeable only for small tan β (\leq 5)
- For $M_A \ge 350$ GeV, $t\bar{t}$ opens up and dominates.
- $b\bar{b}\gamma\gamma$ channel will be effective for HL-LHC.

Arghya Choudhury

Search for $H \rightarrow \gamma \gamma$, $b\bar{b}$, $t\bar{t} A \rightarrow Zh$ final states.:

Arghya Choudhury

Search for H/A with $\tau^+\tau^-$ final states:

- $g_{Hf_df_d} = -(\cos \alpha / \cos \beta)g_{SM}; g_{Af_df_d} = -(\tan \beta)g_{SM}.$
- For fixed α , both the couplings $Hf_d\bar{f}_d$ and $Af_d\bar{f}_d$ increases with tan β .
- tan $eta\geq$ 10, H and A decays to $bar{b}$ (\sim 90%) and $au^+ au^-$ (\sim 10%).
- Production of H/A is also primarily controlled by $\tan \beta$.
- Entire regions with tan $\beta \gtrsim 10$ are excluded for $M_A \lesssim 500$ GeV.

Search for H/A with $\tau^+\tau^-$ final states:

- Most promising channel.
- 0.03 $\lesssim \sigma_{Obs}^{UL}(ATLAS \ 13.2 \ fb^{-1})/\sigma_{MSSM} \lesssim 2.58 imes 10^3.$

M_A – tan β plane status:

Future prospect for $H \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$ final states:

- Single H production cross section can be up to two orders of magnitude larger compared to the direct h pair production.
- It can also have non-trivial effects on the self coupling measurement of the 125 GeV Higgs. B. Bhattacherjee, AC, arXiv:1407.6866.

B. Bhattacherjee, A. Chakraborty, AC,

arXiv:1504.04308

Arghya Choudhury

- BR(H → hh) is substantial only for smaller values of tan β.
- The most dominant production mechanism \rightarrow ggF.
- Events with two *b*-jets, two photons and no isolated leptons are selected.
- Reconstruct two higgs from $b\bar{b}$ and $\gamma\gamma$.

•
$$M_{b\bar{b}\gamma\gamma} = M_H \pm 50$$
 GeV.

 Low tan β (< 10) regions are expected to be probed at the HL-LHC.

Heavy Higgs decay to SUSY states:

• Heavy Higgs decaying to Electroweakinos.

- Ino decay modes relax the limit on $tan\beta$.
- Limit on $M_A \tan \beta$ plane depends on Ino states (especially with the position of NLSP).
- Heavy Higgs to stops/sbottoms $\rightarrow \tilde{t}_1 \tilde{t}_1$ or $\tilde{b}_1 \tilde{b}_1$ also could be the dominant decay mode.

Arghya Choudhury

- Global fit analysis using LHC 8+13 TeV data and flavour physics constraints.
- Low M_A and high $\tan \beta$ regions are excluded due to $B_s \rightarrow \mu^+ \mu^- B^+ \rightarrow \tau^+ \nu_{\tau}$ constraints.
- The regions with low M_A and low tan β are not favoured by the $Br(b \rightarrow s\gamma)$ constraint.
- Signal strength measurements are in favour of the alignment and decoupling limit. Not always forced to be in the decoupling limit.
- 10 20% deviations from the SM expectations are also observed for various Higgs signal strength variables.
- The direct searches with $H \rightarrow WW, ZZ, \gamma\gamma$ final states are not effective to probe the relevant parameter space.
- Upper bounds derived on $H/A \rightarrow \tau^+ \tau^-$ are found to impose the most stringent bound.
- Wait for more data !!!

Back Up

Arghya Choudhury

Effect of Run-I and Run-II data on global fit:

• Without any flavor constraints.

- (a) Only 13 TeV data brown points (left panel).
- (b) Only 8 TeV data green points (middle panel).
- (c) 8 + 13 TeV data orange points (right panel).

For 8+13 TeV data and flavor constraints fit See Page 10

Correlations of various Higgs signal strength variables:

- $\bullet~\mbox{Red}$ points $\rightarrow~\mbox{Fit}$ with Run-I data
- Blue points \rightarrow Fit with combined Run-I & Run-II data

SUSY QCD corrections:

• In an effective Lagrangian approach :

$$L_{hb\bar{b}} = -\frac{m_b}{v_{SM}} \left(\frac{1}{1+\Delta_b}\right) \left(-\frac{\sin\alpha}{\cos\beta}\right) \left(1 - \frac{\Delta_b}{\tan\beta\tan\alpha}\right) b\bar{b}h$$

 Loop corrections (in powers of α_s tan β) involving heavier sparticles can significantly modify the b quark mass and it's Yukawa coupling from its tree level predictions.

Heavy Higgs decay to sbottoms:

