Light Higgs from Pole Attractor

work in progress, in collaboration with M.Montul

Planck 2017

<u>Outlook</u>

- Toy 2-field model
- 3-field model
- Cosmological evolution

Approaches to Gauge Hierarchy Problem

- The traditional approaches (SUSY, CH, GHU) to the problem either provide a symmetry reason for the Higgs mass to be small or lower the Higgs sector cutoff.
- One can also assume that the Higgs mass is allowed to take a large range of values during its cosmological evolution. The evolution stops when the current vev is reached.

Cosmic Attractor, Dvali, Vilenkin [0304043] Cosmological Relaxation, Graham, Kaplan, Rajendran [1504.07551]

 Lesson from GKR: new solutions to the HP require highly non-"standard" physics

 \bullet The Higgs mass is scanned by a field ϕ

 $V_h \supset \left(-\Lambda^2 + \kappa \Lambda \phi\right) h^2$

 Λ - large cutoff, $\ \kappa$ - typical ϕ coupling, breaking the shifts

• The scanning field evolution freezes close to $h\sim 0$ point due to exploding non-canonical kinetic term

$$\frac{1}{h^{2n}} (\partial_{\mu} \phi)^2$$

 \bullet Equivalent to stretching of the scanning field potential close to the attractor point $~h\sim 0$

• Integrating out the Higgs field

• Integrating out the Higgs field

Integrating out the Higgs field

• For n = 2, 3, ... the $m_h^2 = 0$ point corresponds to $\phi_c \to \infty$ and hence never reached

- For n = 2, 3, ... the $m_h^2 = 0$ point corresponds to $\phi_c \to \infty$ and hence never reached
- Higgs mass time evolution

- For n = 2, 3, ... the $m_h^2 = 0$ point corresponds to $\phi_c \to \infty$ and hence never reached
- Higgs mass time evolution

Reminiscent of pole inflation

• It seems generally hard to generate a kinetic pole with the Higgs featuring all its SM charges

$$\frac{1}{h^{2n}} (\partial_{\mu} \phi)^2$$

 It seems generally hard to generate a kinetic pole with the Higgs featuring all its SM charges

$$\frac{1}{h^{2n}} (\partial_{\mu} \phi)^2$$

• The field evolution in fact happens in two dimensions. The actual trajectory can walk around the attractor

- It seems generally hard to generate a kinetic pole with the Higgs featuring all its SM charges
- Introduce a new SM singlet scalar giving a pole

$$rac{1}{
ho^2}(\partial_\mu\phi)^2 \quad {
m with} \quad
ho\sim h$$

• The field evolution in fact happens in two dimensions. The actual trajectory can walk around the attractor

- It seems generally hard to generate a kinetic pole with the Higgs featuring all its SM charges
- Introduce a new SM singlet scalar giving a pole

$$rac{1}{
ho^2}(\partial_\mu\phi)^2 \quad ext{with} \quad
ho\sim h$$

- The field evolution in fact happens in two dimensions. The actual trajectory can walk around the attractor
- ullet Make the $\,
 ho\,$ kinetic term non-canonical as well

$$\frac{1}{\rho^2} (\partial_\mu \rho)^2$$

Towards a Realistic Set-Up

• Again analogy with pole inflation, which can be generated in SUGRA e.g. by a Kahler potential

$$K = -3\alpha \log[T + \bar{T}] \qquad \begin{array}{l} \operatorname{Re}[T] \sim \rho \\ \operatorname{Im}[T] \sim \phi \end{array}$$

Towards a Realistic Set-Up

• Relations in the scalar sector

Higgs vev distance of ho from the pole

$$\rho \sim (h^2 - v_{\rm SM}^2)$$

Towards a Realistic Set-Up: sensitivity to the Higgs

- \bullet The $\,\rho\,$ value has to shift to zero as the Higgs vev approaches the SM value.
- Simplest (?) but not unique (?) realisation:

$$V_{\rho} = \gamma (h^2 - \Delta^2)\rho + \Lambda^2 \rho^2$$
$$\rho_{\min} \sim (h^2 - \Delta^2)$$

• Not stable under quantum corrections

$$\gamma h^2 \rho \to \gamma \tilde{\Lambda}^2 \rho$$

• UV completion at $\tilde{\Lambda} \ll \Lambda$: 2HDM

Towards a Realistic Set-Up: sensitivity to the Higgs

• 2HDM with $SU(2)_R$ (inspired by Espinosa et al [1506.09217]) protected linear term

$$\gamma h^2 \rho \to \gamma (h_1 h_2^{\dagger}) \rho$$

almost simultaneous scanning

$$\kappa \Lambda \phi h^2 \to \kappa \Lambda \phi (h_1^2 + h_2^2)$$

provided by approx symmetry

$$(\tilde{h}_1, h_2) \to g_L(\tilde{h}_1, h_2)g_R^{\dagger}$$

Towards a Realistic Set-Up: sensitivity to the Higgs

• 2HDM with $SU(2)_R$ (inspired by Espinosa et al [1506.09217]) protected linear term

$$\gamma h^2 \rho \to \gamma (h_1 h_2^{\dagger}) \rho$$

almost simultaneous scanning

$$\kappa \Lambda \phi h^2 \to \kappa \Lambda \phi (h_1^2 + h_2^2)$$

provided by approx symmetry

$$(\tilde{h}_1, h_2) \rightarrow g_L(\tilde{h}_1, h_2)g_R^{\dagger}$$

• predictions

$$m_{h_2}^2 \simeq \frac{y_t^2 g_1^2}{(4\pi)^2} \Lambda^2$$
$$v_{\rm SM}^2 \simeq \frac{\log[\Lambda^2/m_{h_2}^2]}{(4\pi)^2} m_{h_2}^2$$

 $m_{h_2} \sim \mathcal{O}(\text{TeV})$

 $\Lambda \sim 10^3 \text{TeV}$

Towards a Realistic Set-Up

- ρ behaviour
 - e.o.m. of canonically normalized field $\rho = -\alpha^{1/2} \exp[-\rho_c/\alpha^{1/2}]$

 $\ddot{\rho}_c + 3H\dot{\rho}_c = \gamma(\Delta^2 - h^2)\exp[-\rho_c/\alpha^{1/2}] + 2\alpha^{1/2}\Lambda^2\exp[-2\rho_c/\alpha^{1/2}] + \frac{\dot{\phi}^2}{\alpha^{1/2}}\exp[2\rho_c/\alpha^{1/2}]$

- as $\,
 ho\,$ potential stretches rho stops following its minimum
- ϕ kinetic energy term drives ρ to zero at low Hubble friction independently of the Higgs vev

Cosmological Evolution

- The Higgs vev is given by $h^2 \simeq \Delta^2 \pm (\kappa \Lambda)^2$ when one starts with a positive (negative) Higgs mass
- To complete the scan during inflation we require (neg init mass)
 - inflation unaffected $\Lambda^4 < H_i^2 M_{\rm Pl}^2$
 - Higgs in the minimum $H_i < m_h$
 - enough time for the full scan
 - quantum displacement unimportant
- $N_e > \frac{10^2}{\kappa^2} \frac{\alpha}{\gamma^2} \frac{H_i^2}{(\kappa\Lambda)^2}$ $H < 10^{-1} \kappa^{1/3} (\kappa\Lambda) \left(\frac{\gamma^2}{\Lambda \alpha^{1/2}}\right)^{1/3}$
- After inflation due to a low Hubble scale the rho field is pushed to the origin, the scan is automatically blocked (result of rho kin term)

Cosmological Evolution

• Benchmark parameter set

$\Lambda \ (=\gamma)$	Δ	κ	lpha	H_{i}	N_e
$10^6 { m GeV}$	$10^2 {\rm GeV}$	10^{-4}	$(10^3 {\rm GeV})^2$	$10 \mathrm{GeV}$	10^{2}

<u>Summary</u>

Searches for traditional NP solving the hierarchy problem do not give results, hence still place for new approaches.

We present a model aiming at addressing the HP and belonging to the class of scenarios with a dynamically scanned Higgs mass.

The minimal implementation contains new scalars in a few-TeV range and light but very weakly interacting scanning fields.

The UV completions for the model, as well as alternative realizations of the main idea need further investigation.