Towards phenomenology of CP4 3HDM

Igor Ivanov

CFTP, Instituto Superior Técnico, Universidade de Lisboa

Planck 2017, Warsaw, May 22-29, 2017

based on: IPI, J. P. Silva, PRD 93, 095014 (2016) A. Aranda, IPI, E. Jiménez, PRD 95, 055010 (2017)

A. Aranda, P. Ferreira, IPI, E. Jiménez, R. Pasechnik, E. Peinado, H. Serodio, work in progress

★ ロト (御) (제 끝) (제 끝)

 $2Q$

 $2Q$

Model-building with multiple Higgses

Within SM:

- **1** CP-violation does not follow from the gauge structure; just put to comply with experimental measurements;
- 2 the scalar sector is overstretched: gives mass to gauge bosons, up-quarks, and down-quarks \rightarrow no explanation for flavor puzzle.

An attractive idea

the scalar sector can well be non-minimal, and it can provide a natural explanation to CPV and fermion puzzle.

 \Rightarrow intense model-building activity with non-minimal Higgs sectors, see e.g. the recent review [Ivanov, 1702.03776]

Model-building with multiple Higgses

Many Higgses \rightarrow many interaction terms \rightarrow huge number of free parameters.

Extra global symmetries are useful when building multi-Higgs models.

- \bullet Impose a large discrete symmetry group $G = A_4, \Delta(27), \ldots$: very few free parameters, nicely calculable, very predictive, and unphysical.
- Allow for soft breaking of G or introduce new fields \rightarrow many more parameters, ad hoc assumptions, less predictive.
- Impose small symmetry groups: still many free parameters, compatible with experiment but not particularly predictive.

Ideal choice

a symmetry setting which assumes little, predicts much, and fits experiment in a non-trivial way.

 QQ

э

イロメ イ何メ イヨメ イヨメ

4 F F 4 F

 QQ

CP4 3HDM

I will show a peculiar model based on three Higgs doublets (3HDM) which is attractive in several aspects.

- assumes very little: this is the minimal model realizing one particular symmetry;
- \bullet this symmetry is unusual: generalized CP-symmetry of order 4 (CP4). This is the first ever model based on CP4 without any accidental symmetry.
- It is tractable analytically and quite predictive.

In short, a good balance of minimality, predictive power, and theoretical flair.

 QQ

Freedom of defining CP

in QFT, CP is not uniquely defined a priori.

- phase factors $\phi(\vec{r},t) \stackrel{CP}{\longrightarrow} e^{i\alpha}\phi^*(-\vec{r},t)$ [Feinberg, Weinberg, 1959],
- with N scalar fields ϕ_i , the general ${\it CP}$ transformation is

$$
J: \quad \phi_i \xrightarrow{CP} X_{ij} \phi_j^*, \quad X \in U(N).
$$

If $\mathcal L$ is invariant under such J with whaever fancy X , it is explicitly CP-conserving [Grimus, Rebelo, 1997; Branco, Lavoura, Silva, 1999].

NB: The "standard" convention $\phi_i \stackrel{CP}{\longrightarrow} \phi_i^*$ is basis-dependent!

[Model-building with multiple Higgses](#page-1-0) [CP4 3HDM](#page-4-0) [Conclusions](#page-16-0)

 QQ

Freedom of defining CP

$$
J: \quad \phi_i \xrightarrow{CP} X_{ij} \phi_j^*, \quad X \in U(N),
$$

Applying J twice leads to family transformation $J^2=X X^\ast$ which may be non-trivial. It may happen than only $J^k = \mathbb{I}$ $(k =$ power of 2).

CP-symmetry does not have to be of order 2

The usual $CP = CP2$, the first non-trivial is $CP4$, then $CP8$, $CP16$, etc.

Models with higher-order GCP were known in 2HDM [Ferreira, Haber, Maniatis, Nachtmann, Silva, 2011] but they always led to accidental symmetries including the usual CP.

4 □ F

 OQ

∍

what is the minimal multi-Higgs-doublet model realizing CP4 without accidental symmetries?

Igor Ivanov (CFTP, IST) [Towards phenomenology of CP4 3HDM](#page-0-0) Planck 2017, Warsaw 7/17

CP4 3HDM

The answer was given in [Ivanov, Keus, Vdovin, 2012].

Consider 3HDM with the following potential $V = V_0 + V_1$ (notation: $i \equiv \phi_i$):

$$
V_0 = -m_{11}^2 (1^{\dagger}1) - m_{22}^2 (2^{\dagger}2 + 3^{\dagger}3) + \lambda_1 (1^{\dagger}1)^2 + \lambda_2 \left[(2^{\dagger}2)^2 + (3^{\dagger}3)^2 \right] + \lambda_3 (1^{\dagger}1)(2^{\dagger}2 + 3^{\dagger}3) + \lambda'_3 (2^{\dagger}2)(3^{\dagger}3) + \lambda_4 \left[(1^{\dagger}2)(2^{\dagger}1) + (1^{\dagger}3)(3^{\dagger}1) \right] + \lambda'_4 (2^{\dagger}3)(3^{\dagger}2) ,
$$

with all parameters real, and

$$
V_1 = \lambda_5(3^{\dagger}1)(2^{\dagger}1) + \frac{\lambda_6}{2}\left[(2^{\dagger}1)^2 - (3^{\dagger}1)^2\right] + \lambda_8(2^{\dagger}3)^2 + \lambda_9(2^{\dagger}3)\left[(2^{\dagger}2) - (3^{\dagger}3)\right] + h.c.
$$

with real $\lambda_{5,6}$ and complex $\lambda_{8,9}.$ It is invariant under CP4 $J:~\phi_i\stackrel{CP}{\longrightarrow} X_{ij}\phi_j^*$ with

$$
X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}, \quad J^2 = \text{diag}(1, -1, -1), \quad J^4 = \mathbb{I}.
$$

メロト メ母 トメミト メミト

 OQ

Ξ.

 Ω

Two versions of CP4 3HDM

Two versions of CP4 3HDM:

• DM CP4 3HDM: CP4 is only within scalar sector, ϕ_2 , ϕ_3 decouple from fermions and don't get vevs \rightarrow similar to the inert doublet model in 2HDM.

Contains CP-half-odd scalars: $\Phi(\vec{x}, t) \stackrel{CP}{\longrightarrow} i\Phi(-\vec{x}, t)$.

• flavored CP4 3HDM: CP4 is extended to the Yukawa sector and must be spontaneously broken \rightarrow leads to particular patterns in the flavor sector.

Both versions are now under investigation.

Flavored CP4 3HDM

Extending CP4 to the Yukawa sector: must mix fermion families $\psi_i \rightarrow Y_{ij} \psi^{CP}_j$, where $\psi^{CP}=\gamma^0C\bar{\psi}^{\mathcal{T}}.$

$$
-\mathcal{L}_Y = \bar{q}_L \Gamma_a d_R \phi_a + \bar{q}_L \Delta_a u_R \phi_a^* + h.c.
$$

is invariant under CP4 with known X_{ab} if

$$
(Y^L)^{\dagger} \Gamma_a Y^d X_{ab} = \Gamma_b^*, \quad (Y^L)^{\dagger} \Delta_a Y^u X_{ab}^* = \Delta_b^*.
$$

We solved these equations = found Yukawa matrices Γ 's and Δ 's and mixing matrices Y^L , Y^d , Y^u , which satisfy all these conditions and do not lead to immediate problems with masses and mixing.

Very few possibilities arise: cases A, B1, B2, B3.

Flavored CP4 3HDM

For example, case B3:

$$
\Gamma_1=\left(\begin{array}{ccc}g_1&0&0\\0&g_1^*&0\\0&0&g_3\end{array}\right)\ ,\quad \Gamma_2=\left(\begin{array}{ccc}0&0&g_{13}\\0&0&g_{23}\\g_{31}&g_{32}&0\end{array}\right)\ ,\quad \Gamma_3=\left(\begin{array}{ccc}0&0&-g_{23}^*\\0&0&g_{13}^*\\g_{32}^*&-g_{31}^*&0\end{array}\right)\ .
$$

When multiplied by vevs (v_1, v_2, v_3) , they produce fermion mass matrices

$$
M_d = \frac{1}{\sqrt{2}} \sum \Gamma_a v_a, \quad M_u = \frac{1}{\sqrt{2}} \sum \Delta_a v_a^*.
$$

which need to reproduce the experimental values of masses, mixing, CPV. NB: v_2 , v_3 must be nonzero to avoid degenerate fermions!

4 F F 4 F

[Model-building with multiple Higgses](#page-1-0) [CP4 3HDM](#page-4-0) [Conclusions](#page-16-0)

 QQ

Flavored CP4 3HDM

Enough free parameters to fit the fermion properties? YES! [A. Aranda, P. Ferreira, IPI, E. Jiménez, R. Pasechnik, E. Peinado, H. Serodio, work in progress]

We developed a very efficient backward scan in the Yukawa sector:

- $H_{d,u}\equiv M_{d,u}M_{d,u}^\dagger$ compatible with masses and CKM is generated;
- \bullet M_d , M_u are reconstructed numerically from H_d , H_u (+V_R's);
- \bullet with known vevs, Γ_{a} , Δ_{a} are reconstructed uniquely and analytically.

4 n + 4 fl +

[Model-building with multiple Higgses](#page-1-0) [CP4 3HDM](#page-4-0) [Conclusions](#page-16-0)

Flavored CP4 3HDM

Typical vevs:
$$
v_3/v_2
$$
 vs. $u/v_1 \equiv \sqrt{v_2^2 + v_3^2/v_1}$.

∍

 $2Q$

∍

Tree-level FCNCs

- \bullet Γ _a and Δ _a do not possess built-in suppression of FCNCs.
- In the Higgs basis $(\langle \Phi_1^0 \rangle = \nu /$ √ 2, $\langle \Phi_{2,3}\rangle = 0$):

$$
\bar{d}_L D_d d_R (1 + h_1/v) + \bar{d}_L \Gamma_2^{(H)} d_R \Phi_2^0 + \bar{d}_L \Gamma_3^{(H)} d_R \Phi_3^0,
$$

where $\mathsf{\Gamma}^{(H)}_{2,3}$ and $\Delta_{2,3}^{(H)}$ generically have large off-diagonal elements.

イロト イ押 トイヨ トイヨ トー

[Model-building with multiple Higgses](#page-1-0) **[CP4 3HDM](#page-4-0)** [Conclusions](#page-16-0)

000

0000000000000000

Tree-level FCNCs

Tree-level FCNCs

The only resort is a strong alignment in the scalar sector: $h_1 = h_{125}$.

$$
V = -m_{11}^2 (1^{\dagger}1) - m_{22}^2 (2^{\dagger}2 + 3^{\dagger}3) + \lambda_1 (1^{\dagger}1)^2 + \lambda_2 \left[(2^{\dagger}2)^2 + (3^{\dagger}3)^2 \right] + \lambda_3 (1^{\dagger}1)(2^{\dagger}2 + 3^{\dagger}3) + \lambda'_3 (2^{\dagger}2)(3^{\dagger}3) + \lambda_4 \left[(1^{\dagger}2)(2^{\dagger}1) + (1^{\dagger}3)(3^{\dagger}1) \right] + \lambda'_4 (2^{\dagger}3)(3^{\dagger}2) ,+ \lambda_5 (3^{\dagger}1)(2^{\dagger}1) + \frac{\lambda_6}{2} \left[(2^{\dagger}1)^2 - (3^{\dagger}1)^2 \right] + \lambda_8 (2^{\dagger}3)^2 + \lambda_9 (2^{\dagger}3) \left[(2^{\dagger}2) - (3^{\dagger}3) \right] + h.c.
$$

Exact alignment condition $m_{11}^2 = m_{22}^2$

Potentially large FCNCs are still generated by other Higgses \Rightarrow they must be kept heavy to satisfy flavor constraints.

4. 17. 18.

∢ロト ∢母 ト ∢ ヨ ト ∢ ヨ ト

Conclusions

- CP4 3HDM is the minimal model implementing higher-order CP without accidental symmetries.
- **If unbroken, CP4 leads to CP-half-odd scalars—something never seen before.**
- CP4 can be extended to the Yukawa sector \rightarrow very few cases possible, CP4 must be broken \rightarrow very characteristic flavor sectors.
- The model is built on a single assumption and is, surprisingly, rather unique, predictive, and rich. It easily fits all fermion masses, mixing, CPV, and brings FCNCs of h_{125} under control.
- We are now working on it implementing the model in SARAH/SPheno and checking flavor and collider observables.