

Working in progress with L.G. Bian

Yun Jiang

The Niels Bohr International Academy

Warsaw 05/25/2017

Outlines

Why strong 1st electroweak phase transition?

 SM failed -> Our model (two Higgs doublets + one real singlet scalar DM)

• Tree level potential at T=0

Dark matter phenomelogy

One-loop finite temperature effective potential

EWPT

For "Higgs" itself, what we've learned is very little ...

What is the dynamics of this transition? First-order ("boiling") or second-order ("quasi- adiabatic") transition? Cross-over?

This is a crucial question to be clarified as it is related to explain the baryon anti-baryon asymmetry originating from the early Universe.

Conditions for Baryogenesis

Observed BAU:
$$\frac{n_B}{s} \sim 10^{-10}$$
.

 Baryogenesis: dynamically generating baryon-antibaryon number asymmetry when three necessary conditions are satisfied

Sakharov's conditions

- 1) baryon number violation
 - ✓ Chiral anomaly and non-trivial SU(2) topology (sphaleron)
- 2) C and CP violation
 - ✓ Quark CKM matrix (but insufficient)
- 3) departure from thermal equilibrium fulfilled by a 1st order phase transition involved with EWSB

Scenarios for baryogenesis: classican con baryogenesis, leptogenesis, electroweak baryogenesis, Affleck-Dine baryogenesis (scalar field dynamics).

EWBG

$$V_{T}(\phi, T) = D(T^{2} - T_{0}^{2})\phi^{2} - ET\phi^{3} + \frac{\lambda_{T}}{4}\phi^{4} + .$$
Finite Temperature Pr $\phi_{c}/T_{c} > 1 \Rightarrow 2E/\lambda_{T_{c}} > 1$

$$V_{T}(\phi, T) = D(T^{2} - T_{0}^{2})\phi^{2} - ET\phi^{3} + \frac{\lambda_{T}}{4}\phi^{4}$$

$$E = \frac{1}{12\pi v^{3}}(6m_{W}^{3} + 3m_{Z}^{3})$$

$$E = \frac{1}{12\pi v^{3}}(6m_{W}^{3} + 3m_{Z}^{3})$$

$$M_{T_{c}}^{Te Standard Model}$$

$$M_{Z}^{2} + m_{H}^{3} + m_{A}^{3} + 2m_{H^{\pm}}^{3}$$

$$M_{T_{c}}^{2} \sim \frac{1}{\lambda_{T}(T_{c})}$$

$$M_{T_{c}}^{2} + m_{H}^{3} + m_{A}^{3} + 2m_{H^{\pm}}^{3}$$

$$M_{T_{c}}^{2} \sim \frac{1}{3\pi m_{h}^{2}}(6m_{W}^{3} + 3m_{Z}^{2} + \text{New Physics})$$

$$< 1 \text{ for } m_{h} = 125 \text{ GeV}$$
In order to accomplish the strong 1st EWPT, the Higgs sector needs to be extended.

BSM considerations

Higgs (scalar) sector extended models can achieve the EWPT easily.

Model	References
SM + Scalar Singlet	Espinosa & Quiros, 1993; Benson, 1993; Choi & Volkas, 1993; McDonald, 1994; Vergara, 1996; Branco, Delepine, Emmanuel-Costa, & Gonzalez, 1998; Ham, Jeong, & Oh, 2004; Ahriche, 2007; Espinosa & Quiros, 2007; Profumo, Ramsey-Musolf, & Shaughnessy, 2007; Noble & Perelstein, 2007; Espinosa, Konstandin, No, & Quiros, 2008; Ashoorioon & Konstandin, 2009; Das, Fox, Kumar, & Weiner, 2009; Espinosa, Konstandin, & Riva, 2011; Chung & AL, 2011; Wainwright, Profumo, & Ramsey-Musolf, 2012; Barger, Chung, AL, & Wang, 2012; Huang, Shu, Zhang, 2012; Jiang, Bian, Huang, Shu, 2015; Huang & Li 2015
SM + Scalar Doublet	Davies, Froggatt, Jenkins, & Moorhouse, 1994; Huber, 2006; Fromme, Huber, & Seniuch, 2006; Cline, Kainulainen, & Trott, 2011; Kozhushko & Skalozub, 2011;
SM + Scalar Triplet	Patel, Ramsey-Musolf, 2012; Patel, Ramsey-Musolf, Wise, 2013; Huang, Gu, Yin, Yu, Zhang 2016
SM + Chiral Fermions	Carena, Megevand, Quiros, Wagner, 2005
MSSM	Carena, Quiros, & Wagner, 1996; Delepine, Gerard, Gonzales Felipe, & Weyers, 1996; Cline & Kainulainen, 1996; Laine & Rummukainen, 1998; Cohen, Morrissey, & Pierce,; Carena, Nardini, Quiros, & Wagner, 2012;
NMSSM / nMSSM / µvSSM	Pietroni, 1993; Davies, Froggatt, & Moorhouse, 1995; Huber & Schmidt, 2001; Ham, Oh, Kim, Yoo, & Son, 2004; Menon, Morrissey, & Wagner, 2004; Funakubo, Tao, & Toyoda, 2005; Huber, Kontandin, Prokopec, & Schmidt, 2006; Chung, AL, 2010, Huang, Kang, Shu, Wu, Yang, 2014
EFT-like Approach (H^6 operator)	Grojean, Servant, Wells, 2005; Huang, Gu, Yin, Yu, Zhang 2015; Huang, Joglekar, Li, Wagner, 2015; Huang, Wan, Wang, Cai, Zhang 2016; Huang, Gu, Yin, Yu, Zhang 2016

Working Model (including DM)

> To satisfy the existing constraints, the minimal model is NOT sufficient.

2HDMS model

(see more details for 2HDMS model in Jiang et.al., JHEP (2014) arXiv:1408.2106)

□ Add a real scalar singlet S, together with two doublet Higgs fields

The full potential (defined in the general basis) in the scalar sector is

$$V(\Phi_{1}, \Phi_{2}, S) = m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.\right] \\ + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} \\ + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \lambda_{6} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{1}^{\dagger} \Phi_{2}) + \lambda_{7} (\Phi_{2}^{\dagger} \Phi_{2}) (\Phi_{1}^{\dagger} \Phi_{2}) + h.c.\right]$$

Singlet sector $\left[+ \frac{1}{2} m_{0}^{2} S^{2} + \frac{1}{4!} \lambda_{5} S^{4} + \kappa_{1} S^{2} (\Phi_{1}^{\dagger} \Phi_{1}) + \kappa_{2} S^{2} (\Phi_{2}^{\dagger} \Phi_{2}) + S^{2} (\kappa_{3} \Phi_{1}^{\dagger} \Phi_{2} + h.c.) \right]$
Symmetry: $\mathbb{Z}_{2} \times \mathbb{Z}'_{2}$ Higgs portal
• $\mathbb{Z}_{2} : \Phi_{1} \to \Phi_{1}, \Phi_{2} \to -\Phi_{2}$

•
$$\mathbb{Z}_2': \Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow \Phi_2, S \rightarrow -S$$

S could be a dark matter candidate provide it does not acquire a VEV.

2HDMS model (after EWSB)

Electroweak symmetry breaking

$$\Phi_{\mathbf{1}} = \begin{pmatrix} \phi_{\mathbf{1}}^{+} \\ (v \cos \beta + \rho_{\mathbf{1}} + i\eta_{\mathbf{1}})/\sqrt{2} \end{pmatrix}$$
$$\Phi_{\mathbf{2}} = \begin{pmatrix} \phi_{\mathbf{2}}^{+} \\ (e^{i\xi}v \sin \beta + \rho_{\mathbf{2}} + i\eta_{\mathbf{2}})/\sqrt{2} \end{pmatrix}$$

2 CP-even neutral scalars: $h = -\rho_1 \sin \alpha + \rho_2 \cos \alpha$ $H = \rho_1 \cos \alpha + \rho_2 \sin \alpha$

1 CP-odd neutral pseudoscalar: $A = -\eta_1 \sin \beta + \eta_2 \cos \beta$ 2 charged scalars: H^{\pm}

the S-dependent part (after the EWSB) 2 portal couplings $V_{S} = \frac{1}{2}m_{S}^{2}S^{2} + \frac{1}{4!}\lambda_{S}S^{4} + \lambda_{h}vhS^{2} + \lambda_{H}vHS^{2} + S^{2}(\lambda_{HH}HH + \lambda_{hH}hH + \lambda_{hh}hh + \lambda_{AA}AA + \lambda_{H^{+}H^{-}}H^{+}H^{-})$

Remarks

- NO AS^2 interaction, so A cannot be a portal in this model.
- The set of independent inputs:

 $\{m_S, \lambda_h, \lambda_H, \lambda_S\} + \{m_h, m_H, m_A, m_{H^{\pm}}, \sin(\beta - \alpha), \tan\beta, m_{12}^2\}$

Phenomenology

what we consider ...

- preLHC: Stability, Unitarity, Perturbativity, STU, B-physics, (g 2)_μ, LEP (applied for some scenarios)
- H/A limits:
 - $H \to ZZ^{(*)} \to 4\ell$
 - $gg \rightarrow H \rightarrow \tau \tau$ and $gg \rightarrow bbH$ with $H \rightarrow \tau \tau$

• postLHC: additionally, $\gamma\gamma$, ZZ, WW, bb, $\tau\tau$ signals for 125 GeV Higgs

- Fully suppressed the invisible decay for the SM-like Higgs.
- Produce proper relic abundance
- Direct detection
- Indirection detection

We mainly focus on the constraints on the strength of portal couplings in different DM mass range.

DM phenomenology

Yun Jiang (NBI)

DM phenomenology

$\begin{array}{c} \hline \textbf{Resonance region} \\ \hline \textbf{No constraint on the h-SS coupling} \\ \hline \textbf{No constraint on the h-SS coupling} \\ \hline \textbf{h} \\ s \\ \hline \textbf{h} \\ \hline \textbf{h} \\ s \\ \hline \textbf{h} \\ \hline \textbf{h} \\ s \\ \hline \textbf{h} \hline \textbf{h} \\ \hline \textbf{h} \hline \textbf{h} \\ \hline \textbf{h} \hline \textbf{h}$

DM phenomenology

Yun Jiang (NBI)

Finite temperature potential

$$V_{\text{eff}}(\phi_{i},T) = V_{0}(\phi_{i}) + V_{\text{CW}}(\phi_{i}) + V_{\text{CT}}(\phi_{i}) + V_{\text{th}}(\phi_{i},T) , \quad \phi_{i} = h_{1},h_{2},S$$

$$T=0 \text{ part}$$

$$V_{\text{CW}}(\phi_{i}) = \sum_{i} n_{i} \frac{m_{i}^{4}(\phi_{i})}{64\pi^{2}} \left[\ln \left(\frac{m_{i}^{2}(\phi_{i})}{Q^{2}} \right) - C_{i} \right]$$
Field-dependent mass
$$m_{h,H,S}^{2} = \text{eignevalues}(\mathcal{M}_{P}^{2})$$

$$m_{G,A}^{2} = \text{eignevalues}(\mathcal{M}_{A}^{2})$$

$$m_{G^{+},H^{\pm}}^{2} = \text{eignevalues}(\mathcal{M}_{A}^{2})$$

$$m_{G^{\pm},H^{\pm}}^{2} = \text{eignevalues}(\mathcal{M}_{A}^{2})$$

$$m_{H^{\pm}}^{2} = \frac{m_{H^{\pm},H^{\pm}}^{2} = \frac{m_{H^{\pm},H^{$$

Potential evolution

Yun Jiang (NBI)

Potential evolution

Yun Jiang (NBI)

- Critical temperature is at the ~few x 10² GeV
- 450 < Tc < 750 GeV (DM has low–mass)

Yun Jiang (NBI)

Yun Jiang (NBI)

Dark matter assisted EWPT

20

Conclusions

Introducing the additional scalars in the Higgs sector significantly affects the finite temperature potential, leading to the success of realizing the strong EWPT mainly through the effect of thermal mass correction.

> The extended model having **two Higgs portals** is phenomenologically viable, even for a very light DM.

> The critical temperature at which the EWPT occurs has dependence on the DM mass.

> The dynamical mechanism of producing DM before the EWPT is demanded.

Back up

Yun Jiang (NBI)

- 1. Track evolution of minima in V_{eff} as function of temperature
- 2. Numerically solve <u>minimization</u> and <u>degeneracy</u> condition equations:
 - 1. $V'_{\text{eff}}(\phi_{\min}, T_c) = 0$
 - 2. $V_{\text{eff}}(0, T_c) = V_{\text{eff}}(\phi_{\min}, T_c)$

24