Dark matter from dark gauge groups

Christian Gross

Planck 2017, Warsaw

based on work in collaboration with G. Arcadi, O. Lebedev, Y. Mambrini, S. Pokorski, T. Toma

We know DM exists:

....but we have no clue what kind of particle(s) DM consists of:

contribution to DMSAG report, July 18, 2007]

why WIMPs are popular

- The WIMP miracle
- → link to TeV scale

 BSM physics
- Huge efforts to search for WIMPs in direct detection experiments

[LUX, 1608.07648]

why simple WIMP DM models are under pressure

[image: www.mpi-hd.mpg.de/lin/research_DM.en.html]

Reason for tension in simplest models:

DD limits require small coupling

- \rightarrow small $\langle \sigma v \rangle$
- → WIMPs overabundant due to $Ω \propto 1/<σ \lor>$
- Need to break the `crossing relation', e.g. by:
 - resonant DM annihilation
 - additional annihilation channels into the dark sector
 - cancellation among different direct detection diagrams
 - ...

WIMP DM from hidden gauge groups

plan for the rest of the talk:

- 1) why the massive gauge fields are stable
- 2 three ways to naturally reconcile direct detection limits and relic abundance

$$\mathcal{L}_{\mathsf{dark}} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + |D_{\mu}\phi|^2 - V(\phi)$$

 A_{μ} is stable due to charge-conjugation symmetry

$$Z_2: \left\{ \begin{array}{c} \phi \to \phi^* \\ A_{\mu} \to -A_{\mu} \end{array} \right.$$

[Lebedev,Lee,Mambrini, 2011]

$$\mathcal{L}_{\mathsf{dark}} = -rac{1}{4} \sum_{a=1}^{3} F^{a}_{\mu
u} F^{a \mu
u} + |D_{\mu} \phi|^{2} - V(\phi)_{\mathsf{SU(2)_d \, doublet}}$$

 $A^{a}_{\mu} \rightarrow -A^{a}_{\mu}$ is <u>not</u> a symmetry, due to triple gauge boson vertex

$$\mathcal{L}_{\mathsf{dark}} = -rac{1}{4} \sum_{a=1}^{3} F^{a}_{\mu
u} F^{a \mu
u} + |D_{\mu} \phi|^{2} - V(\phi)_{\mathsf{SU(2)_d \, doublet}}$$

• since the generators are $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,

charge conjugation acts as
$$Z_2$$
:
$$\begin{cases} \phi \to \phi^* \\ A_{\mu}^1 \to -A_{\mu}^1 \\ A_{\mu}^3 \to -A_{\mu}^3 \end{cases}$$

$$\mathcal{L}_{\mathsf{dark}} = -rac{1}{4} \sum_{a=1}^{3} F_{\mu
u}^{a} F^{a \mu
u} + |D_{\mu} \phi|^{2} - V(\phi)_{\mathsf{SU(2)_d \, doublet}}$$

• since the generators are $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,

charge conjugation acts as
$$Z_2$$
:
$$\begin{cases} \phi \to \phi^* \\ A_\mu^1 \to -A_\mu^1 \\ A_\mu^3 \to -A_\mu^3 \end{cases}$$

• there is another Z_2 : $\begin{cases} A_{\mu}^1 \to -A_{\mu}^1 \\ A_{\mu}^2 \to -A_{\mu}^2 \end{cases}$

which can be shown to be a remnant of SU(N)_d gauge symmetry

[CG, Lebedev, Mambrini, 2015]

$$\mathcal{L}_{\mathsf{dark}} = -rac{1}{4} \sum_{a=1}^{3} F_{\mu
u}^{a} F^{a \mu
u} + |D_{\mu} \phi|^{2} - V(\phi)_{\mathsf{SU(2)_d \, doublet}}$$

• since the generators are $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,

charge conjugation acts as
$$Z_2$$
:
$$\begin{cases} \phi \to \phi^* \\ A_{\mu}^1 \to -A_{\mu}^1 \\ A_{\mu}^3 \to -A_{\mu}^3 \end{cases}$$

• there is another Z₂: $\begin{cases} A_{\mu}^{1} \rightarrow -A_{\mu}^{1} \\ A_{\mu}^{2} \rightarrow -A_{\mu}^{2} \end{cases}$

which can be shown to be a remnant of SU(N)_d gauge symmetry

[CG, Lebedev, Mambrini, 2015]

• this $Z_2 \times Z_2$ ensures stability of the three A^a_{μ} ; it enlarges to a custodial SO(3) \rightarrow the A^a_{μ} have same masses

[CG, Lebedev, Mambrini, 2015]

- SU(N≥3)_d broken completely by N-1 dark Higgs N-plets
- N(N-1)/2 physical CP-even scalars N(N-3)/2+1 `` CP-odd ``

- assuming CP invariance, obtain Z₂ x Z₂ symmetry, as in the SU(2)_d case
 (Z₂ x Z₂ is part of a global U(1) x Z₂)

plan for the rest of the talk:

- 1 why the massive gauge fields are stable
- 2 three ways to naturally reconcile direct detection limits and relic abundance

a) DM annihilation via (broad) resonances

[CG, Lebedev, Mambrini, 2015]

DM annihilation via s-channel Higgses:

 h_1 , h_2 : mass eigenstates of dark Higgs and $SU(2)_L$ -Higgs, with mixing sin θ

b) DM annihilation mostly into hidden sector

- The basic mechanism is known as <u>secluded DM</u>: [Pospolov, Ritz, Voloshin, 2007] DM annihilation into dark sector states may provide an efficient extra annihilation channel. This breaks the correlation between DD and annihilation cross section.
- The scalar sector of spontaneously broken hidden gauge groups automatically contains such dark sector states into which DM may annihilate: the hidden sector scalars.

b) DM annihilation mostly into hidden sector

[Arcadi,CG,Lebedev,Pokorski,Toma; 2016]

- The coupling required to obtain the correct relic abundance drops dramatically as soon as the dark annihilation channel opens up.
- The smaller $\sin \theta$ is, the stronger this effect is.

c) cancellation among direct detection diagrams

[Arcadi,CG,Lebedev,Mambrini,Pokorski,Toma; 2016]

- for SU(N \geq 3)_d DM can consist of vectors and a CP-odd scalar χ
- Both components may be dominant, depending on parameters:

- shown: relative contribution of vector DM to total DM: $f_A = \Omega_A / \Omega_{total}$
- since, very roughly,
 Ω_{total} < 1/<σν>_A + 1/<σν>_χ
 component with smaller
 <σν> dominates
- this explains e.g. behaviour when one of the components annihilates resonantly

c) cancellation among direct detection diagrams

dominates

couplings lead to exact treelevel cancellation in scattering of χ -DM on nuclei, independently of the mass of h₂

→ WIMPs can be completely invisible in direct detection

 $m_{\chi} \; [{
m GeV}]$

side remark: in the mixed scalar-vector DM case, one might be able to see one DM component in indirect detection and the other in direct detection

basic point:

- χ is invisible in DD, but might be observable in ID (if its DM fraction is large enough)
- on the other hand: vector component could be visible in DD, but is hardly visible in ID because main annihilation (often) into dark sector (A A → χ χ)

two regions where testing this scenario might be possible with future data

Summary

- ➤ Gauge fields of a spontaneously broken dark SU(N)_d are viable DM candidates
- \triangleright Stability of DM is due to a Z₂ x Z₂ symmetry that automatically arises for minimal CP-conserving Higgs sectors
- > Several ways to reconcile relic abundance and direct detection limits:
 - annihilation via (broad) resonances
 - annihilation dominantly into dark sector
 - cancellation among direct detection diagram