Can dark matter drive electroweak symmetry breaking?

Catarina M. Cosme

in collaboration with João G. Rosa and Orfeu Bertolami

arXiv:1811.08908

Scalars 2019, University of Warsaw, Poland, 14 September 2019

The model - Higgs portal scalar field dark matter

• **Idea**: oscillating scalar field accounting for dark matter, Φ, coupled to the Higgs, ℋ, driving a **non-thermal electroweak symmetry breaking** (EWSB):

$$
-\mathcal{L}_{int} = g^2 |\Phi|^2 |\mathcal{H}|^2 + \lambda_{\phi} |\Phi|^4 + V(\mathcal{H}) - \xi R |\Phi|^2
$$

 \bm{g} – Higgs-portal coupling; $\bm{\lambda}_{\bm{\phi}}$ - dark scalar self-coupling, $\bm{\xi}$ – non-minimal coupling (NMC), \bm{R} – Ricci Scalar; $\bm{\Phi}=\frac{\bm{\phi}}{\sqrt{2}}$ $\frac{b}{2}$; $\boldsymbol{\mathcal{H}}=\frac{h}{\sqrt{2}}$ 2

• Non-standard Cosmology: **late inflaton decay** ⇒ **early matter era**.

Inflation

$$
-\mathcal{L}_{int} = \frac{g^2}{4} \phi^2 h^2 + \frac{\lambda_{\phi}}{4} \phi^4 - \frac{\xi}{2} R \phi^2
$$

R \approx 12 H_{inf}²

- $\xi \gg g$, $\lambda_{\phi} \Rightarrow m_{\phi} \gtrsim H_{inf}$ is given by the **NMC** to the curvature scalar \Rightarrow **No** observable **isocurvature modes** in the CMB spectrum ;
- \cdot ϕ acquires a **vev**, h does not:

$$
\phi_{inf} = \sqrt{\frac{12\xi}{\lambda \phi}} H_{inf}, \qquad h_{inf} = 0
$$
\n
$$
H_{inf} \approx 2.5 \times 10^{13} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} GeV, \ r < 0.10. \text{ [Planck Collaboration 2018]}
$$
\n
$$
r \equiv \frac{\Delta_t^2}{\Delta_{\mathcal{R}}^2} \text{ (Tensor-to-scalar ratio)}
$$

Inflation

$$
-\mathcal{L}_{int} = \frac{g^2}{4} \phi^2 h^2 + \frac{\lambda \phi}{4} \phi^4 - \frac{\xi}{2} R \phi^2
$$

R \approx 12 H_{inf}²

- $\xi \gg g$, $\lambda_{\phi} \Rightarrow m_{\phi} \gtrsim H_{inf}$ is given by the **NMC** to the curvature scalar \Rightarrow **No** observable **isocurvature modes** in the CMB spectrum ;
- \cdot ϕ acquires a **vev**, h does not:

$$
\phi_{inf} = \sqrt{\frac{12\xi}{\lambda \phi}} H_{inf}, \qquad h_{inf} = 0
$$
\n
$$
H_{inf} \approx 2.5 \times 10^{13} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} GeV, \ r < 0.10. \text{ [Planck Collaboration 2018]}
$$
\n
$$
r \equiv \frac{\Delta_t^2}{\Delta_{\mathcal{R}}^2} \text{ (Tensor-to-scalar ratio)}
$$

Inflation

$$
- \mathcal{L}_{int} = \frac{g^2}{4} \phi^2 h^2 + \frac{\lambda_{\phi}}{4} \phi^4 - \frac{\xi}{2} R \phi^2
$$

R \approx 12 H_{inf}²

• **Higgs** is **massive** during inflation:

$$
m_h = \frac{1}{\sqrt{2}} g \phi_{inf} = \frac{g}{\lambda_{\phi}^{1/2}} \sqrt{6\xi} \ H_{inf} \gtrsim H_{inf}
$$

\n
$$
H_{inf} \simeq 2.5 \times 10^{13} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} \text{ GeV, } r < 0.10. \text{ [Planck Collaboration 2018]}
$$

\n
$$
H_{inf} \simeq 2.5 \times 10^{13} \left(\frac{r}{0.01}\right)^{\frac{1}{2}} \text{ GeV, } r < 0.10. \text{ [Planck Collaboration 2018]}
$$

Large Higgs mass

Shifts value of h at which $\lambda_h < 0$ towards values larger than H_{inf} $(above 10^{10} - 10^{12}$ GeV);

Quantum fluctuations are suppressed;

• The inflaton field, χ , does not decay immediately after inflation \Rightarrow evolves like non**relativistic matter** until reheating occurs.

Standard Cosmology:

Evolution of the Universe

• The inflaton field, χ , does not decay immediately after inflation \Rightarrow evolves like non**relativistic matter** until reheating occurs.

But…

Evolution of the Universe

Constraints on the reheating temperature, T_R :

10 $MeV < T_R < 80$ GeV

Big Bang nucleosynthesis constraint

No Electroweak symmetry restoration

Post-inflationary period – Early matter era

$$
-\mathcal{L}_{int} = \frac{g^2}{4} \phi^2 h^2 + \frac{\lambda_{\phi}}{4} \phi^4 - \frac{\xi}{2} R \phi^2 + \frac{\lambda_{h}}{4} (h^2 - v^2)^2
$$

 $R \approx 3H^2$

• Dark scalar **controls** the Higgs minimum:

$$
|h| = \sqrt{v^2 - \frac{g^2 \phi^2}{2\lambda_h}}
$$

• At

$$
\phi_c = \sqrt{2\lambda_h} \frac{v}{g} \Rightarrow \text{Electroweak symmetry breaking takes place};
$$

• Two scenarios: reheating **after** or **before** electroweak symmetry breaking (EWSB);

Post-inflationary period - Reheating after EWSB

2/3

Post-inflationary period - Reheating before EWSB

Assumptions

• Dark scalar is **subdominant** during inflation:

$$
V(\phi_{inf}) < 3H_{inf}^2 M_{Pl}^2 \Rightarrow \phi_{inf} < \frac{M_{Pl}}{\sqrt{\xi}}
$$

• Field behaves like **CDM at EWSB**:

$$
\frac{g^2 \mathbf{v}^2 \phi_c^2}{\lambda_{\phi} \phi_c^4} > 1 \Rightarrow g^4 > 2 \lambda_h \lambda_{\phi}
$$

- Small radiative corrections from the Higgs-portal coupling (no fine tune): $\delta \lambda_{\phi} \sim \frac{g^4}{16\pi}$ $\frac{y}{16\,\pi^2} < \lambda_{\phi};$
- Upper bound on the **Higgs branching ratio** for invisibles (LHC): $Br(\Gamma_{h\to in}^{\circ})$ < 0.23 \Rightarrow q < 0.13;
- Prevent the condensate's evaporation: $g < 0.2 \left(\frac{T_R}{10 \text{ C}} \right)$ 10 GeV $-1/4$ (r 0.01 $-1/4$ $\xi^{-3/4} \left(\frac{H_{end}/H_{inf}}{2.3}\right)$ 0.2

.

Results

 $10 \text{ MeV} < T_R < 80 \text{ GeV}$

Conclusions

- Yes, it can! an **oscillating scalar field dark matter coupled to the Higgs** may **drive EWSB**;
- This can be **achieved** with a **late inflaton decay**;
- During the early-matter era, the **minimum of the Higgs potential is controlled** by the **dark scalar**;
- **EWSB** occurs when the **amplitude** of the dark scalar **falls below a critical value**;
- Larger Higgs-portal couplings allows for Higgs invisible branching ratios $\lesssim 10^{-3}$ (current value: $Br(\Gamma_{h\rightarrow inv}) < 0.23$).

Thank you for your attention!

Backup slides

The model - Higgs portal scalar field dark matter

• **Idea**: oscillating scalar field accounting for dark matter, Φ, coupled to the Higgs, ℋ, driving a **non-thermal electroweak symmetry breaking** (EWSB):

$$
-\mathcal{L}_{int} = g^2 |\Phi|^2 |\mathcal{H}|^2 + \lambda_{\phi} |\Phi|^4 + V(\mathcal{H}) - \xi R |\Phi|^2
$$

 \bm{g} – Higgs-portal coupling; $\bm{\lambda}_{\bm{\phi}}$ - dark scalar self-coupling, $\bm{\xi}$ – non-minimal coupling (NMC), \bm{R} – Ricci Scalar; $\bm{\Phi}=\frac{\bm{\phi}}{\sqrt{2}}$ $\frac{b}{2}$; $\boldsymbol{\mathcal{H}}=\frac{h}{\sqrt{2}}$ 2

- Dark scalar **can control EWSB** if the reheating temperature, T_R , is lower than usual \Rightarrow **late inflaton decay** ⇒ **early matter era**.
- At **reheating**: inflaton **decays** into Standard Model particles ⇒ Reheats the Universe and forms a thermal bath ⇒ Universe enters the usual **radiation** era;

Higgs vacuum stability

- Higgs vacuum is stable if $\lambda_h > 0$ for any scale μ where the minimum of its potential is a global minimum;
- $m_h = 125$ GeV, $\lambda_h < 0$ for energy scales μ ~ $10^{10} 10^{12}$ GeV (below GUT, Planck scales);
- **Massive Higgs**:
	- **Additional quadratic** term in its potential ⇒ **shifts** the **field value** at which the **potential** becomes **unbounded** towards values above $10^{10} - 10^{12}$ GeV;
	- **Suppresses Higgs** de Sitter **quantum fluctuations:**

$$
\langle h^2 \rangle \simeq \left(\frac{H_{inf}}{2\pi}\right)^2 \frac{H_{inf}}{m_h} \simeq \left(\frac{H_{inf}}{2\pi}\right)^2 \frac{\lambda \phi^{1/2}}{g\sqrt{6\xi}} \qquad \qquad \sqrt{\langle h^2 \rangle} \lesssim 10^{11} \text{ GeV for } r \lesssim 10^{-2}
$$

• Evolution of the **inflaton energy density**:

$$
\rho_{\chi}(a) = 3H_{end}^2 M_{Pl}^2 \left(\frac{a}{a_{end}}\right)^{-3}
$$

• Here,
$$
H_{end} \simeq \left(\frac{\sqrt{n}}{2} \frac{1}{\sqrt{N_e}}\right)^{n/2} H_{inf}
$$
, but this is model dependent ($N_e = 60$, $N_e = \ln \left(\frac{a_e}{a_i}\right)$);

• At **reheating**:

$$
\rho_{\chi}(a_R) = \frac{\pi^2}{30} g_{*R} T_R^4
$$

• Number of **e-folds** from **inflation** until **reheating**:

$$
N_R = \ln\left(\frac{a_R}{a_{inf}}\right) = -\frac{1}{3}\log\left(\frac{\pi^2}{90}g_{*R}\frac{T_R^4}{H_{end}^2M_{Pl}^2}\right)
$$

Model constraints – Condensate Evaporation

Initial conditions that prevent the modulus of the field from oscillating significantly

- Idea: make the field **oscillate** in the **complex plane** ⇒ its modulus does not oscillate;
- How? Introducing terms in the potential that depend **on the phase of the dark scalar field**:

$$
V(\phi) = -\xi R(\phi^2 + h.c.) + \frac{1}{M_{Pl}^n} (c \phi^{n+4} + h.c.) + g^2 |\Phi|^2 |\mathcal{H}|^2 + \lambda_{\phi} |\Phi|^4
$$

• **Ricci** value **during inflation** ≠ **end of inflation** ⇒ **phase** is different **during/after inflation** ⇒ dark scalar **oscillates** in the **complex plane** ⇒ ϕ **does not oscillate** significantly ⇒ **no** Higgs production.

Model constraints – Condensate Evaporation

Perturbative production of -particles by the oscillating background condensate

- Field can be decomposed into **background** + particle fluctuations $\delta \phi$;
- Production rate: $\qquadGamma_{\phi\to\delta\phi\delta\phi}\simeq4\times10^{-2}~\lambda_\phi^{3/2}\phi_c$
- Condition:

$$
\frac{\Gamma_{\phi \to \delta \phi \delta \phi}}{H_c} < 1
$$

$$
g < 0.2 \, \left(\frac{T_R}{10 \, \text{GeV}}\right)^{-1/4} \, \left(\frac{r}{0.01}\right)^{-1/4} \, \xi^{-3/4} \left(\frac{H_{end}/H_{inf}}{0.2}\right)
$$