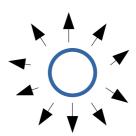
Freeze-in at stronger coupling

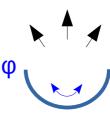
Oleg Lebedev

University of Helsinki

- particle production during and after inflation
- Planck-suppressed operators
- freeze-in dark matter

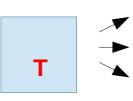

Main references: 2306.13061 [hep-ph] Cosme, Costa, OL

2210.02293 [hep-ph] OL


Non-thermal relics / DM have memory!

Production mechanisms (all add up):

- during inflation

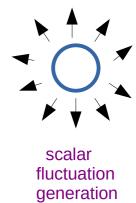

- via inflaton oscillations

- inflaton decay

- thermal emission (freeze-in)

Decoupled scalar production during inflation

Scalar "s" with


$$V(s) = \frac{1}{2}m_s^2 s^2 + \frac{1}{4}\lambda_s s^4 \qquad \lambda_s \ll 1 \ , \ m_s \ll H$$

Starobinsky-Yokoyama equilibrium distribution of de Sitter fluctuations:

$$P(s) \propto \exp\left[-8\pi^2 V(s)/(3H^4)\right]$$

$$\langle s^2 \rangle \simeq 0.1 \times \frac{H_{\rm end}^2}{\sqrt{\lambda_s}}$$

Mean field:

$$\bar{s} \equiv \sqrt{\langle s^2 \rangle}$$

Effective mass:

$$m_{\rm eff}^2 = m_s^2 + 3\lambda_s \bar{s}^2$$

Evolution:

$$\bar{s}_{\mathrm{end}} \xrightarrow{a^0} \bar{s}_{\mathrm{osc}} \xrightarrow{a^{-1}} \bar{s}_{\mathrm{dust}}$$

frozen \rightarrow oscillates in s⁴ potential \rightarrow oscillates in s² potential

$$H > m_{eff}$$
 $H \sim m_{eff}$ $m_s \sim m_{eff}$

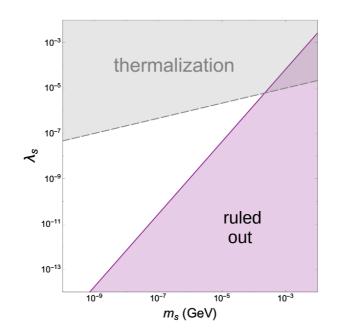
Relic number density (non-rel.) = energy density / particle mass :

$$n \simeq m_s^3/\lambda_s$$

Constraints

Require

$$Y \le 4.4 \times 10^{-10} \; \frac{\text{GeV}}{m_s}$$


instant reheating or φ⁴

$$m_s \, \lambda_s^{-5/8} \lesssim 10^{-7} \, \left(\frac{M_{\rm Pl}}{H_{\rm end}}\right)^{3/2} \, {\rm GeV}$$

Hubble rate at the end of inflation

Very strong constraint:

2210.02293

Starobinsky-Yokoyama fluctuations

$$H_{\mathrm{end}} \sim 10^{14} \ \mathrm{GeV}$$

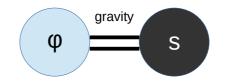
$$\Delta_{\rm NR}=1$$

In general, the abundance depends on duration of the *non-relativistic* expansion period (ϕ^2 pot.):

$$H_{
m end} \stackrel{a^{-3/2}}{\longrightarrow} H_{
m reh} \qquad \Delta_{
m NR} \equiv \left(rac{H_{
m end}}{H_{
m reh}}
ight)^{1/2} \,\,\,>\,\,$$
1

Dilutes the energy in the condensate → weaker constraint

$$m_s \, \lambda_s^{-3/4} \lesssim 10^{-7} \, \Delta_{\rm NR} \, \left(\frac{M_{\rm Pl}}{H_{\rm end}}\right)^{3/2} \, {\rm GeV}$$


$$H_{\rm end} \sim 10^{14} \ {\rm GeV} \qquad \Longrightarrow \qquad m_s \ll \Delta_{\rm NR} \ {\rm GeV}$$

Only particles far below the GeV scale are allowed for $\Delta_{NR}=1$

Quantum gravity effects

Induce gauge invariant operators

(with unknown coefficients)

Dim-6 gravity-induced couplings:

Also induced by *classical* gravity!

$$\Delta \mathcal{L}_6 = \frac{C_1}{M_{\rm Pl}^2} (\partial_{\mu} \phi)^2 s^2 + \frac{C_2}{M_{\rm Pl}^2} (\phi \partial_{\mu} \phi) (s \partial^{\mu} s) + \frac{C_3}{M_{\rm Pl}^2} (\partial_{\mu} s)^2 \phi^2 - \frac{C_4}{M_{\rm Pl}^2} \phi^4 s^2 - \frac{C_5}{M_{\rm Pl}^2} \phi^2 s^4$$

Main operators for on-shell fields contributing to s-pair production:

$$\mathcal{O}_3 = \frac{1}{M_{\rm Pl}^2} (\partial_{\mu} s)^2 \phi^2 \ , \ \mathcal{O}_4 = \frac{1}{M_{\rm Pl}^2} \phi^4 s^2$$

(supplemented with dim-4
$${\cal O}_{
m renorm}=rac{m_\phi^2}{M_{
m Pl}^2}\,\phi^2 s^2$$
 and 4-DM op $rac{C_5}{M_{
m Pl}^2}\,\phi^2 s^4$)

Particle production:

 \mathcal{O}_4 dominates

$$\Gamma = \frac{C_4^2}{4\pi M_{\rm Pl}^4} \sum_{n=1}^{\infty} |\hat{\zeta}_n|^2 \qquad \qquad \hat{\zeta}_n = \sum_{m=-\infty}^{\infty} \zeta_{n-m} \zeta_m$$

$$\hat{\zeta}_n = \sum_{m=-\infty}^{\infty} \zeta_{n-m} \zeta_m$$

$$\dot{n} + 3Hn = 2\Gamma$$

2210.02293

$$\Delta_{
m NR} \equiv \left(rac{H_{
m end}}{H_{
m reh}}
ight)^{1/2}$$

$$|C_4| < 10^{-3} \,\Delta_{\rm NR}^{1/2} \, \frac{H_{\rm end}^{5/4} \, M_{\rm Pl}^{11/4}}{\phi_0^4} \, \sqrt{\frac{\rm GeV}{m_s}}$$

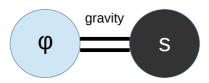
$$\phi_0 \sim M_{\rm Pl}$$
 and $H_{\rm end} \sim 10^{14}~{\rm GeV}$

$$|C_4| < \text{few} \times 10^{-9} \, \Delta_{\text{NR}}^{1/2} \, \sqrt{\frac{\text{GeV}}{m_s}}$$

$$|C_3| \lesssim 10^{-1} \, \Delta_{\mathrm{NR}}^{1/2} \, \sqrt{\frac{\mathrm{GeV}}{m_s}}$$

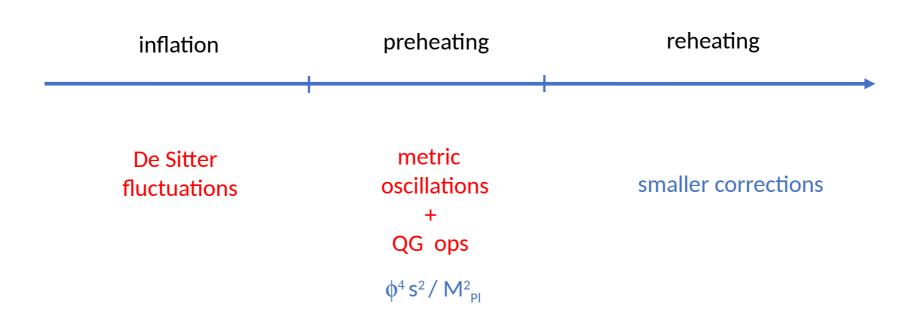
Higher dim operators:
$$\mathcal{O}^{(p)} = \frac{\phi^p s^2}{M_{\mathrm{Pl}}^{p-2}}$$

$$|C^{(p)}| < 10^{-3} \,\Delta_{\rm NR}^{1/2} \, \frac{H_{\rm end}^{5/4} \, M_{\rm Pl}^{p-5/4}}{\phi_0^p} \, \sqrt{\frac{{\rm GeV}}{m_s}}$$


Planck-suppressed operators are very efficient in particle production!

$$\frac{\phi^4 s^2}{M_{\rm Pl}^2}$$
 , $\frac{\phi^6 s^2}{M_{\rm Pl}^4}$, $\frac{\phi^8 s^2}{M_{\rm Pl}^6}$,...

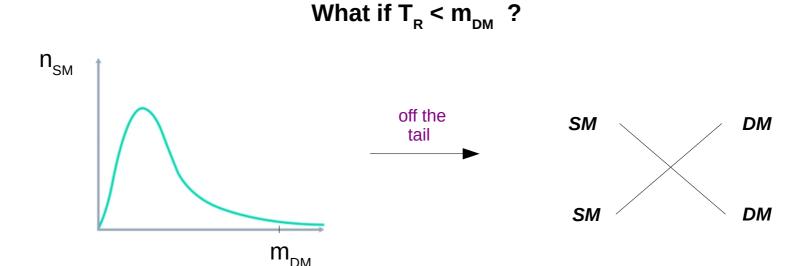
Main observation:


Planck—suppressed ("gravity--induced") operators with <u>small</u> Wilson coefficients can account for all of the dark matter!

Non-thermal DM model building is highly **UV sensitive**:

- abundance is additive ("memory")
- need to control quantum gravity
- predictivity ?

Irreducible gravity background for Freeze-in:


The problem is not to produce DM, but to get rid of it!

Freeze-in at stronger coupling

Need to get rid of the gravitational background \rightarrow matter dominated expansion ϕ^2 local inflaton potential

relics are diluted , low reheating temperature T_R

Boltzmann-suppressed DM production requires a stronger coupling → observable!

<u>Simplest model = Higgs portal DM</u>

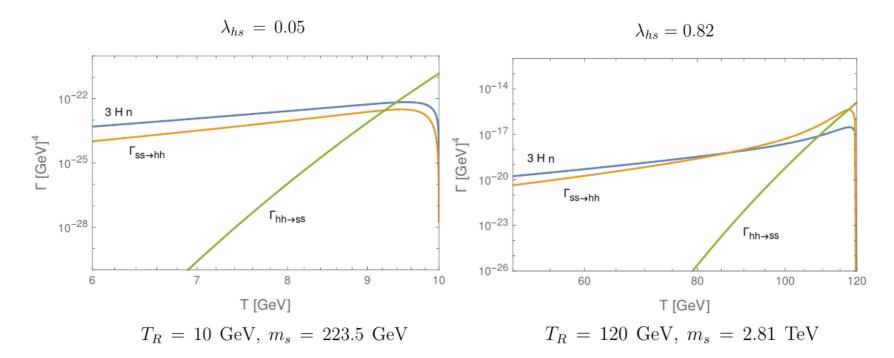
$$V(s) = \frac{1}{2} \lambda_{hs} s^2 H^{\dagger} H + \frac{1}{2} m_s^2 s^2$$

Boltzmann equation:

$$\dot{n} + 3Hn = \Gamma(h_i h_i \to ss) - \Gamma(ss \to h_i h_i)$$

No annihilation:

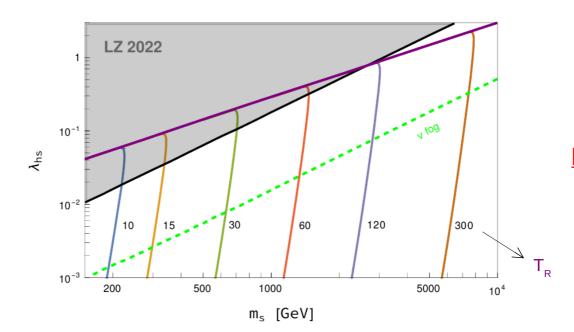
$$\Gamma(h_i h_i \to ss) \simeq \frac{\lambda_{hs}^2 T^3 m_s}{2^7 \pi^4} e^{-2m_s/T}$$
 \longrightarrow $\lambda_{hs} \simeq 3 \times 10^{-11} e^{m_s/T_R} \sqrt{\frac{T_R}{m_s}}$


With annihilation:

$$\Gamma(ss \to h_i h_i) = \sigma(ss \to h_i h_i) v_r n^2$$
, $\sigma(ss \to h_i h_i) v_r = 4 \times \frac{\lambda_{hs}^2}{64\pi m_s^2}$

No thermalization:

$$\Gamma(h_i h_i \to ss) \neq \Gamma(ss \to h_i h_i)$$


Reaction rates:

 $FI \rightarrow FO$

As coupling \uparrow

Already probed by direct detection!

CONCLUSION

- gravitational DM production = strong background
- low T_R dilutes gravitational relics
- freeze-in for $m_{DM} > T_R$ requires a significant coupling
- freeze-in already probed by direct detection (LZ2022)
- further probes by XENONnT, DARWIN