Introduction to neutrino mass models

Lecture 2: Seesaw and radiative mass models

Igor Ivanov

CFTP, Instituto Superior Técnico, Lisbon

University of Warsaw

January 8-11, 2018

▲ロト ▲圖ト ▲国ト ▲国ト 三目 つくで

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee	Zee-Babu

1 Minimal seesaw

- 2 Three types of seesaw
- 3 Type II seesaw
- 4 Scotogenic model
- 5 Zee model
- 6 Zee-Babu model

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee	Zee-Babu
•••••					

Classic seesaw

and some variations

Igor Ivanov (CFTP, IST)

Neutrino mass models 2

UW, January 2018 2/43

SQC

Э

Minimal seesaw ○●○○○○○○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu 0000000
Just like qu	arks				

Let's repeat the same Yukawa interactions for neutrinos.

We introduce the new field ν_R :

new fields	spin	$SU(2)_L$ irrep	$U(1)_Y$ charge
ν_R	1/2	1	0

Yukawa interactions \rightarrow Dirac mass term:

$$y_{\nu}\overline{L}\widetilde{\Phi}\nu_{R}+h.c. \rightarrow \frac{y_{\nu}\nu}{\sqrt{2}}(\overline{\nu_{L}}\nu_{R}+\overline{\nu_{R}}\nu_{L})=m_{D}\overline{\nu}\nu.$$

Formally, it is OK. However, two problems:

- $y_{\nu} \sim 10^{-13}$ is a ridiculously small number without explanation;
- Unlike quarks, Majorana term for ν_R is possible: $M_R[\overline{(\nu_R)^c}\nu_R + h.c.]/2$. There is no symmetry which would protect $M_R = 0!$

Minimal seesaw ○○●○○○○○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Classic sees	aw				

So, let's allow for ν_R Majorana term:

$$m_{D}(\overline{\nu_{L}}\nu_{R} + \overline{\nu_{R}}\nu_{L}) + \frac{1}{2}M_{R}\left[\overline{\nu_{R}}(\nu_{R})^{c} + \overline{(\nu_{R})^{c}}\nu_{R}\right]$$
$$= \frac{1}{2}\left[\overline{\nu_{L}}, \overline{(\nu_{R})^{c}}\right] \begin{pmatrix} 0 & m_{D} \\ m_{D} & M_{R} \end{pmatrix} \begin{pmatrix} (\nu_{L})^{c} \\ \nu_{R} \end{pmatrix} + h.c.$$

The initial ν_L Majorana term is forbidden by gauge interactions! Mass matrix is diagonalized by rotation with angle α :

$$\begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} = \begin{pmatrix} m_{\nu} & 0 \\ 0 & M \end{pmatrix} +$$

with $\tan 2\alpha = 2m_D/M_R$.

Minimal seesaw ○○○●○○○○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu 0000000
Classic sees	aw				

If M_R is very large, $M_R \gg m_D$, we get $\alpha \approx m_D/M_R \ll 1$, and the masses

$$M \approx M_R \,, \quad m_{\nu} \approx -rac{m_D^2}{M_R} \quad \stackrel{rephasing}{\longrightarrow} \quad rac{m_{\nu}}{M_R} = rac{m_D^2}{M_R}$$

Small m_{ν} does not require tiny Yukawa interactions! $y_{\nu} = y_{\tau} \sim 0.01$ leads to meV neutrino masses for $M_R = 10^{13}$ GeV.

This offers an explanation of WHY neutrino masses are so tiny: not because of small m_D but because the presence of huge M_R drives two neutrino masses to opposite ends: one is huge, the other is tiny \rightarrow seesaw [Minkowski, 1977; etc]

Ma C

Minimal seesaw ○○○○●○○○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Classic sees	aw				

For several generations, first block-diagonalization:

$$M_{
u} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \quad
ightarrow \quad \begin{pmatrix} \mathcal{M}_{
u} & 0 \\ 0 & M \end{pmatrix} ,$$

with $M \approx M_R$ and

$$\mathcal{M}_{\nu} = -m_D M_R^{-1} m_D^T \; ,$$

and then further diagonalization of the light active 3 \times 3 neutrino mass matrix $\mathcal{M}_{\nu}.$

Minimal seesaw ○○○○○●○○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Inverse sees	aw				

Classic seesaw is fine but boring! Just explains m_{ν} , predicts nothing interesting up to the seesaw scale $\sim M_R \rightarrow \text{hardly testable}$.

Inverse seesaw [Mohapatra, Valle, 1986]: a variation with $M\sim$ TeV

	$U(1)_Y$
1/2 1/2	

$$\mathcal{L} = \underbrace{y_{\nu} \overline{L} \tilde{\Phi} \nu_{R}}_{Yukawa} + \underbrace{\overline{\nu_{R}} M X_{L}}_{new \text{ Dirac}} + \underbrace{\frac{1}{2} \mu_{X} \overline{X_{L}^{c}} X_{L}}_{Majorana} + h.c.$$

Lepton number is broken but it is meaningless to attribute this breaking to any individual term!

Igor Ivanov (CFTP, IST)

DQC

Minimal seesaw ○○○○○●○○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Inverse sees	aw				

Classic seesaw is fine but boring! Just explains m_{ν} , predicts nothing interesting up to the seesaw scale $\sim M_R \rightarrow \text{hardly testable}$.

Inverse seesaw [Mohapatra, Valle, 1986]: a variation with $M \sim {
m TeV}$

	spin	$SU(2)_L$	$U(1)_Y$
ν_R	1/2	1	0
X_L	1/2	1	0

$$\mathcal{L} = \underbrace{y_{\nu} \overline{L} \tilde{\Phi} \nu_{R}}_{\text{Yukawa}} + \underbrace{\overline{\nu_{R}} M X_{L}}_{\text{new Dirac}} + \underbrace{\frac{1}{2} \mu_{X} \overline{X_{L}^{c}} X_{L}}_{\text{Majorana}} + h.c.$$

Lepton number is broken but it is meaningless to attribute this breaking to any individual term!

Minimal seesaw ○○○○○●○○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Inverse sees	aw				

Classic seesaw is fine but boring! Just explains m_{ν} , predicts nothing interesting up to the seesaw scale $\sim M_R \rightarrow \text{hardly testable}$.

Inverse seesaw [Mohapatra, Valle, 1986]: a variation with $M \sim {
m TeV}$

	spin	$SU(2)_L$	$U(1)_Y$
ν_R	1/2	1	0
X_L	1/2	1	0

$$\mathcal{L} = \underbrace{y_{\nu} \overline{L} \tilde{\Phi} \nu_{R}}_{\text{Yukawa}} + \underbrace{\overline{\nu_{R}} M X_{L}}_{\text{new Dirac}} + \underbrace{\frac{1}{2} \mu_{X} \overline{X_{L}^{c}} X_{L}}_{\text{Majorana}} + h.c.$$

Lepton number is broken but it is meaningless to attribute this breaking to any individual term!

Minimal seesaw ○○○○○○●○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu 0000000
Inverse sees	aw				

 3×3 mass matrix encodes interaction of three LH fields: ν_L , $(\nu_R)^c$ and X_L .

$$M_{
u} = \left(egin{array}{ccc} 0 & m_D & 0 \ m_D & 0 & M \ 0 & M & \mu_X \end{array}
ight) \,, \quad |\det M_{
u}| = m_D^2 \mu_X \,.$$

where $m_D = y_\mu v / \sqrt{2}$.

Suppose $\mu_X = 0$. Then the characteristic equation would be

$$\lambda^3 - \lambda (M^2 + m_D^2) = 0 \quad \Rightarrow \quad \lambda = 0, \ \pm \sqrt{M^2 + m_D^2}.$$

This implies one massless neutrino and one mass-degenerate pair (= Dirac neutrino) with mass $\sqrt{M^2 + m_D^2}$.

Minimal seesaw ○○○○○○●○	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu 0000000
Inverse sees	aw				

 3×3 mass matrix encodes interaction of three LH fields: ν_L , $(\nu_R)^c$ and X_L .

$$M_{
u} = \left(egin{array}{ccc} 0 & m_D & 0 \ m_D & 0 & M \ 0 & M & \mu_X \end{array}
ight) \,, \quad |\det M_{
u}| = m_D^2 \mu_X \,.$$

where $m_D = y_\mu v / \sqrt{2}$.

Suppose $\mu_X = 0$. Then the characteristic equation would be

$$\lambda^3 - \lambda (M^2 + m_D^2) = 0 \quad \Rightarrow \quad \lambda = 0, \ \pm \sqrt{M^2 + m_D^2} \,.$$

This implies one massless neutrino and one mass-degenerate pair (= Dirac neutrino) with mass $\sqrt{M^2 + m_D^2}$.

Minimal seesaw ○○○○○○●	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Inverse sees	aw				

For non-zero but small μ_X , with $\mu_X \ll m_D \ll M$, the characteristic equation is

$$\lambda^3 - \lambda^2 \mu_X - \lambda (M^2 + m_D^2) + \mu_X m_D^2 = 0.$$

The eigenvalues are slightly shifted:

$$m_{\nu} \approx rac{m_D^2}{M} \cdot rac{\mu_X}{M} \,, \qquad M_{1,2} \approx M \pm rac{1}{2} \mu_X \,.$$

One light neutrino and one quasi-Dirac pair.

For m_{ν} : extra suppression w.r.t. classic seesaw!

$$y_
u \sim 0.01, \quad \mu_X \sim 10 \; {
m keV} \; \; \Rightarrow \; \; M \sim 1 \; {
m TeV}$$

Rich phenomenology at TeV scale!

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee	Zee-Babu
	00000				

Three types of seesaw

Э

∃ >

Minimal seesaw	Three types ○●○○○○	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Opening ur	o the Weir	berg opera	ator		

- The Weinberg operator Q_W is non-renormalizable → it is an effective operator of some New Physics bSM.
- Hundreds of neutrino mass models = various ways to "open up" the Weinberg operator
 - seesaw Type I, II, III: three ways to generate Q_W at tree-level;
 - radiative neutrino mass models (1, 2, 3, 4 loops).
 - Recent reviews: [King, 2017; Cai et al, 2017]
- Be careful: not all mass models can be reduced to Q_W ! Beware of light particles (sterile neutrinos, new scalars, etc).

MQ P

Minimal seesaw	Three types ○○●○○○	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu
Master forn	nula				

Master formula for rough classification of Majorana mass models [Bonnet et al, 2012]:

$$m_
u \propto rac{v^2}{\Lambda} imes \epsilon imes \left(rac{1}{16\pi^2}
ight)^{m{n}} imes \left(rac{v}{\Lambda}
ight)^{d-5} \,.$$

- v^2/Λ : minimal setting,
- ϵ : possible suppression factors (symmetry related, small Yukawa, etc),
- *n* is the number of loops,
- *d* is the dimensionality of operators.

Minimal setting requires $\Lambda \sim 10^{15}$ GeV; but multi-loop models can easily bring it down to few TeV.

SQA

Minimal seesaw	Three types 000●00	Type II seesaw	Scotogenic 00000000000	Zee 000000	Zee-Babu
Arrows on	diagrams				

Dirac mass term

Majorana mass term

 ν_L ν_R

- ₹ ⊒ →

Э

00000000	occoo	oooooooo	000000	000000	∠ee 000000	0000000	þ
Type I (classi	cal seesaw):	add singlet $ u_R$	ν _L	$ \begin{array}{c} \Phi \\ \\ \downarrow \\ \downarrow \\ \nu_R \end{array} $	$ \begin{array}{c} \Phi \\ \\ \downarrow \\ \downarrow \\ (\nu_R)^c \end{array} $	$(\nu_L)^c$	
Type II: add	new scalar tri $(\Lambda^{++}$	plet	Ф ` ``		Φ		
Z	$\Delta = \begin{pmatrix} \Delta^+ \\ \Delta^0 \end{pmatrix}$)	ν_L	$\downarrow \Delta^0$ $\downarrow \qquad \qquad$	$(\nu_L)^c$		
Type III: add	triplet neutri	nos		Φ	Φ		
	$\Sigma = \left(\begin{array}{c} \Sigma^+ \\ \Sigma^0 \\ \Sigma^- \end{array}\right)$		ν_L	$\downarrow \qquad M \\ \downarrow \qquad \qquad$	Σ^0	$(\nu_L)^c$	
Igor Ivanov (CFT	TP, IST)	Neutrino mass models 2		®⊳∢⊡⊳ UW, J	▶ ◀ ≣ ▶ ◀ ≣ lanuary 2018	া ≣ ৩৭ 13/43	C

Minimal seesaw	Three types 00000●	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu 0000000
Inverse sees	saw				

Inverse seesaw: an elaborate version of seesaw type I

SQC

э

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee	Zee-Babu
		•0000000			

Type II seesaw

keep ν_L and renormalizability but extend the Higgs sector

Sar

Minimal seesaw	Three types	Type II seesaw o●oooooo	Scotogenic	Zee 000000	Zee-Babu
Using scala	r triplet				

When constructing the Weinberg operator $(\overline{L^c}\tilde{\Phi}^*)(\tilde{\Phi}^{\dagger}L) + h.c.$, we used

$$ilde{\Phi} = \epsilon \Phi^* = \begin{pmatrix} \phi^{0*} \\ -\phi^- \end{pmatrix}, \qquad ilde{\Phi}^\dagger = (\phi^0, -\phi^+).$$

Similarly to $\tilde{\Phi}$, let's define $\tilde{L} \equiv -\epsilon L^c = (-e_L^c, \nu_L^c)^T$ and regroup it as

$$(\overline{L^{c}}\tilde{\Phi}^{*})(\tilde{\Phi}^{\dagger}L) + h.c. = \overline{L^{c}} \cdot \epsilon \Phi \cdot \tilde{\Phi}^{\dagger}L + h.c. = \underbrace{\overline{\tilde{L}}_{i}}_{Y=-1} \underbrace{[\Phi \tilde{\Phi}^{\dagger}]_{ij}}_{Y=+2} \underbrace{L_{j}}_{Y=-1} + h.c.$$

Minimal seesaw	Three types	Type II seesaw ○○●○○○○○	Scotogenic 00000000000	Zee 000000	Zee-Babu 0000000
Using scal	ar triplet				

Expanding explicitly:

$$\begin{pmatrix} -\overline{(e_L)^c}, \overline{(\nu_L)^c} \end{pmatrix} \begin{pmatrix} \phi^0 \phi^+ & -\phi^+ \phi^+ \\ \phi^0 \phi^0 & -\phi^0 \phi^+ \end{pmatrix} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + h.c.$$

$$\rightarrow \quad \left(-\overline{(e_L)^c}, \overline{(\nu_L)^c} \right) \begin{pmatrix} 0 & 0 \\ \nu^2/2 & 0 \end{pmatrix} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + h.c. = \frac{\nu^2}{2} \left[\overline{(\nu_L)^c} \nu_L + h.c. \right]$$

But we used two Higgs fields $\rightarrow \dim(Q_W) = 5 \rightarrow \text{non-renormalizable operator}$.

I □ ▶

Minimal seesaw	Three types	Type II seesaw ○○○●○○○○	Scotogenic	Zee 000000	Zee-Babu
Using scala	r triplet				

Suppose that we have, in addition to Φ , a new Higgs field $\Delta_{ij}(x)$. Then a new renormalizable term is possible:

$$y_{\Delta} \overline{\tilde{L}}_i \Delta_{ij} L_j + h.c. = y_{\Delta} (-\overline{(e_L)^c}, \overline{(\nu_L)^c}) \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + h.c.$$

with dimensionless y_{Δ} . This is a complex EW triplet with Y = 2, $\Delta = \vec{\Delta}\vec{\sigma}$

	$\left(\Delta^{++} \right)$		spin	$SU(2)_L$	$U(1)_Y$
$\vec{\Delta} =$	Δ^+ Λ^0	Δ	0	3	+2

Minimal seesaw	Three types	Type II seesaw ○○○○●○○○	Scotogenic 00000000000	Zee 000000	Zee-Babu
Using scal	ar triplet				

,

Simplest idea: Δ^0 acquires a non-zero vev:

$$ec{\Delta} = \left(egin{array}{c} \Delta^{++} \ \Delta^{0} \end{array}
ight) \,, \qquad \langle ec{\Delta}
angle = \left(egin{array}{c} 0 \ 0 \ v_{\Delta} \end{array}
ight)$$

Non-zero vev \rightarrow Majorana mass $m_{\nu} = 2y_{\Delta}v_{\Delta}$.

Two problems emerge, though.

Minimal seesaw	Three types	Type II seesaw ○○○○○●○○	Scotogenic 000000000000	Zee 000000	Zee-Babu
Using scala	r triplet:	problem 1			

First, Δ participates in gauge interactions:

$$\mathcal{L}_\Delta = \mathrm{Tr}\left[(D_\mu\Delta)^\dagger(D^\mu\Delta)
ight] - V(\Delta)\,,$$

with

$$D_\mu = \partial_\mu - i g' rac{Y}{2} B_\mu - i g T_i W^i_\mu \, ,$$

where T^{i} are SU(2) generators in the triplet representation.

Both v_{Φ} and v_{Δ} affect m_W and m_Z , but in a different way! As a result,

$$\rho = \frac{m_W^2}{m_Z^2} \frac{g^2 + g'^2}{g^2} = \frac{v_{\Phi}^2 + 4v_{\Delta}^2}{v_{\Phi}^2 + 8v_{\Delta}^2} \neq 1.$$

Experimental measurements of ρ push $v_{\Delta} \lesssim$ few GeV.

An explanation is needed for the small vev scale v_{Δ} .

Sar

Minimal seesaw	Three types	Type II seesaw ○○○○○●○○	Scotogenic 000000000000	Zee 000000	Zee-Babu
Using scala	r triplet:	problem 1			

First, Δ participates in gauge interactions:

$$\mathcal{L}_\Delta = \mathrm{Tr}\left[(D_\mu\Delta)^\dagger(D^\mu\Delta)
ight] - V(\Delta)\,,$$

with

$$D_\mu = \partial_\mu - i g' \frac{Y}{2} B_\mu - i g T_i W^i_\mu \,,$$

where T^i are SU(2) generators in the triplet representation.

Both v_{Φ} and v_{Δ} affect m_W and m_Z , but in a different way! As a result,

$$\rho = \frac{m_W^2}{m_Z^2} \frac{g^2 + g'^2}{g^2} = \frac{v_\Phi^2 + 4v_\Delta^2}{v_\Phi^2 + 8v_\Delta^2} \neq 1.$$

Experimental measurements of ρ push $v_{\Delta} \lesssim$ few GeV.

An explanation is needed for the small vev scale v_{Δ} .

Recall that $\tilde{L}\Delta L$ means that Δ carries the lepton number: $L(\Delta) = -2$.

- initial langrangian including conserves L;
- when generating a non-zero v_Δ from

$$V(\Delta) = -m^2 \mathrm{Tr}(\Delta^{\dagger} \Delta) + \lambda [\mathrm{Tr}(\Delta^{\dagger} \Delta)]^2 \,,$$

we spontaneously break $L \rightarrow$ that's how Majorana mass terms appears here.

• Spontaneously broken global symmetry produces a massless Goldstone boson, Majoron *J*, which is not absorbed by gauge bosons!

$$\Delta^0 \rightarrow v_{\Delta} + \delta^0 + i J$$
.

• Majoron participates in gauge interactions and modifies the Z decay width! Spontaneously broken lepton number is ruled out.

Sar

Recall that $\tilde{L}\Delta L$ means that Δ carries the lepton number: $L(\Delta) = -2$.

- initial langrangian including conserves L;
- when generating a non-zero v_Δ from

$$V(\Delta) = -m^2 \mathrm{Tr}(\Delta^{\dagger} \Delta) + \lambda [\mathrm{Tr}(\Delta^{\dagger} \Delta)]^2 \,,$$

we spontaneously break $L \rightarrow$ that's how Majorana mass terms appears here.

• Spontaneously broken global symmetry produces a massless Goldstone boson, Majoron *J*, which is not absorbed by gauge bosons!

$$\Delta^0 \to v_\Delta + \delta^0 + i \mathbf{J} \,.$$

• Majoron participates in gauge interactions and modifies the Z decay width! Spontaneously broken lepton number is ruled out.

SQC

Minimal seesaw	Three types	Type II seesaw ○○○○○○●	Scotogenic	Zee 000000	Zee-Babu
Type II se	esaw				

The Higgs doublet Φ rescues this idea \rightarrow type II seesaw [Magg, Wetterich, 1980; Schechter, Valle, 1980; etc].

Don't break L spontaneously, do it explicitly via Δ -Higgs interactions:

$$V(\Delta, \Phi) = +m^{2} \operatorname{Tr}(\Delta^{\dagger} \Delta) + \frac{\mu \left(\Phi^{\dagger} \Delta \tilde{\Phi} + h.c. \right)}{m^{2} |\Delta^{0}|^{2} + \mu [(\phi^{0*})^{2} \Delta^{0} + h.c.] + \dots}$$

Then, non-zero v_{Φ} forces Δ^0 to acquire a small vev $\Delta^0 \rightarrow v_{\Delta} + \delta^0$:

$$m^2 \cdot 2v_{\Delta}\delta^0 + \mu v_{\Phi}^2\delta^0 + \dots = 0 \quad \rightarrow \quad v_{\Delta} \approx -\frac{\mu v_{\Phi}^2}{2m^2}$$

no massless Goldstone boson appears,

• $m_{\nu} = 2y_{\Delta}v_{\Delta}$ can naturally be very small because of large m^2 .

Э

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee	Zee-Babu
0000000	000000	0000000	•0000000000	000000	0000000

Scotogenic model

Neutrino masses through the dark sector

"skotos" = "dark" in Greek

Minimal seesaw	Three types	Type II seesaw	Scotogenic ⊙●○○○○○○○○○○	Zee 000000	Zee-Babu 0000000
Inert double	et model				

Classic seesaw:

add ν_R , use $\tilde{\Phi}$ for Dirac mass term, and add Majorana mass term for ν_R .

$$y_{\nu}\left(\overline{L}\tilde{\Phi}\nu_{R}+\overline{\nu_{R}}L\tilde{\Phi}^{\dagger}\right)+\frac{1}{2}M_{R}\left[\overline{\nu_{R}}(\nu_{R})^{c}+\overline{(\nu_{R})^{c}}\nu_{R}\right].$$

Suppose there exists a second Higgs doublet

$$\Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}$$
 , which is

• odd under a new "parity" (\mathbb{Z}_2 symmetry) transformation: $\Phi_2 \rightarrow -\Phi_2$,

 $\bullet\,$ this \mathbb{Z}_2 symmetry remains unbroken after electroweak symmetry breaking.

Sar

Minimal seesaw	Three types	Type II seesaw	Scotogenic ⊙●○○○○○○○○○○	Zee 000000	Zee-Babu 0000000
Inert double	et model				

Classic seesaw:

add ν_R , use $\tilde{\Phi}$ for Dirac mass term, and add Majorana mass term for ν_R .

$$y_{\nu}\left(\overline{L}\tilde{\Phi}\nu_{R}+\overline{\nu_{R}}L\tilde{\Phi}^{\dagger}\right)+\frac{1}{2}M_{R}\left[\overline{\nu_{R}}(\nu_{R})^{c}+\overline{(\nu_{R})^{c}}\nu_{R}\right].$$

Suppose there exists a second Higgs doublet $\Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}$, which is

- \bullet odd under a new "parity" (\mathbb{Z}_2 symmetry) transformation: $\Phi_2 \to -\Phi_2,$
- $\bullet\,$ this \mathbb{Z}_2 symmetry remains unbroken after electroweak symmetry breaking.

Sar

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○●○○○○○○○○○	Zee 000000	Zee-Babu 0000000
Inert double	et model				

Then

- Φ_2 does not interact with the SM fermions: $\overline{Q}_L d_R \Phi_2$ are forbidden by \mathbb{Z}_2 parity \rightarrow does not contribute to fermion masses;
- Φ_2 does not acquire vev: non-zero $\langle \Phi_2 \rangle$ would break \mathbb{Z}_2 parity \rightarrow does not contribute to W, Z masses;
- the lightest scalar from Φ_2 is stable \rightarrow natural dark matter candidate.

However, Φ_2 interacts with gauge bosons and Φ via $|D_{\mu}\Phi_2|^2 - V(\Phi, \Phi_2)$, where

 $V(\Phi, \Phi_2) = -m^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2$ $-m_2^2 (\Phi_2^{\dagger} \Phi_2) + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2$ $+ \lambda_3 (\Phi^{\dagger} \Phi) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi) + \frac{\lambda_5}{2} \left[(\Phi^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi)^2 \right] .$

 \Rightarrow interesting and testable astrophysical and collider phenomenology.

SQC

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○●○○○○○○○○○	Zee 000000	Zee-Babu 0000000
Inert double	et model				

Then

- Φ_2 does not interact with the SM fermions: $\overline{Q}_L d_R \Phi_2$ are forbidden by \mathbb{Z}_2 parity \rightarrow does not contribute to fermion masses;
- Φ_2 does not acquire vev: non-zero $\langle \Phi_2 \rangle$ would break \mathbb{Z}_2 parity \rightarrow does not contribute to W, Z masses;
- the lightest scalar from Φ_2 is stable \rightarrow natural dark matter candidate.

However, Φ_2 interacts with gauge bosons and Φ via $|D_{\mu}\Phi_2|^2 - V(\Phi, \Phi_2)$, where

$$V(\Phi, \Phi_2) = -m^2 (\Phi^{\dagger} \Phi) + \lambda (\Phi^{\dagger} \Phi)^2 -m_2^2 (\Phi_2^{\dagger} \Phi_2) + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi^{\dagger} \Phi) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi) + \frac{\lambda_5}{2} \left[(\Phi^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi)^2 \right]$$

 \Rightarrow interesting and testable astrophysical and collider phenomenology.

Minimal seesaw	Three types	Type II seesaw	Scotogenic 000●00000000	Zee 000000	Zee-Babu
Inert double	et + neutr	ino			

How can it help neutrinos? Suppose ν_R exists but it is also odd under the same \mathbb{Z}_2 parity \rightarrow we better call it N.

	spin	$SU(2)_L$	$U(1)_Y$	\mathbb{Z}_2 parity
Φ ₂	0	2	1	_
Ν	1/2	1	0	—

Then, Dirac mass terms linking ν_L and N must use Φ_2 , not Φ :

$$y_{\nu}\left(\overline{L}\tilde{\Phi}_{2}N+\overline{N}\tilde{\Phi}_{2}^{\dagger}L\right)+\frac{1}{2}M(\overline{N}N^{c}+\overline{N^{c}}N)\,.$$

The usual seesaw does not work: $\langle \Phi_2 \rangle = 0 \rightarrow m_{\nu} = 0$.

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○●○○○○○○○	Zee 000000	Zee-Babu
Scotogenic	model				

But since $\nu N \leftrightarrow \Phi_2 \leftrightarrow \Phi$, it links $\langle \Phi \rangle$ and ν_L at one loop.

Dark-matter-assisted neutrino masses = scotogenic model [E. Ma, 2006]

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○●○○○○○○	Zee 000000	Zee-Babu 0000000
Scotogenic	model				

Not a tree-level mechanism \rightarrow cannot use matrices as before.

To see it, pick up the most relevant terms (after EWSB)

$$y_{\nu}(\overline{\nu_{L}}\phi_{2}^{0*}N+\overline{N}\phi_{2}^{0}\nu_{L})+\frac{1}{2}M(\overline{N}N^{c}+\overline{N^{c}}N)+\lambda_{5}[(\langle\phi^{0*}\rangle\phi_{2}^{0})^{2}+(\phi_{2}^{0*}\langle\phi^{0}\rangle)^{2})$$

and track the neutrino line:

$$y_{\nu}\overline{\nu_{L}}\phi_{2}^{0*}N\cdot M\overline{N}N^{c}\cdot y_{\nu}\overline{N^{c}}\phi_{2}^{0*}(\nu_{L})^{c}$$

and the two ϕ_2^{0*} will couple to $(\langle \phi^0 \rangle)^2$ via λ_5 term. Effectively we get

 $\overline{\nu_L} \cdot \left[\lambda_5 v^2 y_{\nu}^2 \times \text{loop integral}\right] \cdot (\nu_L)^c$

which is exactly the Majorana mass term fo ν_L .

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○○●○○○○○	Zee 000000	Zee-Babu
Scotogenic	model				

The key role is played by λ_5 :

$$\begin{split} V(\Phi,\Phi_2) &= -m^2(\Phi^{\dagger}\Phi) + \lambda(\Phi^{\dagger}\Phi)^2 - m_2^2(\Phi_2^{\dagger}\Phi_2) + \lambda_2(\Phi_2^{\dagger}\Phi_2)^2 \\ &+ \lambda_3(\Phi^{\dagger}\Phi)(\Phi_2^{\dagger}\Phi_2) + \lambda_4(\Phi^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi) + \frac{\lambda_5}{2} \left[(\Phi^{\dagger}\Phi_2)^2 + (\Phi_2^{\dagger}\Phi)^2 \right] \,. \end{split}$$

The same λ_5 also determines scalar mass splitting:

$$\phi_2^0 = \frac{1}{\sqrt{2}} (H + iA), \quad m_H^2 - m_A^2 = 2\lambda_5 v^2.$$

Igor Ivanov (CFTP, IST)

ŀ

Image: Ima

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○○●○○○○	Zee 000000	Zee-Babu
Loop integr	al				

The diagram shown usually

The actual diagram to calculate

The relative sign comes from i^2 in the fermion line:

$$\cdots \phi_2^{0*} \cdots \phi_2^{0*} \cdots \rightarrow \cdots \frac{H - iA}{\sqrt{2}} \cdots \frac{H - iA}{\sqrt{2}} \cdots = [H \text{-loop}] - [A \text{-loop}]$$

The divergent parts of the loop integrals cancel completely, but the finite parts do not due to $m_H \neq m_A$.

Sar

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○○●○○○○	Zee 000000	Zee-Babu
Loop integr	al				

The diagram shown usually

The actual diagram to calculate

The relative sign comes from i^2 in the fermion line:

$$\cdots \phi_2^{0*} \cdots \phi_2^{0*} \cdots \to \cdots \frac{H - iA}{\sqrt{2}} \cdots \frac{H - iA}{\sqrt{2}} \cdots = [H \text{-loop}] - [A \text{-loop}]$$

The divergent parts of the loop integrals cancel completely, but the finite parts do not due to $m_H \neq m_A$.

Sar

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○○○●○○○	Zee 000000	Zee-Babu 0000000
Loop integ	gral				

Denoting $m_H \equiv m_1$, $m_A \equiv m_2$, we get $J = J_1 - J_2$, where

$$J_1 = i \int \frac{d^4k}{(2\pi)^4} \frac{(\gamma k) + M}{k^2 - M^2} \cdot \frac{1}{(p-k)^2 - m_1^2} = iM \int \frac{d^4k}{(2\pi)^4} \frac{1}{[k^2 - M^2][(p-k)^2 - m_1^2]}.$$

We pick up only m_1 -dependent finite part of J_1 . Using the "Feynman trick"

$$\frac{1}{AB} = \int_0^1 dx \frac{1}{[Ax + B(1-x)]^2}$$

we get

$$\begin{split} [J_1]_{fin} &= iM \int_0^1 dx \int \frac{d^4k}{(2\pi)^4} \frac{1}{[(k^2 - M^2)x + [(p-k)^2 - m_1^2]]^2} \\ &= iM \int_0^1 dx \int \frac{d^4k}{(2\pi)^4} \frac{1}{[(k-p(1-x))^2 - D_1]^2} \,, \end{split}$$

where

$$D_1 = M^2 x + m_1^2(1-x) - \underbrace{p^2 x(1-x)}_{=0}$$

Э

990

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○○○●○○○	Zee 000000	Zee-Babu 0000000
Loop integ	ral				

Denoting $m_H \equiv m_1$, $m_A \equiv m_2$, we get $J = J_1 - J_2$, where

$$J_1 = i \int \frac{d^4k}{(2\pi)^4} \frac{(\gamma k) + M}{k^2 - M^2} \cdot \frac{1}{(p-k)^2 - m_1^2} = iM \int \frac{d^4k}{(2\pi)^4} \frac{1}{[k^2 - M^2][(p-k)^2 - m_1^2]}.$$

We pick up only m_1 -dependent finite part of J_1 . Using the "Feynman trick"

$$\frac{1}{AB} = \int_0^1 dx \frac{1}{[Ax + B(1-x)]^2} \,,$$

we get

$$\begin{split} [J_1]_{fin} &= iM \int_0^1 dx \int \frac{d^4k}{(2\pi)^4} \frac{1}{[(k^2 - M^2)x + [(p-k)^2 - m_1^2]]^2} \\ &= iM \int_0^1 dx \int \frac{d^4k}{(2\pi)^4} \frac{1}{[(k-p(1-x))^2 - D_1]^2} \,, \end{split}$$

where

$$D_1 = M^2 x + m_1^2(1-x) - \underbrace{p^2 x(1-x)}_{=0}$$
.

Minimal seesaw	Three types	Type II seesaw	Scotogenic oooooooooooooo	Zee 000000	Zee-Babu 0000000
Loop integr	al				

Shifting integration variable,

$$[J_1]_{fin} = iM \int_0^1 dx \int \frac{d^4 \tilde{k}}{(2\pi)^4} \frac{1}{[\tilde{k}^2 - D_1]^2} = \frac{M}{16\pi^2} \int_0^1 dx \log D_1 \, .$$

Then,

$$\begin{split} J_1 - J_2 &= \frac{M}{16\pi^2} \int_0^1 dx \log\left[\frac{M^2 x + m_1^2(1-x)}{M^2 x + m_2^2(1-x)}\right] \\ &= \frac{M^2 \log M^2 - m_1^2 \log m_1^2}{M^2 - m_1^2} - \frac{M^2 \log M^2 - m_2^2 \log m_2^2}{M^2 - m_2^2} \\ &= \frac{M}{16\pi^2} \left(\frac{m_1^2}{M^2 - m_1^2} \log \frac{M^2}{m_1^2} - \frac{m_2^2}{M^2 - m_2^2} \log \frac{M^2}{m_2^2}\right). \end{split}$$

4

 $\exists \rightarrow$ Э

4

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○○○○○●○	Zee 000000	Zee-Babu
Scotogenic	model: t	hree genera	tions		

Three generations: ν_{Li} and $N_i \rightarrow$ Dirac couplings become 3×3 matrices y_{ij} . The final result for Majorana mass matrix is

$$(\mathcal{M}_{\nu})_{ij} = \sum_{k} rac{y_{ik} y_{jk} M_k}{32\pi^2} \left(rac{m_H^2}{M_k^2 - m_H^2} \log rac{M_k^2}{m_H^2} - rac{m_A^2}{M_k^2 - m_A^2} \log rac{M_k^2}{m_A^2}
ight) \,.$$

Minimal seesaw	Three types	Type II seesaw	Scotogenic ○○○○○○○○○○	Zee 000000	Zee-Babu
Scotogenic	model				

Small $\lambda_5 \rightarrow$ small mass splitting between H and $A \rightarrow$ extra suppression for m_{ν} ! Assuming

$$2\lambda_5 v^2 = m_H^2 - m_A^2 \ll rac{m_H^2 + m_A^2}{2} \equiv m_0^2 \,,$$

and $M \gg m_H, m_A$, we get

$$(\mathcal{M}_{
u})_{ij} pprox rac{\lambda_5 v^2}{16\pi^2} \sum_k rac{y_{ik} y_{jk}}{M_k} \left(\log rac{M_k^2}{m_0^2} - 1
ight) \, .$$

With respect to the classic seesaw, it has an extra suppression $\lambda_5/(16\pi^2)$. If $\lambda_5 \sim y_{\nu} \sim 10^{-4}$, then $M \sim \text{few TeV} \rightarrow \text{testable at colliders!}$

▶ ★ 臣 ▶ …

= nar

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee	Zee-Babu
				000000	

Zee model

.

< 口 > < 同

- ₹ ⊒ →

E

0000000	000000	00000000	000000000000	00000	0000000			
Majorana-like electron-neutrino coupling								

We have seen two mechanisms for $m_{\nu} \neq 0$ without adding ν_R :

• Weinberg operator:

$$\underbrace{\overline{\tilde{L}}}_{Y=-1} \underbrace{[\Phi \tilde{\Phi}^{\dagger}]}_{Y=+2} \underbrace{L}_{Y=-1} + h.c.$$

• seesaw type II:

$$\overline{\widetilde{L}} \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix} L + h.c.$$

Here, $\overline{\tilde{L}} = \overline{L^c} \cdot \epsilon = (-\overline{(e_L)^c}, \overline{(\nu_L)^c}) = (-e_L^T, \nu_L^T) \mathcal{C}.$

Trying a simpler combination $\overline{\tilde{L}L}$ does not work:

$$(-e_L^T, \nu_L^T) \mathcal{C} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} = -e_L^T \mathcal{C} \nu_L + \nu_L^T \mathcal{C} e_L = -(\nu_L^T \mathcal{C} e_L)^T + \nu_L^T \mathcal{C} e_L = \mathbf{0}.$$

0000000	000000	0000000	00000000000	000000	0000000			
Majorana-like electron-neutrino coupling								

But wait, we have three lepton generations!

$$\overline{\widetilde{L}}_i f_{ij} L_j \equiv -e_{Li}^T \mathcal{C} f_{ij} \nu_{Lj} + \nu_{Li}^T \mathcal{C} f_{ij} e_{Lj} = -\nu_{Li}^T \mathcal{C} (f^T)_{ij} e_{Lj} + \nu_{Li}^T \mathcal{C} f_{ij} e_{Lj}$$

$$= \nu_{Li}^T \mathcal{C} (f - f^T)_{ij} e_{Lj} .$$

An antisymmetric coupling matrix $f^{T} = -f$ is perfectly fine!

Since $\overline{L}L$ has Y = -2, we need to couple it with a gauge-singlet charged scalar h^+ with Y = +2:

$$\tilde{L}_i f_{ij} L_j h^+ + h.c.$$

This is a Majorana-like coupling between e_{Li} and $\nu_{Li} \rightarrow$ no RH neutrinos needed!

00000000	000000	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Scotogenic 000000000000	∠ee 00●000	2ee-Babu 0000000			
Majorana-like electron-neutrino coupling								

But wait, we have three lepton generations!

$$\overline{\widetilde{L}}_i f_{ij} L_j \equiv -e_{Li}^T \mathcal{C} f_{ij} \nu_{Lj} + \nu_{Li}^T \mathcal{C} f_{ij} e_{Lj} = -\nu_{Li}^T \mathcal{C} (f^T)_{ij} e_{Lj} + \nu_{Li}^T \mathcal{C} f_{ij} e_{Lj}$$

$$= \nu_{Li}^T \mathcal{C} (f - f^T)_{ij} e_{Lj} .$$

An antisymmetric coupling matrix $f^T = -f$ is perfectly fine!

Since $\tilde{L}L$ has Y = -2, we need to couple it with a gauge-singlet charged scalar h^+ with Y = +2:

$$\tilde{L}_i f_{ij} L_j h^+ + h.c.$$

This is a Majorana-like coupling between e_{Li} and $\nu_{Li} \rightarrow$ no RH neutrinos needed!

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 000●00	Zee-Babu 0000000
Zee model					

Two extra scalars: second Higgs doublet Φ_2 and a leptophilic charged singlet h^+ .

	spin	$SU(2)_L$	$U(1)_Y$
Φ2	0	2	1
h^+	0	1	2

$$\mathcal{L} = \overline{L}(Y_1\Phi_1 + Y_2\Phi_2)e_R + \overline{\widetilde{L}}\cdot f\cdot Lh^+ + \Phi_2^{\dagger}\widetilde{\Phi}_1h^+ + h.c.$$

with $Y_{1,2}$ and f being 3×3 matrices [Zee, 1980].

Both doublets acquire vevs: $\langle \phi_1^0 \rangle = v_1/\sqrt{2}$, $\langle \phi_2^0 \rangle = v_2/\sqrt{2}$, and produce charged lepton mass matrix:

$$M_{\ell} = \frac{1}{\sqrt{2}} (v_1 Y_1 + v_2 Y_2),$$

but neutrinos remain massless at tree level.

However, lepton number is violated ightarrow Majorana masses for u_L must appear!

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 000●00	Zee-Babu 0000000
Zee model					

Two extra scalars: second Higgs doublet Φ_2 and a leptophilic charged singlet h^+ .

	spin	$SU(2)_L$	$U(1)_Y$
Φ2	0	2	1
h^+	0	1	2

$$\mathcal{L} = \overline{L}(Y_1\Phi_1 + Y_2\Phi_2)e_R + \overline{\widetilde{L}}\cdot f\cdot Lh^+ + \Phi_2^{\dagger}\widetilde{\Phi}_1h^+ + h.c.$$

with $Y_{1,2}$ and f being 3×3 matrices [Zee, 1980].

Both doublets acquire vevs: $\langle \phi_1^0 \rangle = v_1/\sqrt{2}$, $\langle \phi_2^0 \rangle = v_2/\sqrt{2}$, and produce charged lepton mass matrix:

$$M_{\ell} = rac{1}{\sqrt{2}} (v_1 Y_1 + v_2 Y_2) \, ,$$

but neutrinos remain massless at tree level.

However, lepton number is violated \rightarrow Majorana masses for ν_L must appear!

• • = • • = • = =

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 0000●0	Zee-Babu
Zee model					

$$\mathcal{L} = \overline{L}(Y_1\Phi_1 + Y_2\Phi_2)\ell_R + \overline{\widetilde{L}}\cdot f\cdot Lh^+ + \Phi_2^{\dagger}\widetilde{\Phi}_1h^+ + h.c.$$

The key role is played by charged scalars:

- initial fields: ϕ_1^+ , ϕ_2^+ , h^+ ;
- after EWSB: a would-be Goldstone G⁺ absorbed in W⁺, two physical charged scalars remain: h₁⁺ and h₂⁺.
- their loops do not cancel completely due to $m_{h_1^+} \neq m_{h_2^+}$.

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 00000●	Zee-Babu 0000000
Zee model					

In the original Zee model, $Y_2 = 0$, yielding

$$\mathcal{M}_{
u} \propto \left(f \mathcal{M}_{\ell}^2 + \mathcal{M}_{\ell}^2 f^T
ight) \log rac{m_{h_2^+}^2}{m_{h_1^+}^2} \,.$$

Its diagonal elements are zero \rightarrow neutrino properties imcompatible with data. But for $Y_2 \neq 0$, a good fit can be achieved.

Sac

э

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee	Zee-Babu
0000000	000000	0000000	00000000000	000000	•000000

Zee-Babu model

Igor Ivanov (CFTP, IST)

Neutrino mass models 2

э UW, January 2018 37/43

< ∃ >

Э

Minimal seesaw	Three types	Type II seesaw	Scotogenic 000000000000	Zee 000000	Zee-Babu ⊙●○○○○○
Zee-Babu	model				

Lepton number violating Majorana-like terms:

- neutrino \times neutrino: $\overline{\nu^c}\nu$
- electron × neutrino: $\overline{\nu_L^c} e_L \overline{e_L^c} \nu_L \rightarrow \text{Zee model}$
- electron × electron: $(e_R)^c e_R \rightarrow$ Zee-Babu model

 $\mathcal{L} = \overline{L}Y\Phi\ell_R + \overline{\widetilde{L}}\cdot f\cdot Lh^+ + \overline{(\ell_R)^c}\cdot g\cdot \ell_R k^{++} + \mu h^+ h^+ k^{--} + h.c.$

with antisymmetric f and symmetric g.

→ 3 → 3

Minimal seesaw	Three types	Type II seesaw	Scotogenic 000000000000	Zee 000000	Zee-Babu ⊙●○○○○○
Zee-Babu	model				

Lepton number violating Majorana-like terms:

- neutrino \times neutrino: $\overline{\nu^c}\nu$
- electron × neutrino: $\overline{\nu_L^c} e_L \overline{e_L^c} \nu_L \rightarrow \text{Zee model}$
- electron × electron: $(e_R)^c e_R \rightarrow$ Zee-Babu model

	spin	$SU(2)_L$	$U(1)_Y$
h^+	0	1	2
k^{++}	0	1	4

$$\mathcal{L} = \overline{L}Y\Phi\ell_R + \overline{\widetilde{L}}\cdot f\cdot Lh^+ + \overline{(\ell_R)^c}\cdot g\cdot \ell_R k^{++} + \mu h^+ h^+ k^{--} + h.c.$$

with antisymmetric f and symmetric g.

▲ 글 ▶ = 글

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu ○○●○○○○
Zee-Babu r	nodel				

$$\overline{\tilde{\mathcal{L}}} \cdot f \cdot \mathcal{L}h^{+} + \overline{(\ell_{\mathcal{R}})^{c}} \cdot g \cdot \ell_{\mathcal{R}}k^{++} + \mu h^{+}h^{+}k^{--}$$

Lepton number breaking is a combined effect of all three terms.

• keep only
$$\tilde{L} \cdot f \cdot Lh^+ + (\ell_R)^c \cdot g \cdot \ell_R k^{++}$$

 $\Rightarrow L(h^+) = -2$, $L(k^{++}) = -2$ $\Rightarrow L$ is conserved
• keep only $\overline{\tilde{L}} \cdot f \cdot Lh^+ + \mu h^+ h^+ k^{--}$

 $\Rightarrow L(h^+) = -2$, $L(k^{++}) = -4 \Rightarrow L$ is conserved

• keep only $\overline{(\ell_R)^c} \cdot g \cdot \ell_R k^{++} + \mu h^+ h^+ k^{--}$

 $\Rightarrow L(h^+) = -1$, $L(k^{++}) = -2 \Rightarrow L$ is conserved

But if all three vertices are present, no conserved L can be assigned!

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu ○○●○○○○
Zee-Babu r	nodel				

$$\overline{\tilde{\mathcal{L}}} \cdot f \cdot \mathcal{L}h^{+} + \overline{(\ell_{R})^{c}} \cdot g \cdot \ell_{R}k^{++} + \mu h^{+}h^{+}k^{--}$$

Lepton number breaking is a combined effect of all three terms.

• keep only
$$\overline{\tilde{L}} \cdot f \cdot Lh^+ + \overline{(\ell_R)^c} \cdot g \cdot \ell_R k^{++}$$

 $\Rightarrow L(h^+) = -2$, $L(k^{++}) = -2 \Rightarrow L$ is conserved
• keep only $\overline{\tilde{L}} \cdot f \cdot Lh^+ + \mu h^+ h^+ k^{--}$
 $\Rightarrow L(h^+) = -2$, $L(k^{++}) = -4 \Rightarrow L$ is conserved
• keep only $\overline{(\ell_R)^c} \cdot g \cdot \ell_R k^{++} + \mu h^+ h^+ k^{--}$
 $\Rightarrow L(h^+) = -1$, $L(k^{++}) = -2 \Rightarrow L$ is conserved

But if all three vertices are present, no conserved *L* can be assigned!

Sac

Э

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu 000€000
Zee-Babu n	nodel				

The minimal diagram requires 2 loops [Zee, Babu, 1986; Cheng, Li, 1980]

 $\mathcal{L} = \overline{L} Y \Phi \ell_R + \overline{\widetilde{L}} \cdot f \cdot Lh^+ + \overline{(\ell_R)^c} g \ell_R k^{++} + \mu h^+ h^+ k^{--} + h.c.$

Sac

Minimal seesaw	Three types	Type II seesaw	Scotogenic 00000000000	Zee 000000	Zee-Babu ○○○○●○○
Zee-Babu	model				

The light neutrino mass matrix:

$$\mathcal{M}_{
u} pprox rac{\mathbf{v}^2 \mu}{96 \pi^2 M^2} f \ \mathbf{Y}^\dagger \mathbf{g}^\dagger \mathbf{Y}^* f^{\mathsf{T}} \, .$$

Since f is antisymmetric, det $f = 0 \rightarrow \det M_{\nu} = 0 \rightarrow$ the lightest neutrino is exactly massless at this order.

Minimal seesaw	Three types	Type II seesaw	Scotogenic 00000000000	Zee 000000	Zee-Babu ○○○○○●○
Summary:	new field of	content			

New field content in models we studied

model	new fermions	new scalars
classical seesaw	ν _R	—
inverse seesaw	ν_R, X_L	_
type II seesaw		Δ
scotogenic	ν_R	Φ_2
Zee		Φ_2 , h^+
Zee-Babu		h^+ , k^{++}

▶ ∢ ⊒

< 口 > < 同

▶ < Ξ ▶</p>

Minimal seesaw	Three types	Type II seesaw	Scotogenic	Zee 000000	Zee-Babu ○○○○○○●
Revond ty	vo loons				

There exist models in which \mathcal{M}_{ν} is generated at 3 loops.

- Main goal: produce very light neutrinos from $[y^2/(16\pi^2)]^3$ suppression, keeping the new particle masses within TeV scale;
- Main tools: play with new fields and their quantum numbers.
- Recent review: [Cai et al, 1706.08524]

MQ P