Cascade Decay of a Heavy Higgs at LHC

By Shibananda Sahoo IIT Guwahati, India In collaborations with B.Coleppa, B.Fuks, P. Poulose

02 December 2017

SCALARS-2017

Outline

- Motivation
- Analysis
 - Model Independent Approach
 - Model dependent Way
- Summary

SCALARS-2017

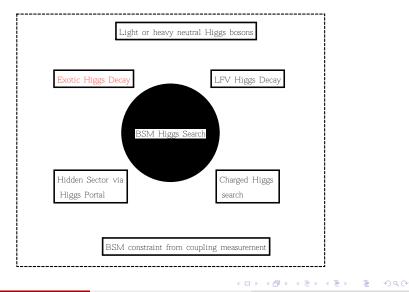
3

A B +
 A B +
 A

Motivation

- Few months ago, we have celebrated 5th anniversary of Higgs discovery. 4th July 2012 : Higgs Discovery
- But, We do not have a clear understanding whether this particle is entirely responsible for EWSB or not YET.

SCALARS-2017


A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation

- Few months ago, we have celebrated 5th anniversary of Higgs discovery. 4th July 2012 : Higgs Discovery
- But, We do not have a clear understanding whether this particle is entirely responsible for EWSB or not YET.
- Keeping this point in mind, the multi-Higgs models receive lot of attention among particle physics community.
- So it is worthy to revisit some of these multi-Higgs models because the observation of additional scalar will be a clear indication of new physics.

・ロト ・ 同ト ・ ヨト ・ ヨト

BSM Higgs Search Areas

S Sahoo (IIT Guwahati)

SCALARS-2017

02 December 2017

BSM Higgs Search Via Exotic Higgs Decay

• In Literature, there are ample of studies on decay of Heavy Higgs of type i.e. Exotic \rightarrow SM.[Refs:1604.01406,1504.04381 etc.]

SCALARS-2017

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

BSM Higgs Search Via Exotic Higgs Decay

- In Literature, there are ample of studies on decay of Heavy Higgs of type i.e. Exotic \rightarrow SM.[Refs:1604.01406,1504.04381 etc.]
- But the decay of type i.e. $\mathbf{Exotic} \to \mathbf{Exotic} \to \mathbf{SM}$ [Ref:1604.03108] is not explored much.
- Our main aim is to explore whether a heav Higgs is hidden inside the double new physics couplings suppression.

SCALARS-2017

Process Considered

• We consider the production through gluon fusion and subsequent cascade decay of a heavy neutral scalar, $gg \to H_1 \to H_2 Z \to h Z Z$, leading to the final state

1
$$2b \ 4\ell$$
 with $h \to b\bar{b}$ and $Z \to \ell\ell$.

2 4b 2ℓ with $h \to b\bar{b}$, $Z \to \ell\ell$ and $Z \to b\bar{b}$. (Analysis is going on.)

化原因 化原因

• We consider the production through gluon fusion and subsequent cascade decay of a heavy neutral scalar, $gg \to H_1 \to H_2 Z \to hZZ$, leading to the final state

1
$$2b \ 4\ell$$
 with $h \to b\bar{b}$ and $Z \to \ell\ell$.

2 4b 2ℓ with $h \to b\bar{b}$, $Z \to \ell\ell$ and $Z \to b\bar{b}$. (Analysis is going on.)

• In specific models like CP-conserving 2HDM, this could be $gg \to H \to AZ \to hZZ$. Here H and A are the scalar and pseudoscalar bosons arising in the model.

SCALARS-2017

Benchmark Points

- The benchmark points are chosen to capture features of the distinct mass-splitting scenarios.
- BP1 is close to the threshold in both $H_1 \rightarrow ZH_2$, and the subsequent $H_2 \rightarrow hZ$, whereas BP2 provides the mass-differences sufficiently large so that both the decays are away from the threshold.

Benchmark Points

- The benchmark points are chosen to capture features of the distinct mass-splitting scenarios.
- BP1 is close to the threshold in both $H_1 \rightarrow ZH_2$, and the subsequent $H_2 \rightarrow hZ$, whereas BP2 provides the mass-differences sufficiently large so that both the decays are away from the threshold.
- BP3 has a very large mass separation in the first decay, while the subsequent decay of H_2 is at the threshold.
- The last scenario, BP4 is a similar to BP2, but with reduced mass splitting.

Thumb Rules for Analysis

• Firstly, we will follow a model independent approach.

SCALARS-2017

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

Thumb Rules for Analysis

- Firstly, we will follow a model independent approach.
- In the absence of a specific model, the signal cross section is not known.
- Thus the analysis is planned for an assumed cross section, which is expected to be in the ball park of a realisable model.

A 3 > 4

Thumb Rules for Analysis

- Firstly, we will follow a model independent approach.
- In the absence of a specific model, the signal cross section is not known.
- Thus the analysis is planned for an assumed cross section, which is expected to be in the ball park of a realisable model.
- SM backgrounds corresponding to a selected final state will determined.
- A cut and count analysis will be performed on detector level events.
- In the end, we will interpret these results in the context of our favourite models.

8 / 27

・ロト ・ 同ト ・ ヨト ・ ヨト

SM Backgrounds: 4l+2b

Background	Cross section \times BR (fb)
$ZZb\overline{b}$	0.14
$t\bar{t}Z$	1.19
$WWZbar{b}$	1.16

Table: Cross section of the background SM processes at 14 TeV LHC.

SCALARS-2017

- The signal and background processes are generated through MADGRAPH5 with inbuilt parton level cuts.
- The showering and hadronisation is done through PYTHIA6 which is interfaced in MADGRAPH5.
- The events generated are then analysed with the help of MADANALYSIS5 using the inbuilt interface with DELPHES.

SCALARS-2017

BP1 : Distributions

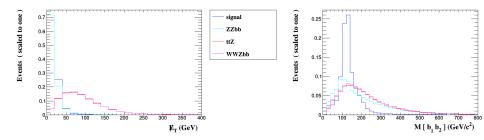


Figure: Normalised missing transverse energy $(\not\!\!E_T \text{ and } M_{b_1b_2} \text{ distributions for the signal and selected backgrounds in the case of BP1 with <math>m_H = 400 \text{ GeV}$, $m_A = 250 \text{ GeV}$ with final state $2b \ 2\ell^+ \ 2\ell^-$.

SCALARS-2017

02 December 2017

p_T distributions:BP2

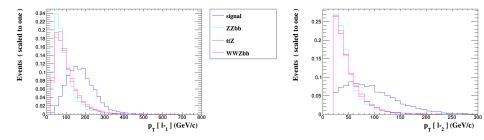


Figure: p_T distributions of lepton after applying $N(l^+)=2, N(l^-)=2, N(b)=2$ for BP2.

SCALARS-2017

02 December 2017

Cut Flow Table:41+2b:N(b)=2

			No. of Events (Lum. $= 1000 \text{ fb}^{-1}$)							
Selection Criterias	Signal		Total Backgd	Efficiency						
	BP1	BP2	BP3	BP4		BP1	BP2	BP3	BP4	Backgd
Pre-Selection	5000	5000	5000	5000	13636					
$N(\ell^+) = N(\ell^-) = 2$	1993	2723	1979	2373	1992	0.39	0.54	0.39	0.47	0.14
N(b) = 2	206	490	260	340	231	0.10	0.18	0.13	0.14	0.12
$E_T < 50$	203	415	220	321	66	0.98	0.85	0.85	0.94	0.29
$90 < M_{bb} < 150$	160	344	174	257	16	0.79	0.82	0.79	0.80	0.24
$p_T(\ell_1) > 75 \text{ GeV}, p_T(\ell_2) > 50$	NA	200	59	37	2	NA	0.58	0.34	0.14	0.12

Table: Cut Flow and Efficiency Table in the case of $2b \ 2\ell^+ \ 2\ell^-$ channel for N(b) = 2. For Background K-Factor = 2 considered.

SCALARS-2017

(日) (周) (日) (日)

э.

CutFlow Table for 4l+2b: N(b)=1

	No. of Events (Lum. $= 1000 \text{ fb}^{-1}$)									
Selection Criterias	Signal		Total Backgd	Efficiency						
	BP1	BP2	BP3	BP4		BP1	BP2	BP3	BP4	Backgd
Pre-Selection	5000	5000	5000	5000	13636					
$N(\ell^+) = N(\ell^-) = 2$	1993	2723	1979	2373	1992	0.39	0.54	0.39	0.47	0.14
N(b) = 1	884	1310	910	1115	818	0.44	0.48	0.45	0.47	0.41
$E_T < 50$	871	1122	782	1060	242	0.98	0.85	0.85	0.95	0.29
$p_T(\ell_1) > 75 \text{ GeV}, p_T(\ell_2) > 50$	NA	650	296	163	20	NA	0.57	0.37	0.15	0.08

Table: Cut Flow and Efficiency Table in the case of $2b \ 2\ell^+ \ 2\ell^-$ channel for N(b) = 1. For Background K-Factor = 2 considered.

SCALARS-2017

02 December 2017

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Case 1: N(b) = 2

Significance				
$100 {\rm ~fb^{-1}}$	1000 fb^{-1}	3000 fb^{-1}		
7.2	22.9	39.6		
10.1	37.1	65.6		
4.9	17.1	29.8		
3.6	12.4	21.7		
	7.2 10.1 4.9	$\begin{array}{c cccc} 100 \ \text{fb}^{-1} & 1000 \ \text{fb}^{-1} \\ \hline 7.2 & 22.9 \\ \hline 10.1 & 37.1 \\ \hline 4.9 & 17.1 \\ \end{array}$		

Case 2: N(b) = 1

BPs	Significance					
	$100 \ {\rm fb}^{-1}$	1000 fb^{-1}	3000 fb^{-1}			
BP1	12.9	40.7	70.5			
BP2	18.2	58.3	101.0			
BP3	10.6	33.9	58.8			
BP4	6.9	22.0	38.1			

Table: Signal Significance with assumed systematic uncertainly of 10% for the background.

Formula Used for signal significance:

$$\sigma = \sqrt{2} \times \left((S+B) \ln \left[\frac{(S+B) (B+x^2)}{B^2 + (S+B) x^2} \right] - \frac{B^2}{x^2} \ln \left[1 + \frac{x^2 S}{B (B+x^2)} \right] \right)^{\frac{1}{2}}$$

Significance Vs. Systematics

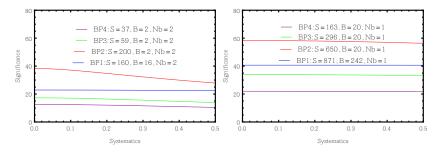


Figure: Significance plotted against the systematic uncertainty for the two cases of (i) N(b) = 2 and (ii) N(b) = 1. Luminosity of 1000 fb^{-1} is considered.

SCALARS-2017

02 December 2017

(4) (5) (4) (5) (4)

Ŧ

Significance Vs. Signal Events

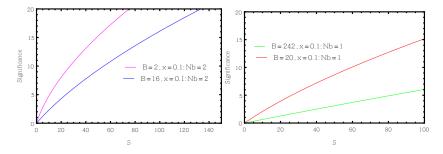


Figure: Significance Vs. S. Systematic uncertainty of 10% on the background events is assumed.

SCALARS-2017

5σ Cross section Reach:

	Cross section(in fb) reach for 5σ significance					
	$2b4\ell$	$1b4\ell$				
BP1	0.78	0.49				
BP2	0.25	0.19				
BP3	0.85	0.42				
BP4	1.35	0.77				

Table: 5σ Cross section reach for BPs assuming systematic uncertainty of 10% at 1000 fb⁻¹ luminosity.

SCALARS-2017

-

Model Implications

- We now turn to the issue of understanding the realizability of the quoted cross-sections in model dependent way.
- As an operating example, we choose the Type II 2HDM.
- Unlike the SM, the 2HDM has two Higgs fields (ϕ_1, ϕ_2) developing vacuum expectation values (vev) to break $SU(2) \times U(1)$ down to $U(1)_{\rm em}$.

For details about 2HDM, see some of the Planery Talks(Example: Talks by Haber,Osland etc.).

SCALARS-2017

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Process and Relevant Couplings:

- The process we are considering, specifically, is $gg \to H \to AZ \to hZZ \to 2b + 4\ell$.
- A cascade decay of this sort is suppressed by two new physics couplings, viz., g_{HAZ} and g_{AhZ} these are given by:

$$g_{HAZ} = \frac{g \sin(\beta - \alpha)}{2 \cos \theta_w} (p_A - p_H)_\mu \tag{2}$$

$$g_{AhZ} = \frac{g\cos(\beta - \alpha)}{2\cos\theta_w} (p_h - p_A)_\mu, \qquad (3)$$

SCALARS-2017

02 December 2017

化压力 化压力

Prod. Cross-section

$$\sigma(gg \to H) = \sigma_{\rm SM} \times \frac{\left| \left(\frac{\sin \alpha}{\sin \beta} \right) F_{1/2}^h(\tau_t) + \left(\frac{\cos \alpha}{\cos \beta} \right) F_{1/2}^h(\tau_b) \right|^2}{|F_{1/2}^h(\tau_t) + F_{1/2}^h(\tau_b)|^2}, \quad (4)$$

where $\tau_f = 4m_f^2/m_H^2$ and the loop factor $F_{1/2}^h = -2\tau \left[1 + (1-\tau)f(\tau)\right]$ with

$$f(\tau) = \begin{cases} \left[\sin^{-1}(1/\sqrt{\tau}) \right]^2 & \tau \ge 1, \\ -\frac{1}{4} \left[\ln(\eta_+/\eta_-) - i\pi \right]^2 & \tau < 1, \end{cases}$$
(5)

with $\eta_{\pm} \equiv 1 \pm \sqrt{1-\tau}$.

Image: A matrix

▲ Ξ ▶ ▲ Ξ ▶ Ξ • • • • • • •

Prod. Cross Section of H and Br Plot of $H \rightarrow AZ$

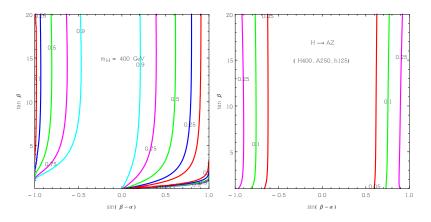


Figure: Normalized Prod. Cross section of H and Branching ratios for the decay $H \rightarrow AZ$ for BP1.

Br Plots: $A \rightarrow hZ$

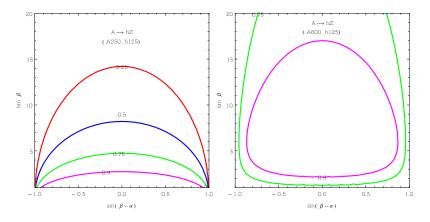


Figure: Branching ratios for the decay $A \rightarrow hZ$ for the benchmark points considered in this study.

SCALARS-2017

02 December 2017

э.

23 / 27

イロト イヨト イヨト イヨト

Allowed Parameter Space

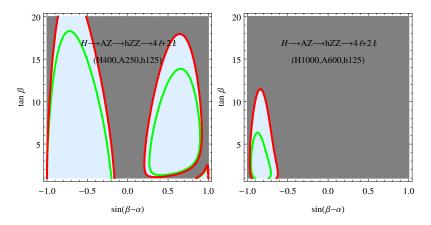


Figure: The extent of parameter space where discovery of the H^0 via the cascade decay. The light blue regions enclosed by the green contours correspond to the $4\ell + 2b$ case while the red ones correspond to the $4\ell + 1b$ scenario.

S Sahoo (IIT Guwahati)

SCALARS-2017

02 December 2017

Allowed Parameter Space

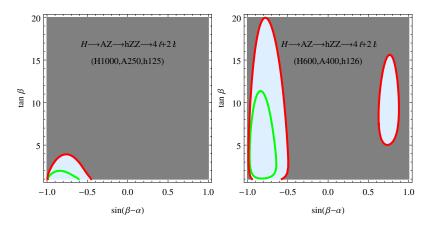


Figure: The extent of parameter space where discovery of the H^0 via the cascade decay. The light blue regions enclosed by the green contours correspond to the $4\ell + 2b$ case while the red ones correspond to the $4\ell + 1b$ scenario.

S Sahoo (IIT Guwahati)

SCALARS-2017

02 December 2017

Summary

• We discussed the cascade process $gg \rightarrow H_2 \rightarrow H_1Z \rightarrow hZZ \rightarrow 2b + 4\ell$ which involves two new physics couplings.

SCALARS-2017

02 December 2017

- 2

26 / 27

イロト イポト イヨト イヨト

Summary

- We discussed the cascade process $gg \rightarrow H_2 \rightarrow H_1Z \rightarrow hZZ \rightarrow 2b + 4\ell$ which involves two new physics couplings.
- We performed the collider analysis in a model independent way without resorting to specific values of new physics couplings.
- Then we have interpreted the model independent results in the context of Type II 2HDM.

Summary

- We discussed the cascade process $qq \rightarrow H_2 \rightarrow H_1Z \rightarrow hZZ \rightarrow 2b + 4\ell$ which involves two new physics couplings.
- We performed the collider analysis in a model independent way without resorting to specific values of new physics couplings.
- Then we have interpreted the model independent results in the context of Type II 2HDM.
- BP1 understandably has the largest reach.
- BP4 offers another possibility but with $\sin(\beta \alpha)$ range more restricted.
- The reach in BP2 and BP3, owing both to the large m_{H_2} and boosted b jets is limited.

Thank You!

S Sahoo (IIT Guwahati)

SCALARS-2017

02 December 2017

(日) (四) (王) (王) (王)