

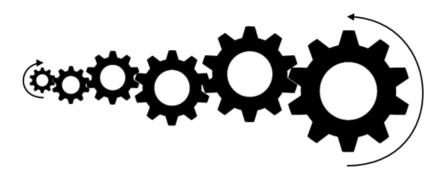
Phenomenology of the clockwork solution to the hierarchy problem

Yevgeny Kats

Work in progress

in collaboration with:

Gian Giudice


Matthew McCullough

Riccardo Torre

Alfredo Urbano

Horlogerie CERN, Genève

A generator of tiny couplings.

First proposed to generate a tiny coupling to a scalarin relaxion models.Choi, Im [1511.00132]

Kaplan, Rattazzi [1511.01827]

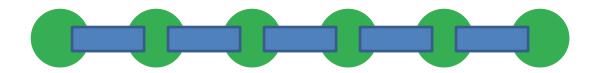
Later,

- Generalized to **fermions, gauge bosons, gravitons.**
- □ Obtained from deconstruction of an **extra dimension**.
- □ Applied to the **electroweak-Planck hierarchy** directly.

Giudice, McCullough [1610.07962]

Further discussion: Craig, Garcia Garcia, Sutherland [1704.07831] Giudice, McCullough [1705.xxxx]

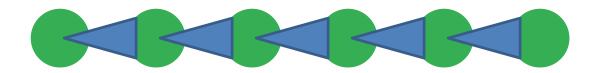
 \succ Consider a particle *P* kept massless by a symmetry *S*.


For example:

- Shift symmetry for a spin-0 particle
- Chiral symmetry for a spin-1/2 particle
- Gauge symmetry for a spin-1 particle
- Diffeomorphism invariance for a spin-2 particle

➢ Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .

Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .

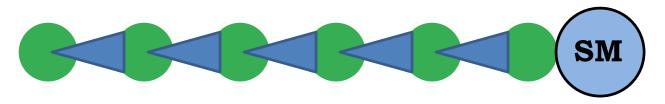


Break the symmetries by nearest-neighbor mass mixings.
 One combination

$$\mathcal{P} = \sum c_i P_i$$

remains massless.

Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .


Break the symmetries by nearest-neighbor mass mixings.
 One combination

$$\mathcal{P} = \sum c_i P_i$$

remains massless.

> If the breaking is asymmetric, c_i vary with *i* exponentially.

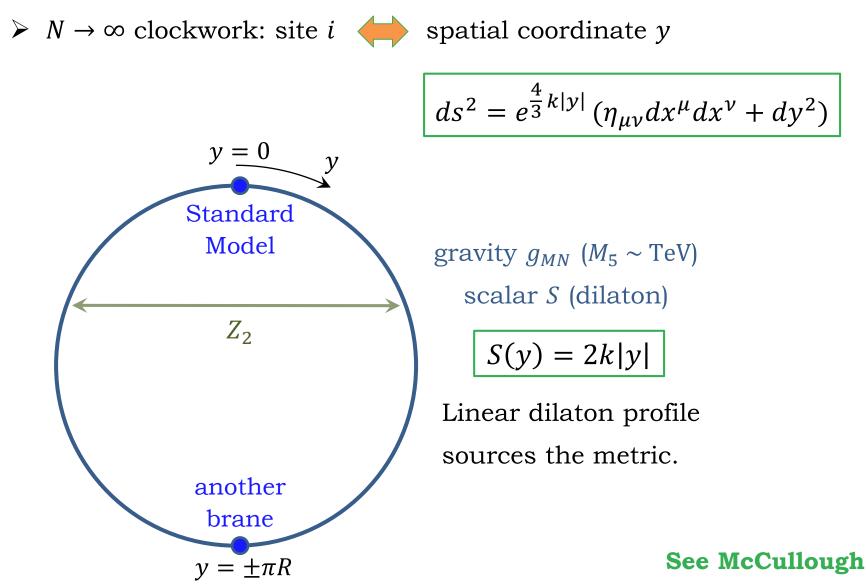
Consider N + 1 such particles P_i (i = 0, ..., N) kept massless by symmetries S_i .

Break the symmetries by nearest-neighbor mass mixings.
 One combination

$$\mathcal{P} = \sum c_i P_i$$

remains massless.

- > If the breaking is asymmetric, c_i vary with *i* exponentially.
- Coupling external fields to P_N will result in their exponentially suppressed coupling to \mathcal{P} .


See McCullough talk for details.

Linear dilaton scenario

 \succ *N* → ∞ clockwork: site *i* \longleftrightarrow spatial coordinate *y*

$$ds^{2} = e^{\frac{4}{3}k|y|} \left(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}\right)$$

Linear dilaton scenario

talk for details.

Solution to the hierarchy problem

$$M_P^2 = \frac{M_5^3}{k} \left(e^{2\pi kR} - 1 \right) \implies R(M_5, k)$$

For $M_5 \sim \mathcal{O}(10 \text{ TeV})$: $kR \approx 10$

Comparison with other extra dimensional scenarios

LED
$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}$$
 $M_{P}^{2} = L_{5}M_{5}^{3}$
RS $ds^{2} = e^{2ky} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}$ $M_{P}^{2} \approx e^{2k\pi R} \frac{M_{5}^{3}}{k}$
Clockwork/LD $ds^{2} = e^{\frac{4}{3}ky} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2})$ $M_{P}^{2} \approx L_{5} e^{\frac{4}{3}k\pi R} \frac{M_{5}^{3}}{3}$

Stringy connection of the linear dilaton

Stack of D3 branes

- \rightarrow 4*d* strongly coupled SCFT
- \rightarrow dual to gravitational theory in $AdS_5 \times S_5$ Maldacena [hep-th/9711200]
- \rightarrow **Randall-Sundrum** setup with two branes to explain

the TeV-Planck hierarchy

Randall, Sundrum [hep-ph/9905221]

Stack of NS5 branes

 → 6d strongly coupled non-local theory: Little String Theory (LST) Berkooz, Rozali, Seiberg [hep-th/9704089]; Seiberg [hep-th/9705221]
 → dual to 7d gravitational theory w/linearly varying dilaton Aharony, Berkooz, Kutasov, Seiberg [hep-th/9808149] Giveon, Kutasov [hep-th/9909110]
 → LST at a TeV (linear dilaton) setup with two branes to explain the TeV-Planck hierarchy Antoniadis, Dimopoulos, Giveon [hep-th/0103033]

Previous studies of phenomenology

Antoniadis, Arvanitaki, Dimopoulos, Giveon [1102.4043] KK gravitons for large k @ Tevatron, LHC

Baryakhtar [1202.6674]

KK gravitons @ LHC, beam dump, supernova, BBN

Cox, Gherghetta [1203.5870] KK dilatons / radion for large k @ LHC

Giudice, Plehn, Strumia [hep-ph/0408320] Franceschini, Giardino, Giudice, Lodone, Strumia [1101.4919] KK gravitons in a low-*k* RS scenario @ LEP, LHC

> The clockwork KK graviton spectrum and interaction strengths for $n \gg kR$ are the same as in RS with $k_{\rm RS} = \frac{1}{\pi R} \approx \frac{k}{30}$

KK modes

KK graviton masses

$$m_0^2 = 0$$
 $m_n^2 = k^2 + \frac{n^2}{R^2}$ $n = 1, 2, 3, ...$

KK graviton couplings

$$\mathcal{L} \supset -\frac{1}{\Lambda_n} h_{\mu\nu}^{(n)} T^{\mu\nu} \qquad \Lambda_0^2 = M_P^2 \qquad \Lambda_n^2 = M_5^3 \pi R \left(1 + \left(\frac{kR}{n}\right)^2 \right)$$

KK modes

KK graviton masses

$$m_0^2 = 0$$
 $m_n^2 = k^2 + \frac{n^2}{R^2}$ $n = 1, 2, 3, ...$

KK graviton couplings

$$\mathcal{L} \supset -\frac{1}{\Lambda_n} h_{\mu\nu}^{(n)} T^{\mu\nu} \qquad \Lambda_0^2 = M_P^2 \qquad \Lambda_n^2 = M_5^3 \pi R \left(1 + \left(\frac{kR}{n}\right)^2 \right)$$

KK dilaton / radion masses and couplings

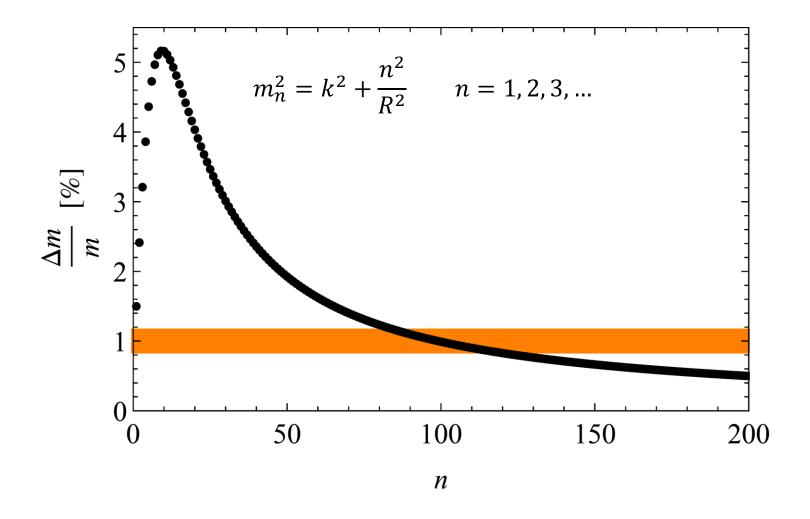
$$m_0^2 = \frac{8}{9}k^2 \qquad m_n^2 = k^2 + \frac{n^2}{R^2} \qquad n = 1, 2, 3, \dots$$
$$\mathcal{L} \supset -\frac{1}{\Lambda_n}\phi^{(n)}T^{\mu}_{\mu} \qquad \Lambda_0^2 \simeq \frac{18M_5^3}{k} \qquad \Lambda_n^2 = \frac{3}{4}M_5^3\pi R\left(10 + \left(\frac{kR}{n}\right)^2 + 9\left(\frac{n}{kR}\right)^2\right)$$

Model dependence in the case of non-rigid stabilization or Higgs-curvature coupling.

> Kofman, Martin, Peloso [hep-ph/0401189] Cox, Gherghetta [1203.5870]

KK mode splittings

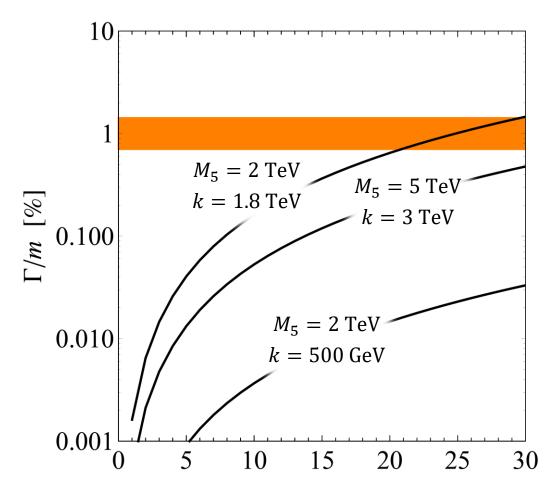
$$m_n^2 = k^2 + \frac{n^2}{R^2}$$
 $n = 1, 2, 3, ...$


The relative mass splitting starts from

$$\frac{m_2 - m_1}{m_1} \approx \frac{3}{2(kR)^2} \approx 1.5\%$$
 ,

then grows, but eventually falls as

$$\frac{m_{n+1} - m_n}{m_n} \simeq \frac{1}{n}$$


KK mode splittings

For $n \leq 100$, i.e. $k \leq m_n \leq 10k$, the individual modes can be resolved in the $\gamma\gamma$ and e^+e^- channels in ATLAS and CMS!

KK mode splittings

The intrinsic widths of at least the first ~30 modes are smaller than the resolution in the relevant range of parameters.

Decays to SM particles:

gg	$\sum_i q_i \bar{q}_i$	W^+W^-	ZZ	hh	$\gamma\gamma$	$\sum_{i} \ell_i^+ \ell_i^-$	$\sum_i u_i ar u_i$
34%	38%	9.2%	4.6%	0.35%	4.2%	6.4%	3.2%

*In the regime where phase space suppressions are negligible.

Easiest decays to see: $\gamma\gamma$, e^+e^- , $(\mu^+\mu^-)$

Decays to SM particles:

gg	$\sum_i q_i ar q_i$	W^+W^-	ZZ	hh	$\gamma\gamma$	$\sum_{i} \ell_i^+ \ell_i^-$	$\sum_i u_i ar u_i$
34%	38%	9.2%	4.6%	0.35%	4.2%	6.4%	3.2%

*In the regime where phase space suppressions are negligible.

Easiest decays to see: $\gamma\gamma$, e^+e^- , $(\mu^+\mu^-)$

Total rate to SM particles (for $n \gg kR$, $m_n \gg m_t$):

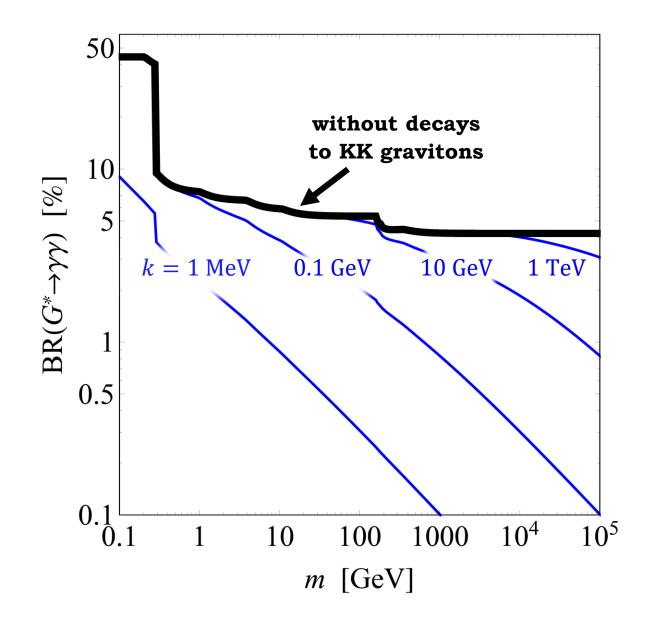
$$\Gamma_{n \to \text{SM}} \simeq \frac{283}{960\pi^2} \frac{m_n^3}{RM_5^3}$$

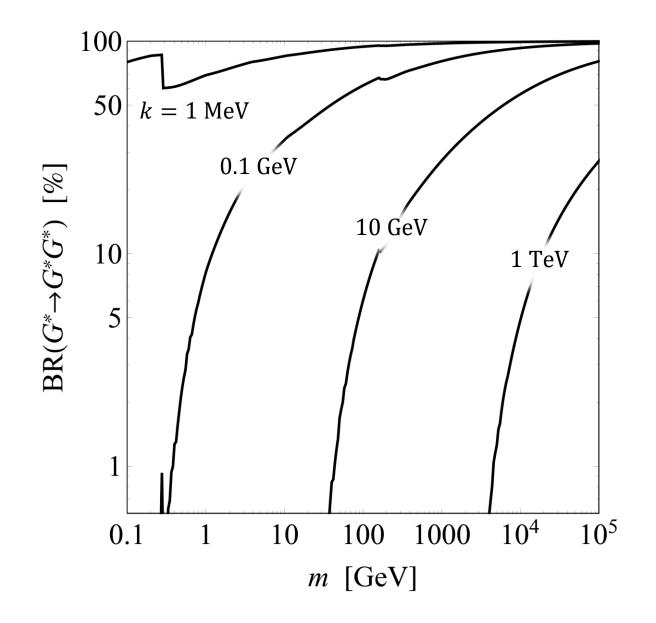
Decays to SM particles:

						$\sum_i \ell_i^+ \ell_i^-$	
34%	38%	9.2%	4.6%	0.35%	4.2%	6.4%	3.2%

*In the regime where phase space suppressions are negligible.

Easiest decays to see: $\gamma\gamma$, e^+e^- , $(\mu^+\mu^-)$


Total rate to SM particles (for $n \gg kR$, $m_n \gg m_t$):


$$\Gamma_{n \to \text{SM}} \simeq \frac{283}{960\pi^2} \frac{m_n^3}{RM_5^3}$$

There are also decays to lighter KK gravitons. For $n \gg kR \gg 1$:

$$\Gamma_{n \to \text{KK}} \simeq \frac{5 \cdot 7 \cdot 17}{3 \cdot 2^{14} \pi^2} \frac{\sqrt{km_n} m_n^3}{kRM_5^3} \qquad \Longrightarrow \qquad \frac{\Gamma_{n \to \text{KK}}}{\Gamma_{n \to \text{SM}}} \approx 0.04 \sqrt{\frac{m_n}{k}}$$

A huge effect for low k!

Single KK graviton:

$$\sigma_n = \frac{\pi}{48\Lambda_n^2} \left(3\mathcal{L}_{gg}(m_n^2) + 4\sum_q \mathcal{L}_{q\bar{q}}(m_n^2) \right)$$

KK graviton tower approximated by a continuum:

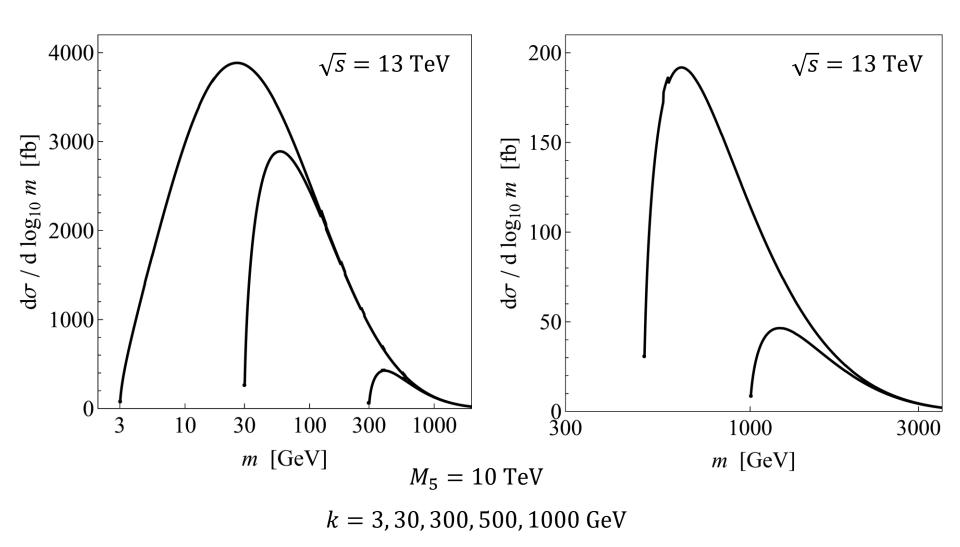
$$\frac{d\sigma}{dm} \simeq \frac{\pi}{48M_5^3} \sqrt{1 - \frac{k^2}{m^2}} \left(3\mathcal{L}_{gg}(m^2) + 4\sum_q \mathcal{L}_{q\bar{q}}(m^2) \right)$$

Independent of k for $m \gg k$.

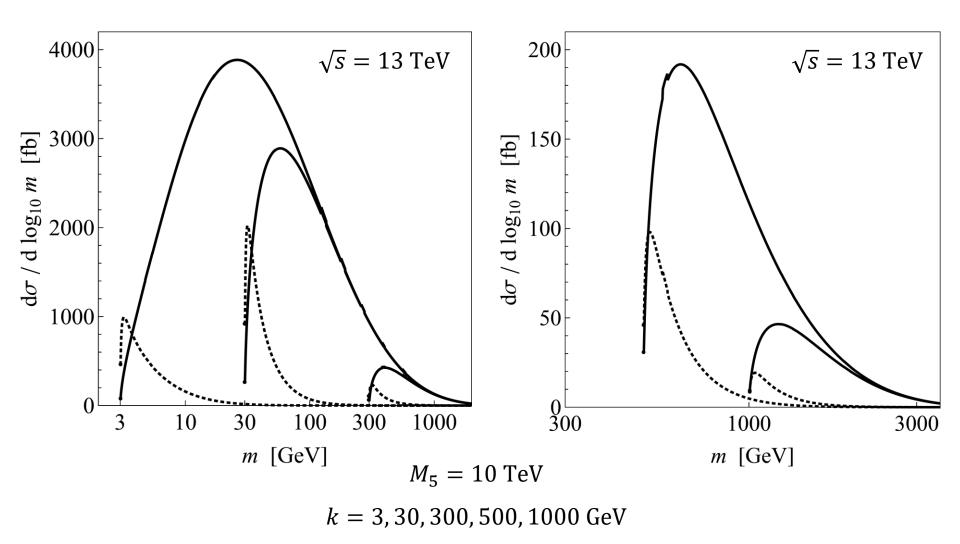
Single KK graviton:

$$\sigma_n = \frac{\pi}{48\Lambda_n^2} \left(3\mathcal{L}_{gg}(m_n^2) + 4\sum_q \mathcal{L}_{q\bar{q}}(m_n^2) \right)$$

KK graviton tower approximated by a continuum:


$$\frac{d\sigma}{dm} \simeq \frac{\pi}{48M_5^3} \sqrt{1 - \frac{k^2}{m^2}} \left(3\mathcal{L}_{gg}(m^2) + 4\sum_q \mathcal{L}_{q\bar{q}}(m^2) \right)$$

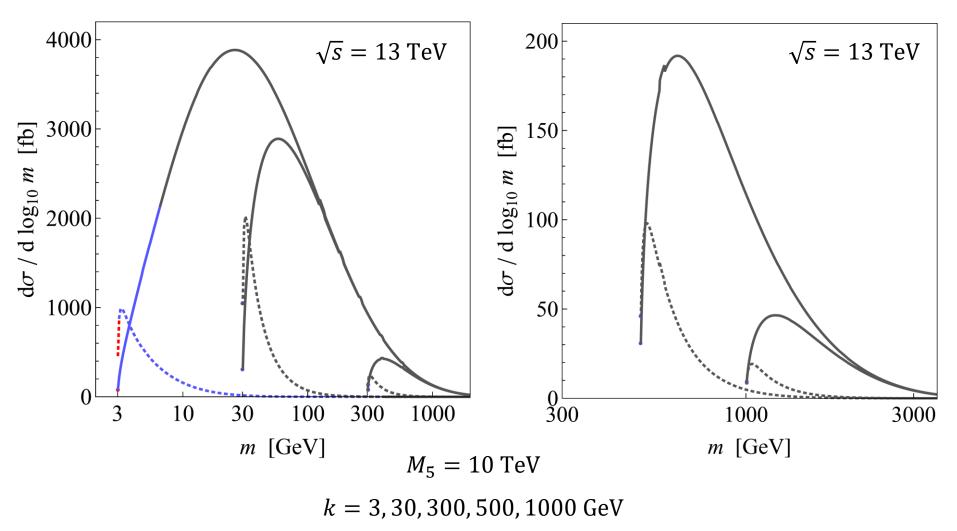
Independent of k for $m \gg k$.


KK dilaton tower:

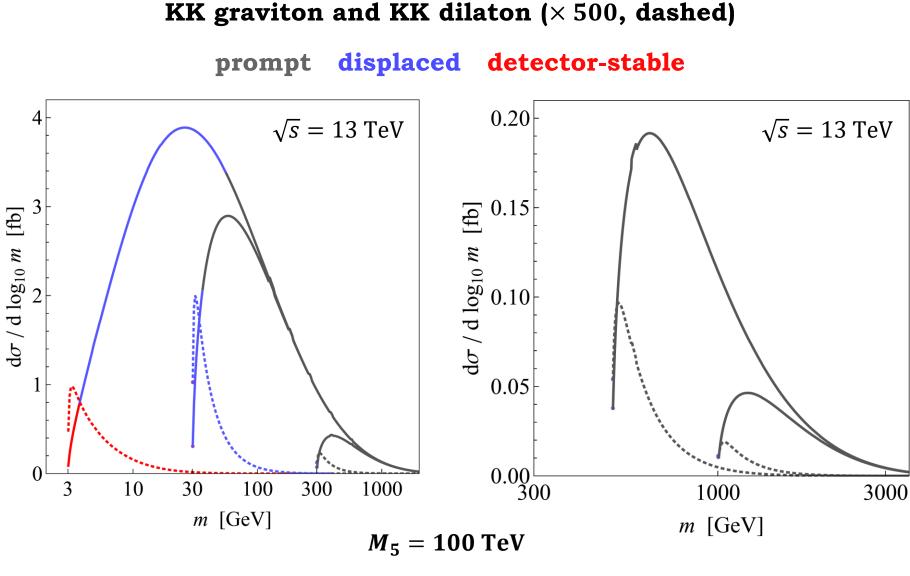
$$\frac{d\sigma}{dm} \simeq \frac{49\alpha_s^2}{864\pi^2 M_5^3} \sqrt{1 - \frac{k^2}{m^2}} \left(1 - \frac{8}{9}\frac{k^2}{m^2}\right)^{-1} \frac{k^2}{m^2} \mathcal{L}_{gg}(m^2)$$

KK graviton

KK graviton and KK dilaton (\times 500, dashed)

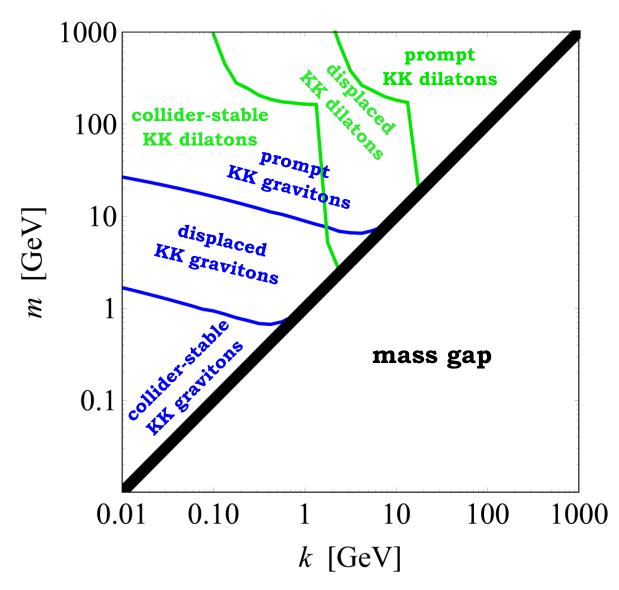


Production cross sections and lifetimes


KK graviton and KK dilaton (\times 500, dashed)

prompt

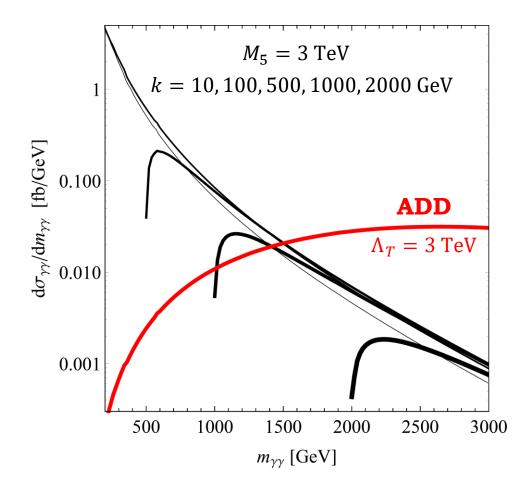
displaced detector-stable


Production cross sections and lifetimes

k = 3, 30, 300, 500, 1000 GeV

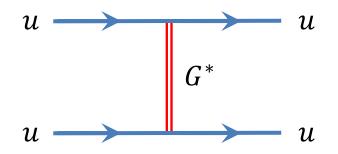
Lifetimes

 $M_{5} = 10 \text{ TeV}$



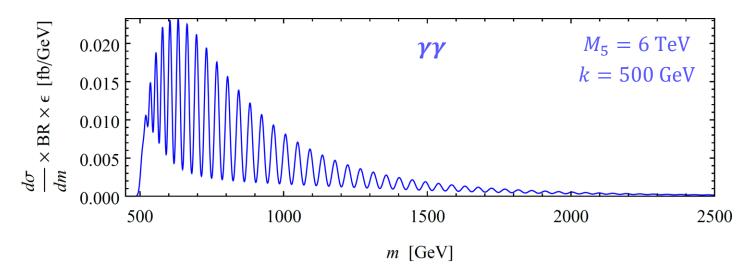
Standard signatures

> Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass.


Standard signatures

> Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the ADD benchmark models.

Standard signatures

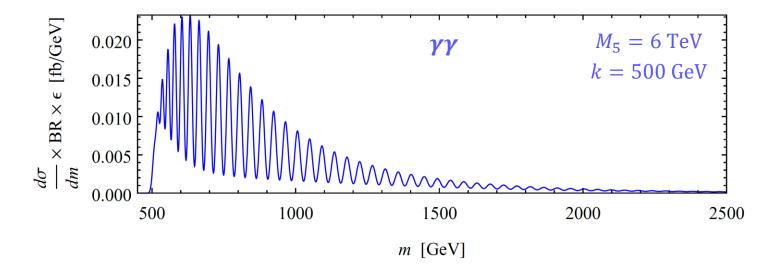

- > Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the ADD benchmark models.
- Effect on rate and angular distribution in dijets (important contributions due to *t*-channel exchange).

Standard signatures

- > Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the ADD benchmark models.
- Effect on rate and angular distribution in dijets (important contributions due to *t*-channel exchange).
- ► Distinct $\gamma\gamma$ and e^+e^- resonances near the turn-on of the spectrum ($m \approx k$).

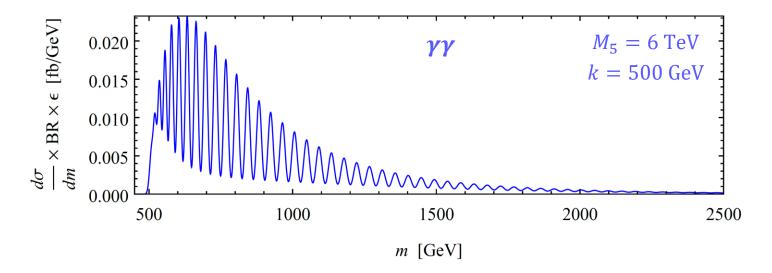
However, to what extent are resonance searches affected by nearby peaks?

Standard signatures


- > Enhancement of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra at high mass. Shape qualitatively different from the ADD benchmark models.
- Effect on rate and angular distribution in dijets (important contributions due to *t*-channel exchange).
- ► Distinct $\gamma\gamma$ and e^+e^- resonances near the turn-on of the spectrum ($m \approx k$).

However, to what extent are resonance searches affected by nearby peaks?

Strong gravity signatures (black holes etc.) around $m \sim M_5$. As in other scenarios, unknown and model dependent.

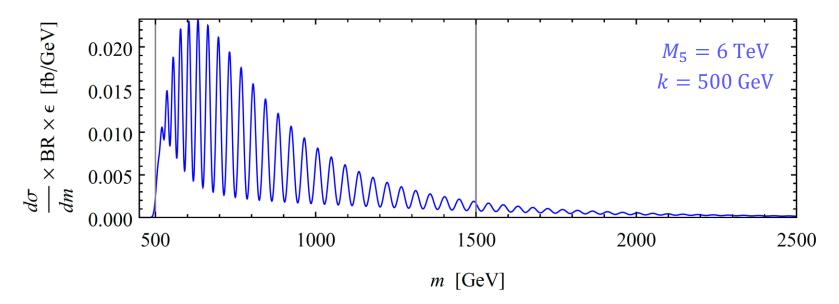

Novel signatures

Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in the Fourier space.

Novel signatures

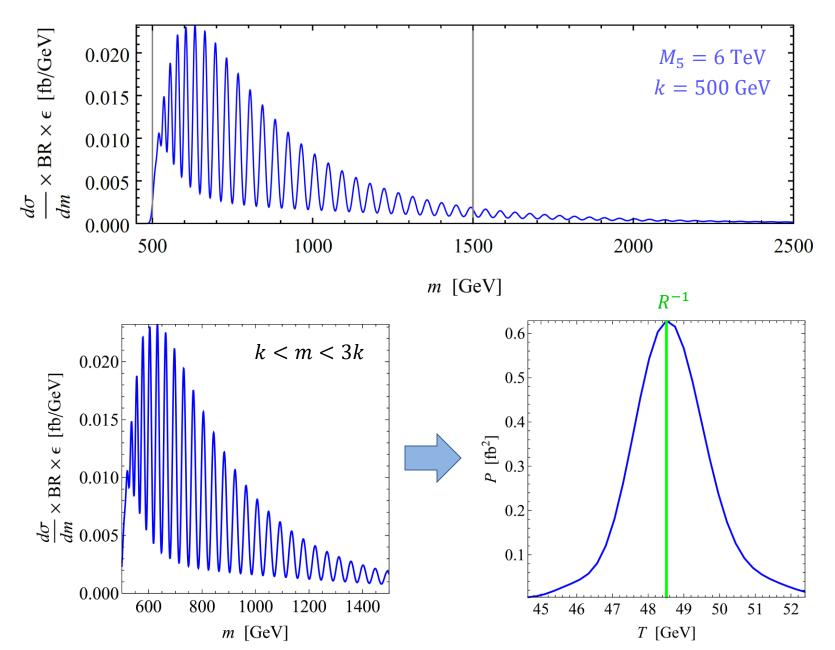
- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in the Fourier space.
- ► **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, possibly at a low mass, down to sub-GeV.

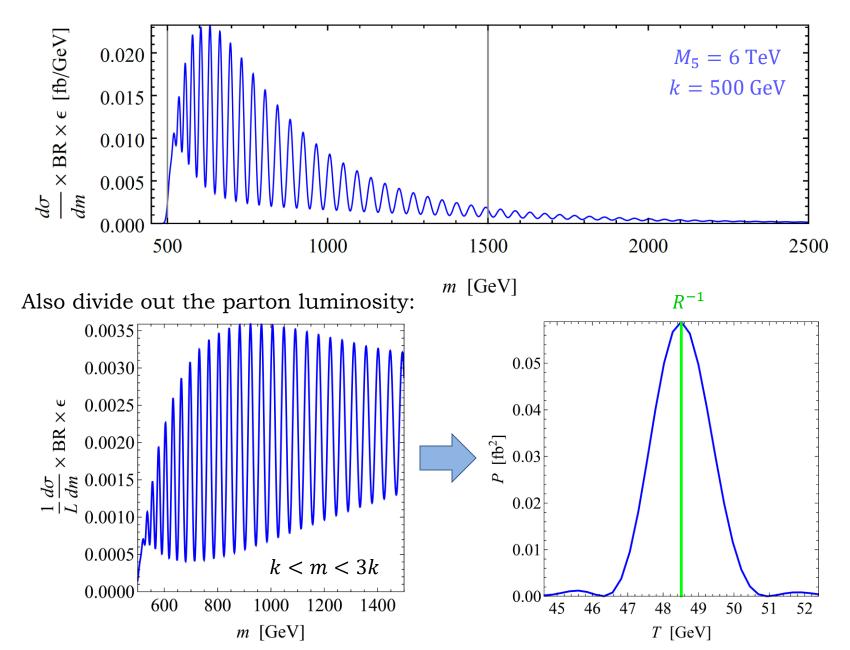
Signatures in ATLAS / CMS

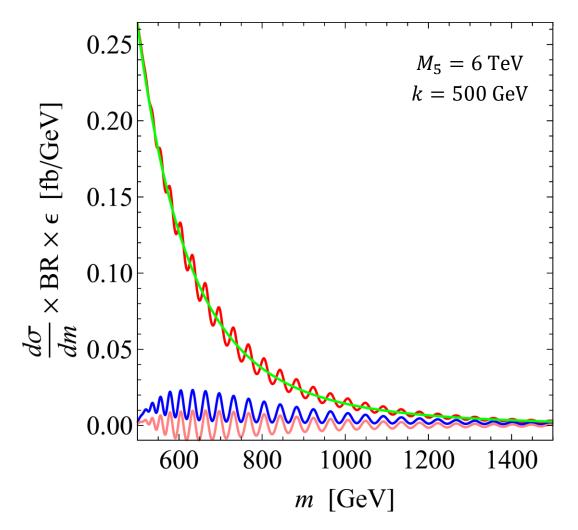

Novel signatures

- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in the Fourier space.
- ► **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, possibly at a low mass, down to sub-GeV.
- Cascades within the KK graviton and KK dilaton towers:
 - Final states with **high object multiplicity**.
 - Events with **high multiplicity of special objects** (e.g., multiple leptons).
 - Events containing one or multiple **displaced** objects along with prompt objects.

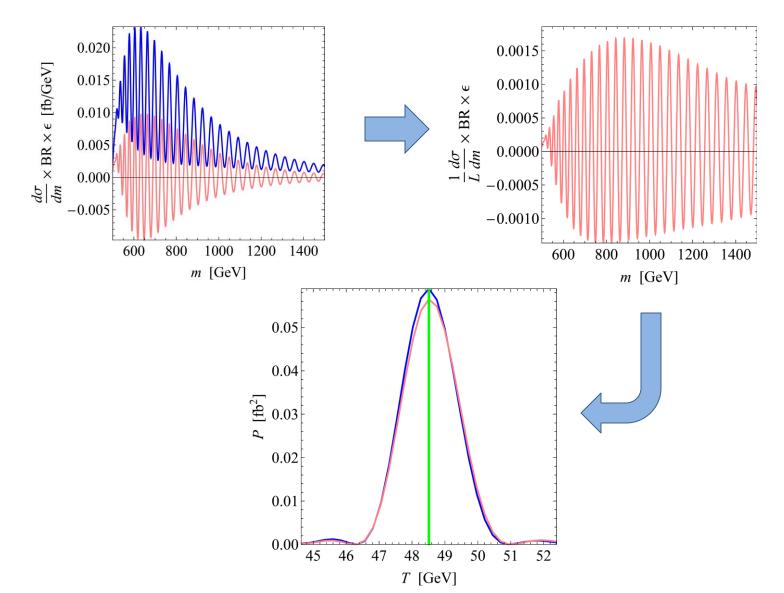
Signatures in ATLAS / CMS

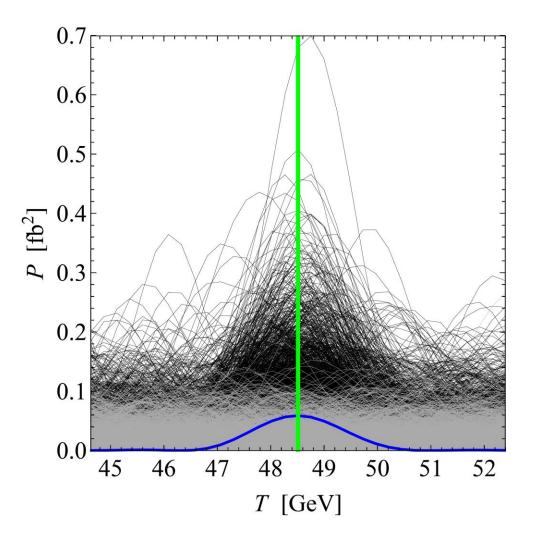

Novel signatures


- Periodic peaks in γγ and e⁺e⁻ spectra,
 i.e. a peak in the Fourier space.
- ► **Turn-on** of the $\gamma\gamma$, e^+e^- , $\mu^+\mu^-$ spectra near $m \approx k$, possibly at a low mass, down to sub-GeV.
- Cascades within the KK graviton and KK dilaton towers:
 - Final states with **high object multiplicity**.
 - Events with **high multiplicity of special objects** (e.g., multiple leptons).
 - Events containing one or multiple **displaced** objects along with prompt objects.
- Resonant production of somewhat long-lived (although not very boosted) light KK gravitons.


Is it possible to detect the periodic structure by analyzing the $\gamma\gamma$ spectrum in Fourier space?

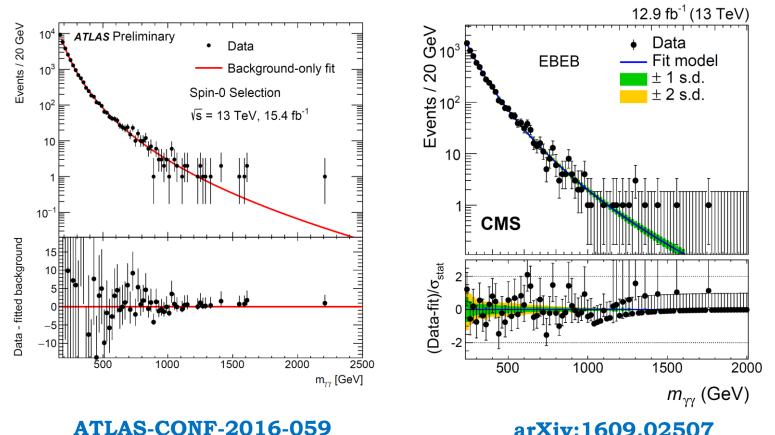
$$P(T) \equiv \left| \frac{1}{\sqrt{2\pi}} \int_{m_{\min}}^{m_{\max}} dm \frac{d\sigma}{dm} \exp\left(i \frac{2\pi\sqrt{m^2 - k^2}}{T}\right) \right|^2$$




Adding background and subtracting a fit to a smooth function.

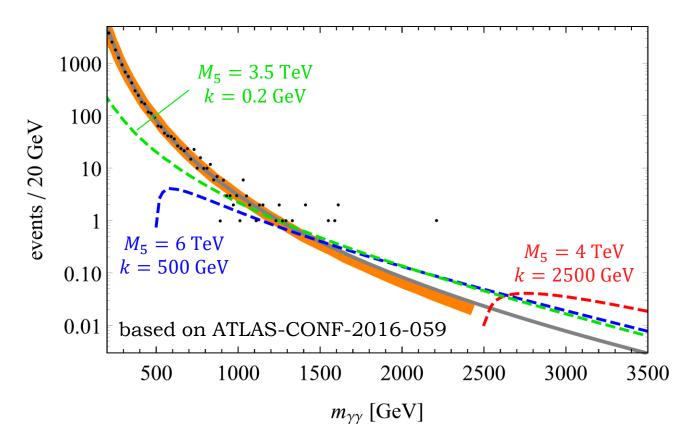
Dividing out the parton luminosity and Fourier transforming.

Generating multiple realizations of signal+background (black) and background alone (gray) to quantify significance.



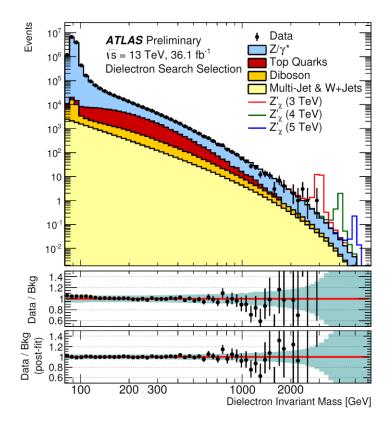
Limits from high-mass $\gamma\gamma$ continuum

Unfortunately, no searches released since 7 TeV.


ATLAS-CONF-2012-087 (4.9 fb⁻¹); CMS [1112.0688] (2.2 fb⁻¹)

Let us then examine more recent data ourselves:

arXiv:1609.02507


Limits from high-mass $\gamma\gamma$ continuum

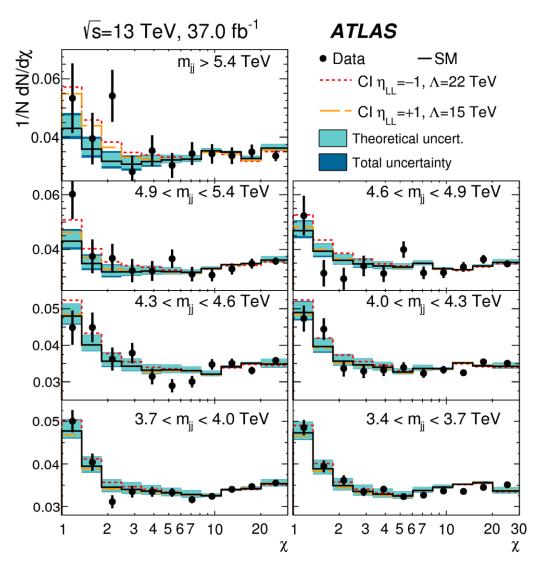
- Will derive: (1) **conservative limits** assuming background is completely unknown
 - (2) **approximate expected limits** assuming signal is absent and statistics-dominated uncertainties

Search regions: $m_{\gamma\gamma} > 500, 1000, 2000 \text{ GeV}$

Limits from high-mass $\ell^+\ell^-$ continuum

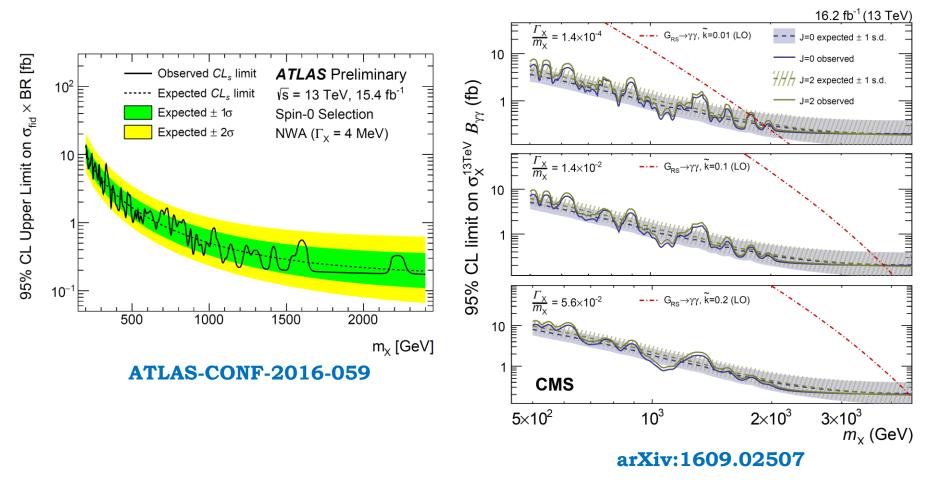
m_{ee} [GeV]	80-120	120-250	250-400	400-500	500-700
Drell-Yan Top Quarks Dibosons Multi-jet & W+jets Total SM	$\begin{array}{c} 11800000 \pm 700000\\ 28600 \pm 1800\\ 31400 \pm 3300\\ 11000 \pm 9000\\ \end{array}$	$\begin{array}{c} 216000 \pm 11000 \\ 44600 \pm 2900 \\ 7000 \pm 700 \\ 5600 \pm 2000 \\ \end{array}$	$17230 \pm 1000 \\ 8300 \pm 600 \\ 1300 \pm 140 \\ 780 \pm 80 \\ 27600 \pm 1100 \\$	$2640 \pm 180 \\ 1130 \pm 80 \\ 228 \pm 25 \\ 151 \pm 21 \\ 4150 \pm 200$	$ \begin{array}{r} 1620 \pm 120 \\ 560 \pm 40 \\ 146 \pm 16 \\ 113 \pm 17 \\ 2440 \pm 130 \\ \end{array} $
Data Z'_{χ} (4 TeV) Z'_{χ} (5 TeV)	$\begin{array}{c} 12415434\\ \hline 0.00635 \pm 0.00021\\ 0.00305 \pm 0.00012 \end{array}$	$275711 \\ 0.0390 \pm 0.0015 \\ 0.0165 \pm 0.0006 \\$	$27538 \\ 0.0564 \pm 0.0025 \\ 0.0225 \pm 0.0010 \\ 0.0210 \\ 0.0000 \\ 0.0000 \\ 0.$	$\begin{array}{c} 4140\\ 0.0334 \pm 0.0027\\ 0.0139 \pm 0.0007 \end{array}$	$2390 \\ 0.064 \pm 0.004 \\ 0.0275 \pm 0.0015 \\ \end{array}$
m_{ee} [GeV]	700–900	900-1200	1200-1800	1800-3000	3000-6000
Drell-Yan Top Quarks Dibosons Multi-jet & W+jets	421 ± 34 94 ± 8 39 ± 4 39 ± 6	176 ± 17 27.9 ± 2.8 16.9 ± 2.1 16.1 ± 2.0	62 ± 7 5.1 ± 0.7 5.8 ± 0.8 7.9 ± 2.3	$\begin{array}{c} 8.7 \pm 1.3 \\ < 0.001 \\ 0.74 \pm 0.11 \\ 1.6 \pm 1.2 \end{array}$	$\begin{array}{c} 0.34 \pm 0.07 \\ < 0.001 \\ 0.028 \pm 0.004 \\ 0.08 \pm 0.27 \end{array}$
Top Quarks Dibosons	94 ± 8 39 ± 4	27.9 ± 2.8 16.9 ± 2.1	5.1 ± 0.7 5.8 ± 0.8	< 0.001 0.74 ± 0.11	< 0.001 0.028 ± 0.004
Top Quarks Dibosons Multi-jet & W+jets	94 ± 8 39 ± 4 39 ± 6	27.9 ± 2.8 16.9 ± 2.1 16.1 ± 2.0	5.1 ± 0.7 5.8 ± 0.8 7.9 ± 2.3	< 0.001 0.74 ± 0.11 1.6 ± 1.2	< 0.001 0.028 ± 0.004 0.08 ± 0.27

... and analogously for muons.

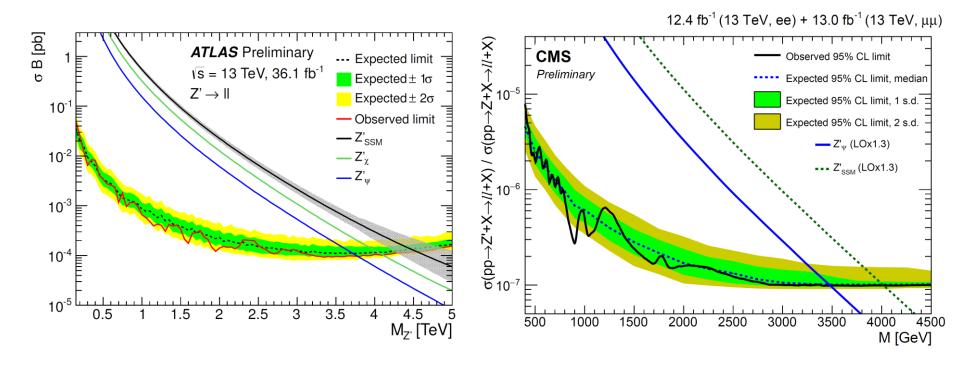

ATLAS-CONF-2017-027

Limits from dijet angular distributions

Searches look at angular distributions in m_{jj} bins, using the variable


 $\chi = \exp(|y_1 - y_2|)$

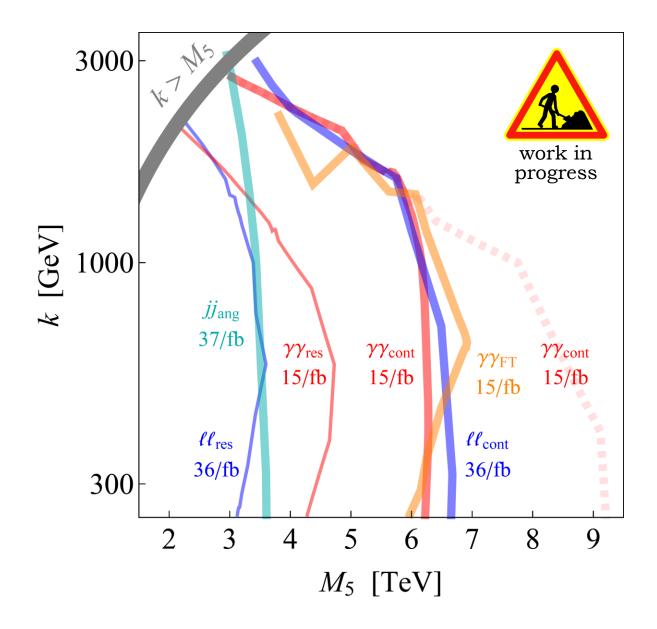
ATLAS, we can't read many of the numbers here.


arXiv:1703.09127

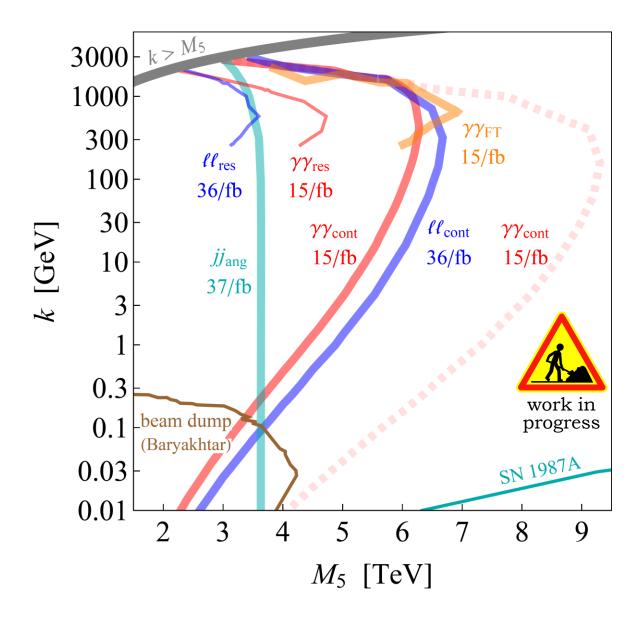
Limits from $\gamma\gamma$ resonance searches

- **Caveats:** 1. Bump hunting might not work as expected due to the additional nearby peaks.
 - 2. Intrinsic background due to the rest of the KK tower is not taken into account.

Limits from $\ell^+\ell^-$ resonance searches



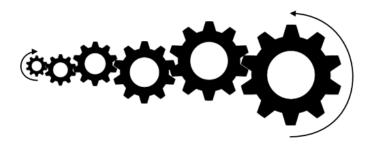
ATLAS-CONF-2017-027


CMS-PAS-EXO-16-031

- **Caveats:** 1. Bump hunting might not work as expected due to the additional nearby peaks.
 - 2. Intrinsic background due to the rest of the KK tower is not taken into account.

Sensitivity of some of the channels

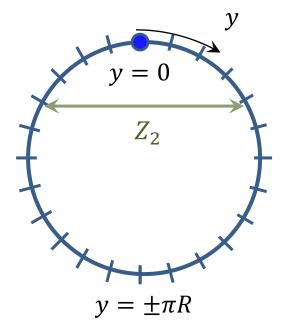
Sensitivity of some of the channels



Conclusions

The clockwork / linear dilaton solution to the hierarchy problem features novel LHC signatures:

- Effects on diphoton / dilepton / dijet spectra qualitatively different from ADD benchmark models.
- Motivation for searches in Fourier space.
- Interesting benchmark models for high-multiplicity final states.
- Interesting benchmark models for displaced decays.


Supplementary Slides

$N \rightarrow \infty$ clockwork as an extra dimension

Consider a compact extra dimension and a metric of the form

$$ds^{2} = X(|y|) \eta_{\mu\nu} dx^{\mu} dx^{\nu} + Y(|y|) dy^{2}$$

and discretize it.

$N \rightarrow \infty$ clockwork as an extra dimension

Consider a compact extra dimension and a metric of the form $ds^2 = X(|y|)\,\eta_{\mu\nu}dx^\mu dx^\nu + Y(|y|)\,dy^2$

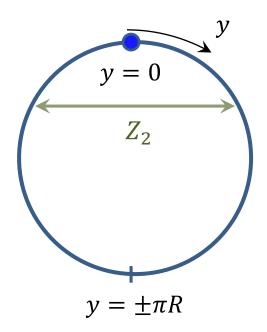
The action for a massless scalar (for simplicity) can be written

$$\begin{split} S &= \int d^4 x \, dy \sqrt{-g} \left(-\frac{1}{2} g^{MN} \partial_M \phi \partial_N \phi \right) \\ &\to -\frac{1}{2} \int d^4 x \left[\sum_i (\partial_\mu \phi_i)^2 + \sum_i m_i^2 (\phi_i - q_i \phi_{i+1})^2 \right] \end{split}$$

where

as

$$m_i^2 \equiv \frac{N^2 X_i}{\pi^2 R^2 Y_i}, \qquad q_i \equiv \frac{X_i^{1/2} Y_i^{1/4}}{X_{i+1}^{1/2} Y_{i+1}^{1/4}}$$


To have m_i^2 and q_i uniform across the sites, can take $X(|y|) \propto Y(|y|) \propto e^{-\frac{4}{3}k|y|}$

where *k* is a free parameter, with which $q^N = e^{k\pi R}$.

$N \rightarrow \infty$ clockwork as an extra dimension

What kind of physics would create such a metric?

$$ds^{2} = e^{\frac{4}{3}k|y|} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2})$$

A background scalar field linear in y: S(y) = 2k|y|

Known in the string theory literature as the **linear dilaton background**

Clockwork / linear dilaton setup

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} e^S (R + (\nabla S)^2 + 4k^2) + \sum_{i=\text{SM,h}} e^{S(y_i)} \int d^4x \sqrt{-g} \, (\mathcal{L}_i - \Lambda_i)$$

where in LST

$$M_5 \simeq \frac{M_s^3 V_6^{1/3}}{N^{1/6}}, \qquad k = \frac{M_s}{2\sqrt{N}}.$$

1 /2

Going from Jordan to Einstein frame $(g_{MN} \rightarrow e^{-2S/3}g_{MN})$:

$$S = \int dy d^4x \sqrt{-g} \, \frac{M_5^3}{2} \left(R - \frac{1}{3} (\nabla S)^2 - V(S) \right) - \sum_{i=SM,h} e^{-S(y_i)/3} \int d^4x \sqrt{-g} \left(\mathcal{L}_i - \Lambda_i \right)$$

where $V(S) = -4k^2e^{-2S/3}$.

Background solution:

$$ds^{2} = e^{\frac{4}{3}k|y|}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^{2}) \qquad S(y) = 2k|y|$$

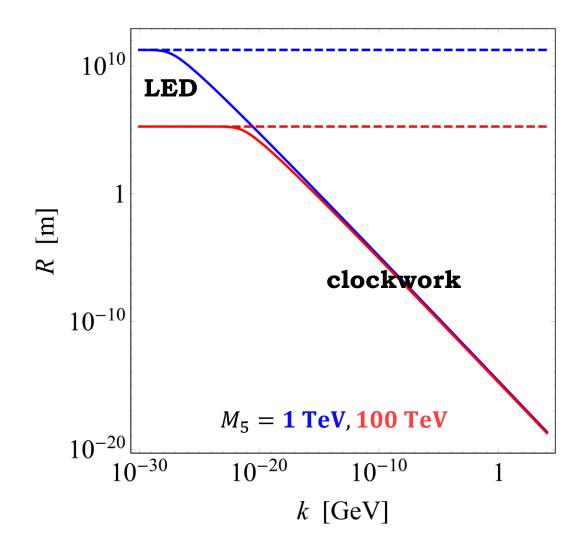
assuming $\Lambda_{\rm h} = -\Lambda_{\rm SM} = 4M_5^3k$.

Clockwork vs. RS geometry

Randall-Sundrum

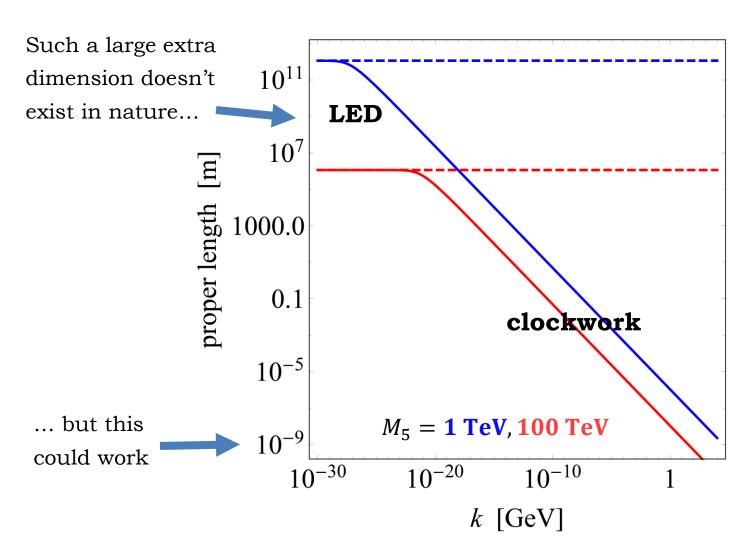
$$ds^{2} = e^{2kz} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2} \qquad 0 \le z \le \pi R$$
$$R = -20k^{2}$$

Clockwork / linear dilaton


$$ds^{2} = e^{\frac{4}{3}ky} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^{2}) \qquad 0 \le y \le \pi R$$

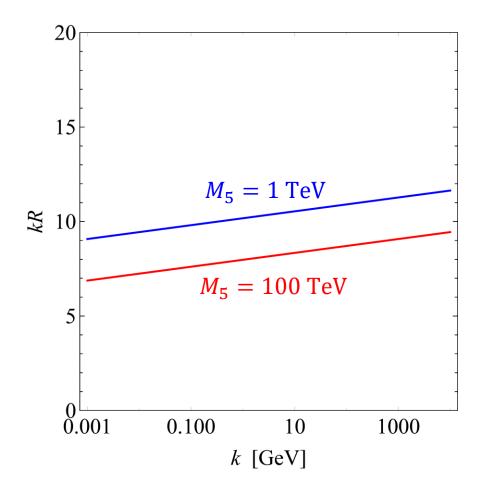
$$= \left(1 + \frac{2}{3}kz\right)^2 \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2 \qquad 1 \le \frac{2}{3}kz \le e^{\frac{2}{3}k\pi R}$$

$$R = -\frac{12}{z^2}$$


4d Planck scale

$$M_P^2 = \frac{M_5^3}{k} \left(e^{2\pi kR} - 1 \right) \implies R(M_5, k)$$

4d Planck scale


$$M_P^2 = \frac{M_5^3}{k} \left(e^{2\pi kR} - 1 \right) \quad \Longrightarrow \quad R(M_5, k)$$

4d Planck scale

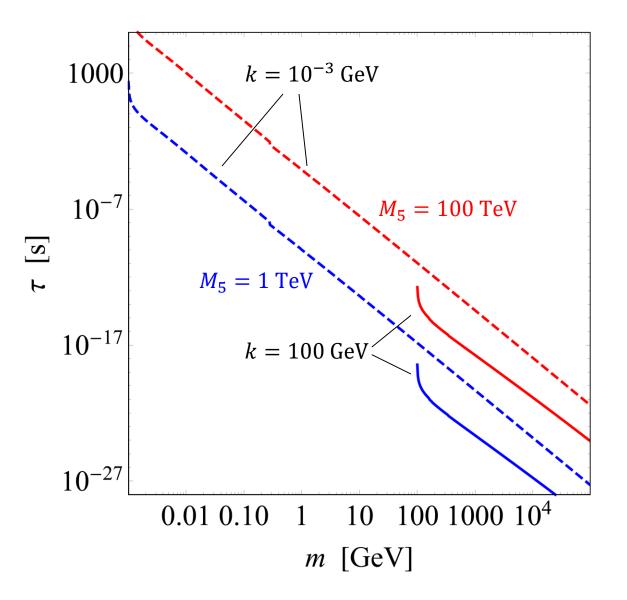
$$M_P^2 = \frac{M_5^3}{k} \left(e^{2\pi kR} - 1 \right) \implies R(M_5, k)$$

For $M_5 \sim \mathcal{O}(10 \text{ TeV})$: $kR \approx 10$

KK graviton width vs. mass splitting

Even with significant decays to lighter KK gravitons, the width

$$\Gamma_{n \to \mathrm{KK}} \simeq \frac{5 \cdot 7 \cdot 17}{3 \cdot 2^{14} \pi^2} \frac{\sqrt{km_n} m_n^3}{kRM_5^3}$$


is smaller than the mass splitting, 1/R, as long as

$$m_n \lesssim 6.8 \left(\frac{k}{M_5}\right)^{1/7} M_5$$

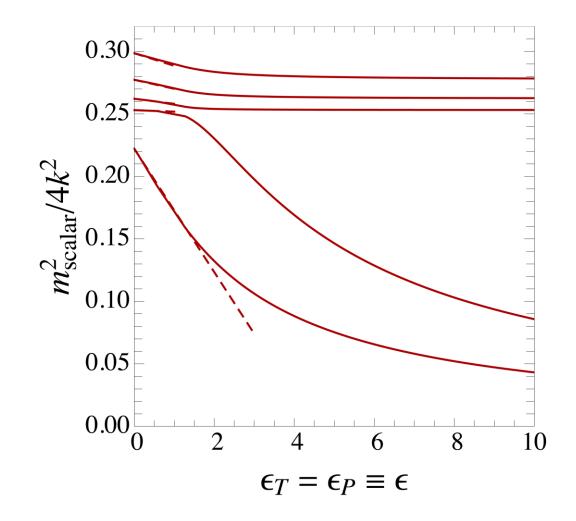
This is satisfied for all $m_n < M_5$ as long as

$$k \gtrsim 1.5 \times 10^{-6} \ M_5 \approx 15 \ {
m MeV} \left({M_5 \over 10 \ {
m TeV}}
ight)$$

KK graviton lifetimes

KK dilaton decays

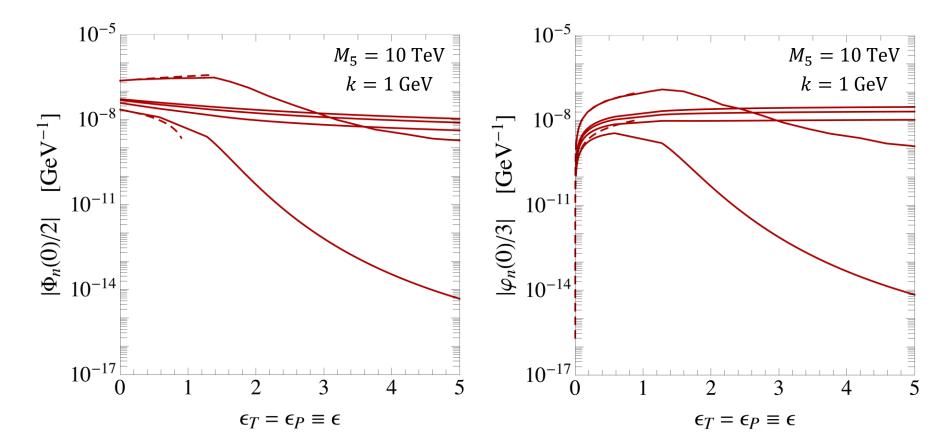
For coupling to T^{μ}_{μ} only and neglecting phase space suppressions


$$\begin{split} \Gamma_{WW} &= \frac{\Gamma_0}{2} \qquad \Gamma_{ZZ} = \Gamma_{hh} = \frac{\Gamma_0}{4} \\ \Gamma_{gg} &= 49 \left(\frac{\alpha_s}{2\pi}\right)^2 \Gamma_0 \approx 0.012 \ \Gamma_0 \\ \Gamma_{\gamma\gamma} &= \frac{289}{72} \left(\frac{\alpha}{2\pi}\right)^2 \Gamma_0 \approx 6 \times 10^{-6} \ \Gamma_0 \\ \Gamma_{f\bar{f}} &= N_{c,f} \left(\frac{m_f}{m_n}\right)^2 \Gamma_0 \end{split}$$

where for $n \gg kR$

$$\Gamma_0 \simeq \frac{1}{54\pi^2 kR} \left(\frac{k}{M_5}\right)^3 m_n$$

Dependence on stabilization mechanism


KK dilaton/radion mass spectrum

Dependence on stabilization mechanism

KK dilaton/radion couplings

$$\mathcal{L}_n \supset -\left(\frac{\Phi_n(0)}{2} T^{\mu}_{\mu} + \frac{\varphi_n(0)}{3} \mathcal{L}_{\rm SM}\right) S^{(n)}$$

