

The broad physics program of the Gerda experiment Neutrinoless double beta decay & beyond

Yannick Müller On behalf of the GERmanium Detector Array (Gerda) collaboration

May 24, 2023

Physik-Institut, University of Zurich

Neutrinoless double beta decay

Signature:

SM $2\nu\beta\beta$ decay in ⁷⁶Ge:

- ${}^{76}\text{Ge} \rightarrow {}^{76}\text{Se} + 2e^- + 2\bar{\nu}_e$
- continuous, broad spectrum

BSM $0\nu\beta\beta$ decay in ⁷⁶Ge: • ⁷⁶Ge \rightarrow ⁷⁶Se + 2e⁻ • peak at $Q_{\beta\beta}$ = 2039 keV

Physics implications:

- nature of neutrinos (Dirac vs Majorana)
- neutrino mass scale & ordering (normal vs inverted)
- violation of lepton number conservation
- matter-antimatter asymmetry in the Universe

Majorana mass sensitivity:

$$|m_{etaeta}| \propto rac{m_e}{\sqrt{\mathcal{M}^2 \, \mathcal{G} \, T_{1/2}}}$$

- Majorana mass definition $|m_{\beta\beta}| = |\sum_i U_{ei}^2 m_i|, U_{ei}$ from PMNS matrix
- nuclear matrix element \mathcal{M}
- phase space factor G
- half-life of $0\nu\beta\beta T_{1/2}$

Half-life sensitivity, w. background vs background-free:

$$T_{1/2} \propto f \epsilon \sqrt{\frac{Mt}{B \sigma_E}}$$
 vs $T_{1/2} \propto f \epsilon M t$

- enrichment fraction f
- efficiency ϵ
- mass M
- measurement time t
- background index B
- energy resolution σ_E at $Q_{\beta\beta}$

 \rightarrow low background level & good energy resolution crucial

Gerda Approach

Science 365, 1445 (2019)

Main principles:

- $0\nu\beta\beta$ source = detector, high detection efficiency
- operate high-purity Ge (HPGe) detectors, semiconductors, bandgap O(1eV), excellent energy resolution, no measurable internal background contamination, allow for event pulse shape discrimination (PSD)
- liquid argon (LAr) serves as coolant, shield & active veto
- LAr cryostat immersed into water tank equipped with PMTs
- operated at LNGS, 1400m rock overburden (3500 mwe), cosmic muon reduction O(10⁶)

EXPERIMENTAL DESIGN

Eur. Phys. J. C 78 388 (2018)

Instrumentation:

- up to 41 detectors enriched in ⁷⁶Ge (up to 87% enrichment & 43.6 kg total mass)
- 6 to 7 detector strings, covered by nylon cylinders
- LAr instrumentation consisting of wavelength-shifting fibres coupled to SiPMs, plus PMTs

DETECTOR OPERATION

Eur. Phys. J. C. 79 978 (2019), Eur. Phys. J. C, 81 505 (2021)

- Detector types:
 - semi-coaxial shaped (Coax): 1 to 3 kg weight
 - broad energy germanium (BEGe): ~0.7 kg weight, superior resolution & PSD
 - inverted coaxial (IC): feature ~2 kg weight, superior resolution & PSD

Operation phases:

- 2011-2013: Phase I, 23.5 kg yr exposure
- 2015-2019: Phase II, 103.7 kg yr exposure, installation of LAr veto, upgrade with IC detectors in 2018, operation in background-free regime
- both phases: regular calibrations with 228 Th sources to calibrate energy scale and to measure energy resolution (FWHM of ~0.15% at $Q_{\beta\beta}$)

BACKGROUND REDUCTION

More details in backup slides

Analysis cuts for $0\nu\beta\beta$ search: w. signal survival probability

- PSD ~69-90%
- multiplicity / coincidence ~99.9%
- LAr veto ~98%
- muon veto ~99.9%

0νββ signal efficiencies: after all cuts & enrichment

- Coax ~46%
- BEGe ~61%
- IC ~66%

 $\beta\beta$ decay signal: single-site event energy deposition in a 1 mm³ volume

Pulse shape discrimination (PSD) for multi-site and surface α , β events

Ge detector anti-coincidence

LAr veto based on Ar scintillation light read by fibers and PMT

Muon veto based on Cherenkov light and plastic scintillator

 $\rightarrow {\sim}60\%$ signal detection efficiency after all background cuts

Search for $0\nu\beta\beta$

PRL 125, 252502 (2020)

Analysis & results:

- spectrum well understood: ~ 0.5 - 2 MeV: $2\nu\beta\beta$, $\gtrsim 4$ MeV: α particles
- flat background in 0νββ signal region
- ± 25 keV around $Q_{\beta\beta}$ blinded
- unbinned maximum likelihood fit
- best $T_{1/2}$ sensitivity in the field
- lowest background level in the field:

 $B = 5.2 \times 10^{-4} \operatorname{cts} / (\operatorname{keV} \operatorname{kg} \operatorname{yr})$

Limit & sensitivity: $T_{1/2} > 1.8 (1.4) \times 10^{26} \text{ yr } 90\% \text{ CL (CI)} \rightarrow |m_{\beta\beta}| \lesssim 79 - 180 \text{ meV}$

$2\nu\beta\beta$ spectral distortions

JCAP 12 (2022) 012

Exotic signatures in $2\nu\beta\beta$

spectrum:

(selected constraints, 90% CL)

- sterile neutrino emission, $2n \rightarrow 2p + 2e^- + \bar{\nu}_e + N$ $m_N = 600 \text{ keV}$: $\sin \theta < 0.03$
- Z_2 -odd fermion emission, $2n \rightarrow 2p + 2e^- + 2\chi$ $m_{\chi} = 300 \text{ keV:}$ $T_{1/2} > 1.3 \times 10^{23} \text{ yr}$
- Majoron emissions, $2n \rightarrow 2p + 2e^- + J(JJ)$ J, n = (1, 2, 3): $T_{1/2} > (6.4, 2.9, 1.2) \times 10^{23}$ yr, JJ, n = (3, 7): $T_{1/2} > (1.2, 1.0) \times 10^{23}$ yr
- Lorentz violation in neutrino sector, $2n \rightarrow 2p + 2e^- + 2\bar{\nu}_{LV}$, perturbation $\propto a_{of}^{(3)}$ $(-2.7 < a_{of}^{(3)} < 6.2) \times 10^{-6}$ GeV

BSM decays - preliminary results

paper on tri-nucleon decays submitted to Eur. Phys. J. C, 2 papers in preparation (single-nucleon & electron decays, 0vECEC in ³⁶Ar)

Probes of baryon number, charge, & lepton number conservation:

- inclusive neutron & proton decays $({}^{76}\text{Ge} \rightarrow {}^{75}\text{Ge}, {}^{76}\text{Ge} \rightarrow {}^{75}\text{Ga} \rightarrow {}^{75}\text{Ge}),$ $e^-\gamma$ -pair signal from ${}^{75}\text{Ge} \beta$ decay to ${}^{75}\text{As}$ & de-excitation, $\tau_n > 1.6 (1.5) \times 10^{24} \text{ yr 90\% CL (CI)},$ $\tau_p > 1.4 (1.3) \times 10^{24} \text{ yr 90\% CL (CI)}$
- inclusive tri-nucleon decays (ppp, ppn, pnn) of ⁷⁶Ge, γ events at 66.7 keV from de-excitation in ⁷³Ge after β decay of ⁷³Ga, $\tau_{ppp,ppn,pnn} > 1.6 \times 10^{26}$ yr 90% CI
- semi-visible electron decay $e^- \rightarrow v\gamma$, Doppler-broadened line signal at ~256 keV, $\tau_e > 1.2 (0.7) \times 10^{26}$ yr 90% CL (CI)
- radiative neutrinoless double electron capture in ³⁶Ar, γ-line signal at ~430 keV, T_{1/2} > 1.6 × 10²² yr 90% CL

⁷⁵Ge decay tagging as a neutron & proton decay signature

BOSONIC DARK MATTER - PRELIMINARY RESULTS

Phys. Rev. Lett. 125 (2020) 011801, Erratum: Phys. Rev. Lett. 129 (2022) 089901, new paper in preparation

Summary & outlook

GERDA employed an array of up to 43.6 kg of HPGe detectors enriched in 76 Ge to search for $0\nu\beta\beta$.

A stringent constraint of $T_{1/2} > 1.8 \times 10^{26}$ yr at 90% CL was set, implying $|m_{\beta\beta}| \lesssim 79 - 180$ meV.

With excellent energy resolution & background performances, GERDA provides an ideal environment to probe new physics beyond $0\nu\beta\beta$, such as exotic particle-emissions or -decays, & dark matter interactions.

Benefitting from the experience of GERDA, LEGEND will operate ~200 kg & ~1000 kg of HPGe detectors in two stages, probing $0\nu\beta\beta T_{1/2}$ sensitivities beyond 10^{28} yr, & further broadening the physics program beyond $0\nu\beta\beta$.

see talk on LEGEND by Sofia Calgaro on Thursday, parallel session 20

Constraints on the two neutrino mass ordering regimes:

Pocar, Physics Procedia 37:6-15 (2012)

Comparison of rough sensitivity between ongoing & planned experiments (marked: 5 yr runtime):

Agostini, Benato, Detwiler, Phys. Rev. D 96 053001 (2017)

JCAP 12 (2022) 012

Comparison of the results of GERDA & other experiments on exotic spectral distortions in $2\nu\beta\beta$ spectrum (left: sterile neutrinos, right: Lorentz violation):

Isotope	Limits on $\mathring{a}_{\rm of}^{(3)}$ (GeV) at 90% C.L.	Ref.
76 Ge	$(-2.7 < \mathring{a}_{ m of}^{(3)} < 6.2) \cdot 10^{-6}$	this work
¹³⁶ Xe	$-2.65 \cdot 10^{-5} < \mathring{a}_{of}^{(3)} < 7.6 \cdot 10^{-6}$	EXO-200 [68]
¹¹⁶ Cd	$\mathring{a}_{of}^{(3)} < 4.0 \cdot 10^{-6}$	AURORA [56]
^{100}Mo	$(-4.2 < a_{of}^{(3)} < 3.5) \cdot 10^{-7}$	NEMO-3 [28]
^{82}Se	$\dot{a}_{\rm of}^{(3)} < 4.1 \cdot 10^{-6}$	CUPID-0 [69]
$^{3}\mathrm{H}$ (single- β decay)	$ \mathring{a}_{ m of}^{(3)} < 2 \cdot 10^{-8}$	Díaz et al. [65]
	$ \mathring{a}_{ m of}^{(3)} < 3 \cdot 10^{-8}$	KATRIN [70]

BACKUP: COMPARISON FOR BSM DECAY SEARCHES

paper on tri-nucleon decays submitted to Eur. Phys. J. C. paper on nucleon & electron decays in preparation

Comparison of the results of GERDA & other experiments on BSM decays (left: neutron & proton decays, right: top: tri-nucleon decays, bottom: electron decays):

				Experiment	decay		$\tau_{b}[x]\left(yr\right)$
Experiment	Decay	$n_{ m eff}$	$ au_{ m low}~({ m yr})$	GERDA	$^{76}\text{Ge} \xrightarrow{ppp}$	⁷³ Cu + X	$1.20 imes 10^{26}$
CERRA	$76C_0 \xrightarrow{n} 75C_0 + V$	16	$1.6(1.5) \times 10^{24}$		$^{76}\text{Ge} \xrightarrow{ppn}$	73 Zn + X	1.20×10^{26}
GERDA	$Ge \xrightarrow{p} Ge + X$ $76Ce \xrightarrow{p} 75Ce + X$	14	$1.0(1.3) \times 10^{-1}$ $1.4(1.2) \times 10^{-24}$		$^{76}\text{Ge} \xrightarrow{pnn}$	⁷³ Ga + X	$1.20 imes 10^{26}$
SNO [14] (a)	$160 \xrightarrow{n} 150 \pm inv$	8	$1.4(1.3) \times 10^{29}$		$^{76}\text{Ge} \xrightarrow{nnn}$	⁷³ Ge + X _{invisble}	$k \times 10^{26}$
5110 [14]	$160 \xrightarrow{p} 15N \pm inv$	8	1.3×10^{29} 2.1 × 10 ²⁹	MAJORANA [19]	$^{76}\text{Ge} \xrightarrow{ppp}$	⁷³ Cu + X	$1.08 imes 10^{25}$
$SNO + [15]^{(a)}$	$^{16}O \xrightarrow{n} ^{15}O + inv$	8	2.1×10^{29} 2.5 × 10 ²⁹		$^{76}\text{Ge} \xrightarrow{ppp}$	73 Cu e ⁺ $\pi^+\pi^+$	$6.78 imes 10^{25}$
	${}^{16}O \xrightarrow{p} {}^{15}N + inv.$	8	3.6×10^{29}		⁷⁶ Ge \xrightarrow{ppn}	73 Zn e ⁺ π ⁺	7.03×10^{25}
Borexino [16] (b)	${}^{12}C \xrightarrow{n} {}^{11}C + inv.$	4	1.8×10^{25}	EXO-200 [20]	136 Xe PPP	133Sb + X	3.3×10^{23}
	${}^{13}C \xrightarrow{p} {}^{12}B + inv.$	4	1.1×10^{26}	LAO-200 [20]	136 Va ppn	133Ta + X	1.0×10^{23}
DAMA/LXe [17]	136 Xe \xrightarrow{n} 135 Xe + X	32	3.3×10^{23}	Hagama at al. [21]	127 I nnn, 12		1.9×10^{23}
	$^{136}Xe \xrightarrow{p} ^{135}I + X$	26	$4.5 imes 10^{23}$	nazama et al. [21]	$1 \longrightarrow 1$	1 + A	1.8 × 10
DAMA [18]	$^{129}Xe \xrightarrow{p} ^{128}I + X$	24	$1.9 imes 10^{24}$				
NaI(Tl) [19]	$^{127}I \xrightarrow{n} ^{126}I + X$	34	$1.5 imes 10^{24}$	Experiment Mode		$ au_{e}~({ m yr})$	
	${}^{127}I \xrightarrow{p} {}^{126}Te + X$	20	3.0×10^{24}				0.0 1029
Geochemical [20, 21]	$^{130}\text{Te} \xrightarrow{n} ^{129}\text{Te} + X$	28	$8.6 imes 10^{24}$	Borexino [5]	IJ	semi-visible	6.6×10^{26}
	$^{130}\mathrm{Te}\xrightarrow{p}{^{129}}\mathrm{Sb}+X$	24	7.4×10^{24}	H.V. Klapdor-Kleingrothaus semi-visibl et al. [23]		semi-visible	9.4×10^{25}
^(a) Searches for γ rays coming from the de-excitation of a residual				Majorana		invisible	1.2×10^{24}

 $^{(a)}$ Searches for γ rays coming from the de-excitation of a residual excited nucleus following the disappearance of a nucleon in $^{16}{\rm O}.$

^(b) Searches for decays of unstable nuclei left after nucleon decays of parent ¹²C, ¹³C nuclei.

PRELIMINARY RESULTS

Demonstrator [52]

Edelweiss-III [53]

GERDA

 1.2×10^{24}

 1.2×10^{26}

 (6.6×10^{25})

invisible

semi-visible

BACKUP: BACKGROUND MODEL

J.High Energ. Phys. 2020, 139 (2020)

Components of the background model of GERDA & the implementation of the detector array in the MaGe simulation framework:

BACKUP: PULSE SHAPE DISCRIMINATION

Eur. Phys. J. C 73 2583 (2013), Eur. Phys. J. C 82 284 (2022)

Event classification:

- single-site events (SSE): signal-like
- multi-site events (MSE): induce double-peak structure
- surface *α* events, *p*+ contact: fast risetime, high current
- surface β events, n+ contact: incomplete charge collection
- rejection based on current amplitude over energy (*A*/*E*) for BEGe, IC, & on artificial neural network comparing pulse shape for Coax

BACKUP: PULSE SHAPE CUT PERFORMANCE

Survival fraction of calibration data events after applying pulse shape discrimination:

A/*E* cut applied to physics data:

BACKUP: LAR VETO CUT

Eur. Phys. J. C 83 (2023) 319

Background event reduction by applying the LAr veto cut:

BACKUP: EXPOSURE ACCUMULATION

Timeline of the experimental operation:

BACKUP: DETECTOR CALIBRATION

Eur. Phys. J. C 81, 8 682 (2021)

Calibration strategy:

- ~weekly calibrations with 3 ²²⁸Th sources
- use γ lines of known energies to convert ADC to physical units (keV)
- peak fitting algorithm to determine each detector's resolution
- Gaussian mixture models to determine resolutions per detector type

 \rightarrow Gerda achieved relative energy resolutions (FWHM) of ~ 0.15% at $Q_{\beta\beta}$

BACKUP: RESOLUTION STABILITY

Time behaviour of energy scale & resolution stability of the detectors, determined via calibrations & pulser scans:

Date (year-month)

Eur. J. Phys. C 75 (2015) 255

Event energy estimation (in uncalibrated arbitrary energy units) from integrated signal waveform via Gaussian & zero-area cusp filter, then conversion into physical units via calibration:

Comparison of the different isotopes undergoing double beta decay:

isotope	Q-value [MeV]	nat. abundance [%]	_
¹¹⁰ Pd	2.02	11.7	Even-A
⁷⁶ Ge	2.04	7.73	
¹²⁴ Sn	2.29	5.8	- Oddodd
¹³⁶ Xe	2.46	8.86	Z DVEN GIVEN
¹³⁰ Te	2.53	34.1	
¹¹⁶ Cd	2.81	7.5	
⁸² Se	3.00	8.7	Z-2 Z-1 Z Z+1 Z+2
¹⁰⁰ Mo	3.03	9.8	Saakvan, Review of Nuclear and Particle
⁹⁶ Zr	3.35	2.8	Science 63 503 (2013)
¹⁵⁰ Nd	3.37	5.6	
⁴⁸ Ca	4.27	0.187	

Comparison of nuclear matrix elements & phase space factors of different isotopes:

Gomez-Cadenas, Martin-Albo, PoS GSSI 14 004 (2015)

Kotila, Iachello, Phys. Rev. C 85 034316 (2012)