Well-tempered n-plet dark matter

Felix Brümmer

1703.00370, with Aoife Bharucha and Ronan Ruffault

Observation:

EW-scale mass + EW-scale cross section \Rightarrow thermal relic density $\Omega h^2 \approx 0.1$ = observed value

Observation:

EW-scale mass + EW-scale cross section \Rightarrow thermal relic density $\Omega h^2 \approx 0.1$ = observed value

"WIMP miracle"

A closer look:

To match the observed relic density

- a thermal higgsino needs $m = 1.1 \text{ TeV} \gg m_Z$
- a thermal wino needs $m = 2.5 \text{ TeV} \gg m_Z$
- minimal DM (fermionic 5-plet or scalar 7-plet) needs $m \approx 10 \text{ TeV} \gg m_Z$

• ...

A WIMP with generic electroweak quantum numbers and a mass of \sim 100 GeV has a too large annihilation cross section.

A WIMP which is within kinematic reach of LHC is necessarily mostly $SU(2) \times U(1)$ singlet.

Assumptions for this talk:

- DM = mostly SU(2) \times U(1) singlet
- Some admixture of non-singlet state for right relic density from coannihilation
- Mass of order 100 GeV to be within LHC reach
- Q: Why should nature care about LHC discovery potential?
- A: She might not but we do!

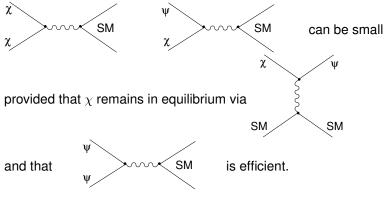
Further assumptions:

- DM is a fermion
- Stabilized by Z₂
- Sub-TeV particle content is minimal
- We don't consider EW doublets

 \rightarrow extensive literature on well-tempered bino-higgsino and its non-SUSY version

Dark matter is a singlet fermion χ mixing with an *n*-plet fermion ψ ($n \ge 3$) through higher-dimensional operators.

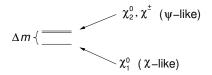
States inducing the mixing live at scales \gtrsim TeV \Rightarrow mostly irrelevant for LHC if carrying only EW charges.


Familiar example: Split SUSY with somewhat heavy higgsinos and $M_1 < M_2$. DM is mostly bino, mixing with wino through dimension-5 operator

$$\mathcal{L}_{\mathsf{mix}} = rac{ ilde{g}_{u} ilde{g}_{d}' + ilde{g}_{d} ilde{g}_{u}'}{\mu} \ \phi^{\dagger} au^{a} \phi \ \widetilde{W}^{a} \ \widetilde{B}$$

 \rightarrow e.g. Arkani-Hamed/Delgado/Giudice '06

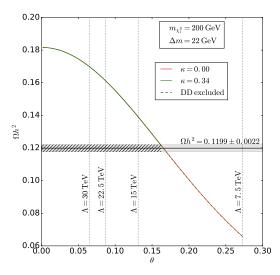
Relic density


Somewhat under-appreciated fact: Coannihilation can be very efficient in reducing the DM relic density even when DM coupling to SM is tiny.

Annihilation of ψ efficiently depletes χ density, even if $\psi - \chi$ mixing angle is $\ll 1$.

First case study: SU(2) triplets

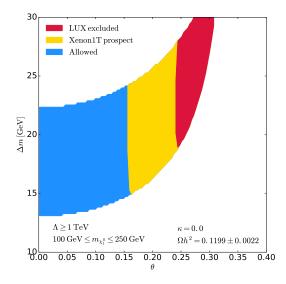
Particle content: one charged and two neutral fermions



Interactions of χ_1^0 with SM mainly through two operators:

$$\mathcal{L} = rac{1}{2} rac{\kappa}{\Lambda} \phi^{\dagger} \phi \chi \chi + rac{\lambda}{\Lambda} \phi^{\dagger} \tau^{a} \phi \ \psi^{a} \chi + ext{h.c.}$$

 ϕ = SM Higgs; Λ = cutoff scale. Wilson coefficients κ , λ both contribute to DM annihilation (\Rightarrow thermal relic density) and DM-nucleus scattering (\Rightarrow direct detection). Trade λ for mixing angle $\theta = \frac{\lambda}{4} \frac{v^2}{\Delta m}$


First case study: SU(2) triplets

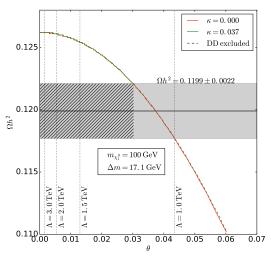
Any κ large enough to influence relic density significantly is ruled out by direct detection.

Felix Brümmer

First case study: SU(2) triplets For $\kappa = 0$:

Second case study: SU(2) quintuplets

Particle content: one doubly charged, one singly charged and two neutral fermions

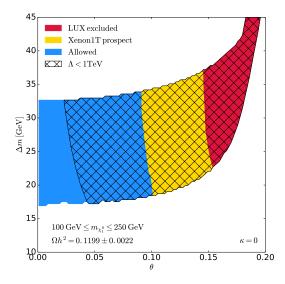

$$\Delta m \{ \underbrace{\qquad \qquad} \chi_2^0, \chi^{\frac{1}{2}}, \chi^{\frac{1}{2}} (\psi - \text{like}) \\ \chi_1^0 (\chi - \text{like}) \}$$

- Doubly charged state ⇒ potentially characteristic signatures at LHC (long-lived)
- Mixing operator is now dimension 7:

$$\frac{\lambda}{\Lambda^3}\phi^{\dagger i}\phi_j\phi^{\dagger k}\phi_\ell \ C^{j\ell}_{A\,ik}\psi^A\chi + \text{h.c.}$$

 \Rightarrow mixing angles small for reasonable cutoff scale ($\Lambda \gtrsim \text{TeV}$)

Second case study: SU(2) quintuplets



Similar to triplet case. Mass parameters need some tuning. Wilson coefficient κ for dimension-5 operator $\frac{\kappa}{\Lambda}\phi^{\dagger}\phi\chi\chi$ already tightly constrained by direct detection.

Felix Brümmer

Well-tempered n-plet DN

First case study: SU(2) quintuplets For $\kappa = 0$:

On quadruplets

The quadruplet (isospin 3/2) case is more complicated because

- we now need a Dirac fermion $(\psi, \overline{\psi})$
- one doubly charged, two singly charged mass eigenstates
- three neutral mass eigenstates \Rightarrow two relevant neutral mixing angles
- spectrum depends on additional Wilson coefficients inducing non-universal mass splittings in the ψ sector
- proliferation of parameters

Result of our analysis: Qualitatively similar conclusions as for triplet/quintuplet case \rightarrow FB/Bharucha/Ruffault '17

Conclusions

- Dark matter could be a mixed singlet-*n*-plet with an EW-scale mass.
- Effective theory. Mixing induced by higher-dimensional operators.
- Simplest example: Well-tempered bino-wino in split SUSY.
- More interesting for colliders: Singlet-quintuplet (doubly charged states).
- LUX already very constraining, even more so with Xenon1T.
- Collider phenomenology: under investigation.