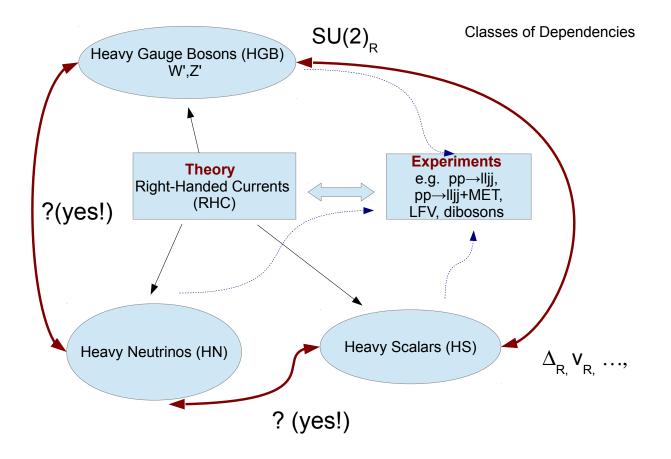
MLRSM Higgs bosons at the LHC and beyond

Tomasz Jeliński

University of Silesia


in collaboration with:

J. Gluza, M. Kordiaczyńska, G. Bambhaniya, J. Chakrabortty, R. Szafron

arXiv:1504.03999, PRD **92** (2015) 1, 015016 arXiv:1408.0774, PRD **90** (2014) 9, 095003 arXiv:1311.4144, JHEP **1405** (2014) 033

Scalars 2015, Warsaw, 3-7 December 2015

RHC includes plenty of connected issues

Right-handed currents

$$\mathcal{L} \supset \frac{g_L}{\sqrt{2}} \overline{N}_a \gamma^{\mu} P_R(K_R)_{aj} l_j W_{2\mu}^+ + \text{h.c.}$$

$$M_{\nu} = \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}, \qquad U \approx \begin{pmatrix} 1 & 0 \\ 0 & K_R^{\dagger} \end{pmatrix}$$

- \clubsuit heavy gauge boson W_2^\pm , $M_{W_2}\sim 2~{\rm TeV}$
- \diamond heavy neutrinos N_a , $M_D \ll M_R$
- * K_R is heavy neutrino mixing matrix defined by $M_R = K_R^T \operatorname{diag}(M_{N_1}, M_{N_2}, M_{N_3}) K_R$

LHC-1 excess data

A few deviations from the SM reported by the ATLAS and CMS in invariant mass distributions near 2 TeV:

(i) 3.4σ excess at ${\sim}2$ TeV in the ATLAS search interpreted as a W' boson decaying into $WZ \to jj$

(ii) 1.4σ excess at ~ 1.9 TeV in the CMS search for jj resonances without distinguishing between the W- and Z-tagged jets

(iii) 2.8 σ excess in the 1.8 – 2.2 TeV bin in the CMS search for a W' and a heavy "right-handed" neutrino, N_R , through the $W' \rightarrow N_R e \rightarrow eejj$ process

(iv) 2.2σ excess in the 1.8 - 1.9 TeV bin in the CMS search for $W' \to Wh^0$, where the SM Higgs boson, h^0 , is highly boosted and decays into $b\bar{b}$, while $W \to \ell\nu$

(v) 2σ excess at ~ 1.8 TeV in the CMS dijet resonance search The ATLAS search in the same channel has yielded only a 1σ excess at 1.8 TeV

Higgs sector consists of two triplets $\Delta_{L,R}$ and one bidoublet ϕ

$$\Delta_{L,R} = \begin{pmatrix} \delta_{L,R}^{+} / \sqrt{2} & \delta_{L,R}^{++} \\ \delta_{L,R}^{0} & -\delta_{L,R}^{+} / \sqrt{2} \end{pmatrix}, \qquad \Phi = \begin{pmatrix} \phi_{1}^{0} & \phi_{1}^{+} \\ \phi_{2}^{-} & \phi_{2}^{0} \end{pmatrix}$$

with vacuum expectation values for the neutral scalars

$$\frac{v_L}{\sqrt{2}} = \langle \delta_L^0 \rangle, \quad \frac{v_R}{\sqrt{2}} = \langle \delta_R^0 \rangle, \qquad SU(2)_R \text{ breaking scale: } v_R \sim \mathcal{O}(10) \text{ TeV}$$
$$\frac{\kappa_1}{\sqrt{2}} = \langle \phi_1^0 \rangle, \quad \frac{\kappa_2}{\sqrt{2}} = \langle \phi_2^0 \rangle, \qquad \text{SM scale: } \sqrt{\kappa_1^2 + \kappa_2^2}$$

Physical scalars

♦ 4 neutral scalars: H_0^0 , H_1^0 , H_2^0 , H_3^0 , (the first can be considered to be the light Higgs of the SM),

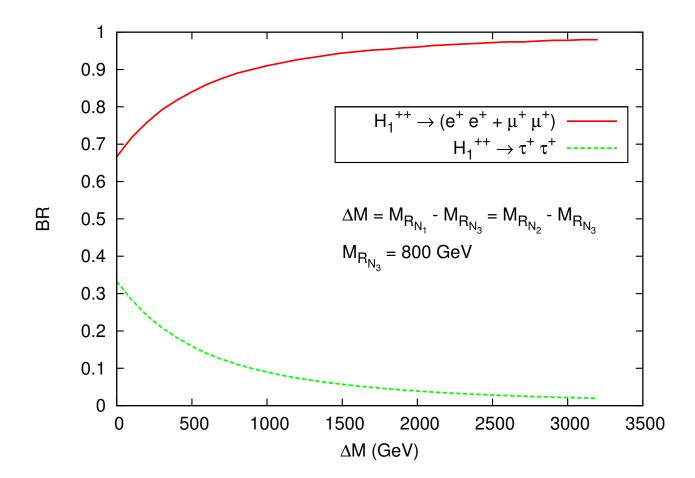
* 2 neutral pseudo-scalars: A_1^0, A_2^0 ,

• 2 charged scalars: H_1^{\pm}, H_2^{\pm} ,

♦ 2 doubly charged scalars: $H_1^{\pm\pm}, H_2^{\pm\pm}$.

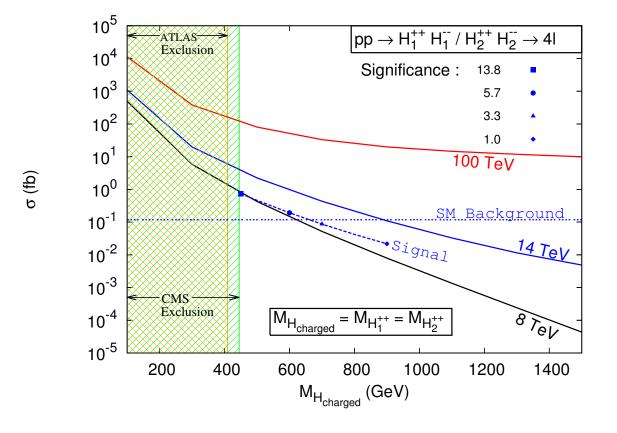
Primary production	Secondary production	Signal
I. $H_1^+ H_1^-$	$\ell^+\ell^-\nu_L\nu_L$	$\ell^+\ell^- \oplus MET$
_	$\ell^+ \ell^- \nu_R \nu_R$	depends on $ u_R$ decay modes
-	$\ell^+\ell^-\nu_L\nu_R$	depends on $ u_R$ decay modes
II. $H_2^+ H_2^-$	$\ell^+\ell^-\nu_L\nu_L$	$\ell^+\ell^-\oplus MET$
-	$\frac{\ell^+\ell^-\nu_R\nu_R}{\ell^+\ell^-\nu_L\nu_R}$	depends on $ u_R$ decay modes
-	$\ell^+\ell^-\nu_L\nu_R$	depends on $ u_R$ decay modes
$H_1 H_1^{++} H_1^{}$	_	$\ell^+\ell^+\ell^-\ell^-$
_	$H_1^+ H_1^+ H_1^- H_1^-$	See I
-	$H_1^{\pm} H_1^{\pm} H_2^{\mp} H_2^{\mp}$	See I & II
-	$H_2^+ H_2^+ H_2^- H_2^-$	See II
-	$W_i^+ W_i^+ W_j^- W_j^-$	depends on W 's decay modes
IV. $H_2^{++}H_2^{}$	-	$\ell^+\ell^+\ell^-\ell^-$
-	$H_2^+ H_2^+ H_2^- H_2^-$	See II
_	$H_1^{\pm} H_1^{\pm} H_2^{\mp} H_2^{\mp}$	See I & II
-	$H_1^+ H_1^+ H_1^- H_1^-$	See I
-	$W_i^+W_i^+W_j^-W_j^-$	depends on W 's decay modes
V. $H_1^{\pm\pm}H_1^{\mp}$	-	$l^{\pm}l^{\pm}l^{\mp}\nu_L$
VI. $H_2^{\pm\pm}H_2^{\mp}$	-	$l^{\pm}l^{\pm}l^{\mp}\nu_L$
VII. $H_1^{\pm}Z_i, H_1^{\pm}W_i$	_	See I & Z_i, W_i decay modes
VIII. $H_2^{\pm}Z_i, H_1^{\pm}W_i$	_	See II & Z_i, W_i decay modes
$ X. H_1^{\pm}A $	_	See I
X. $H_2^{\pm}A$	_	See II

Branching ratios

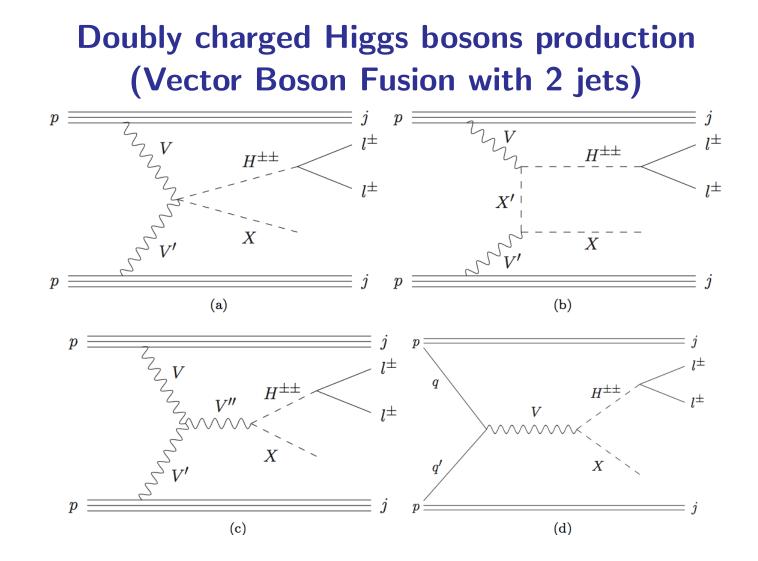

(i)
$$H_1^{\pm\pm} \to l^{\pm}l^{\pm}$$
, where $l = e, \mu, \tau$;
(ii) $H_1^{\pm\pm} \to H_1^{\pm}W_1^{\pm}$;
(iii) $H_2^{\pm\pm} \to l^{\pm}l^{\pm}$, where $l = e, \mu, \tau$;
(iv) $H_2^{\pm\pm} \to H_2^{\pm}W_2^{\pm}$;
(v) $H_2^{\pm\pm} \to W_2^{\pm}W_2^{\pm}$;
(v) $H_2^{\pm\pm} \to H_2^{\pm}W_1^{\pm}$;

In principle we can have both LNV and LFV,

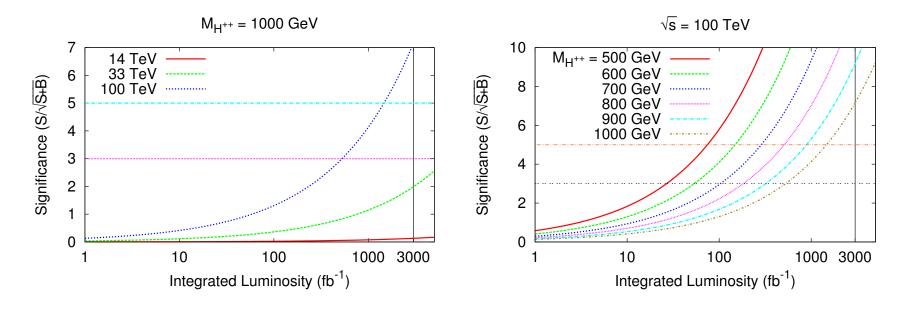
$$BR(H_{1/2}^{\pm\pm} \to e^{\pm}e^{\pm}) = 37.9\%$$


$$BR(H_{1/2}^{\pm\pm} \to \mu^{\pm}\mu^{\pm}) = 37.9\%$$

$$BR(H_{1/2}^{\pm\pm} \to \tau^{\pm}\tau^{\pm}) = 24.2\%.$$


Doubly charged Higgses production (Drell-Yan)

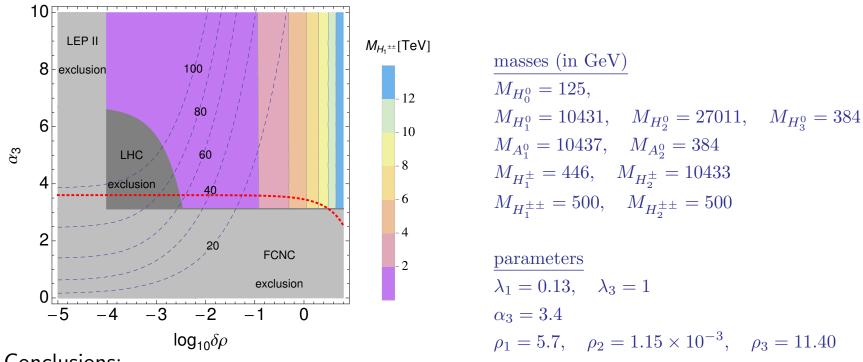
$$\begin{split} m_{H_{1,2}^{\pm\pm}} &= 600 \text{ GeV}: \\ \sigma(pp \to H_{1,2}^{++} H_{1,2}^{--} \to l_i^{++} l_i^{-} l_j^{--}) &= 0.144(0.9498) \text{ fb for } \sqrt{s} = 8(14) \text{ TeV} \end{split}$$


Kinematic cuts for H^{++} production at the LHC

- The Parton Distribution Function (PDF) CTEQ6L1
- lace Initially to select a lepton, MadGraph, PYTHIA, $|\eta| < 2.5$ and $p_T > 10$ GeV
- Detector efficiency cut for leptons is as follows:
 - \diamond For electron (either e^- or e^+) detector efficiency is 0.7 (70%);
 - \diamond For muon (either μ^- or μ^+) detector efficiency is 0.9 (90%).
- \clubsuit Smearing of electron energy and muon p_T are done
- * Lepton-lepton separation. $\Delta R_{ll} \ge 0.2$
- * Lepton-photon separation cut is also applied: $\Delta R_{l\gamma} \ge 0.2$ with all the photons having $p_{T\gamma} > 10$ GeV;
- ★ Lepton-jet separation: The separation of a lepton with all the jets should be $R_{lj} \ge 0.4$, otherwise that lepton is not counted as lepton. Jets are constructed from hadrons using PYCELL within the PYTHIA.
- ✤ Hadronic activity cut. This cut is applied to take only pure kind of leptons that have very less hadronic activity around them. Each lepton should have hadronic activity, $\frac{\sum p_{T_{hadron}}}{p_{T_{l}}} \leq 0.2$ within the cone of radius 0.2 around the lepton.
- \clubsuit Hard p_T cuts: $p_{Tl_1}>30$ GeV, $p_{Tl_2}>30$ GeV, $p_{Tl_3}>20$ GeV, $p_{Tl_4}>20$ GeV.
- Missing p_T cut. Since 4-lepton final state is without missing p_T , missing p_T cut is not applied while for 3-lepton final state there is a missing neutrino, so missing p_T cut ($p_T > 30$ GeV) is applied.
- Z-veto is also applied to suppress the SM background. This has larger impact while reducing the background for four-lepton without missing energy.

LHC has dedicated search channels for tagged forward jets.

Doubly charged Higgs bosons production (Vector Boson Fusion with 2 jets)



- * Left: 1 TeV doubly charged scalar can be probed with a significance of 5 only with 100 TeV collider with luminosity at least 1000 ${\rm fb}^{-1}$
- ♦ Right: significance at the level of 7 can be reached for $M_{H^{\pm\pm}} = 1 \text{ TeV}$ and $\sqrt{s} = 100 \text{ TeV}$ with integrated luminosities around 3000 fb⁻¹.

Constraints, dependences: theory and experiment

Naturally, $m_{H}^{\pm,0} \propto v_{R}.$

♦ 124.7 GeV < $M_{H^0_0}$ < 126.2 GeV $M_{H_0^0}^2 \simeq 2\kappa_+^2 \lambda_1 - \frac{\alpha_1^2}{2\rho_1},$ $M_{H_1^0}^2(FCNC) \simeq \frac{1}{2}\alpha_3 v_R^2$ FCNC > 10 TeV, $M_{H_2^0}^2 \simeq 2\rho_1 v_R^2$ $M_{H^{\pm}_{\star}}^{2}(LHC) = \frac{1}{2}v_{R}^{2}\delta\rho + \frac{1}{4}\alpha_{3}\kappa_{+}^{2}, \qquad (\delta\rho = \rho_{3} - 2\rho_{1})$ $M_{H_1^{\pm\pm}}^2(LHC) = \frac{1}{2} \left[v_R^2 \delta \rho + \alpha_3 \kappa_+^2 \right],$ $M_{H_2^{\pm\pm}}^2(LHC) = 2\rho_2 v_R^2 + \frac{1}{2}\alpha_3 \kappa_+^2.$ LHC < 1 TeV

Conclusions:

only region <u>below</u> the red dotted line is allowed. That line corresponds to the the stability condition.

$$\ \ \, M_{H_1^{\pm\pm}} - M_{H_1^{\pm}} < M_{W_1^{\pm}}, \ \ \, \text{hence on-shell} \ \ H_1^{\pm\pm} \ \, \text{cannot decay to} \ \ H_1^{\pm} \ \, \text{and} \ \ W_1^{\pm}$$

Summary

- some details of Higgs sector are important for interpreting experimental data
- discovery of doubly charged Higgs particles would be something incredibly new and would define new directions in physics
- * 100 TeV collider would open up a very wide range of Higgs boson masses which can be explored
- ♦ → complete significance studies $\sigma(pp \rightarrow H_{1,2}^{++}H_{1,2}^{--} \rightarrow l_i^{+}l_i^{+}l_j^{-}l_j^{-})$ at 100 TeV and estimate SM background, take into account also RGE and unitarity constraints