Dark Matter searches at LHC

Warsaw workshop on non-standard dark matter: multicomponent scenarios and beyond Warsaw, Poland

2nd-5th June 2016

Raman Khurana National Central University, Taiwan On behalf of CMS and ATLAS collaboration

Outline

- Introduction
- Why searching Dark Matter at LHC?
- Where do we look for Dark Matter?
 - Pool of MET+X analysis
 - Simplified model summary
 - Many more but not covered in this presentation.
- Summary

How do we find Dark Matter?

Warsaw Workshop o Dark Matter

$\boxed{\chi} + SM \rightarrow \chi + SM$

IIndirect detection:

Direct detection:

 $\mathbf{M}\chi + \chi \rightarrow SM + SM$

Collider experiment:

$$\mathbf{M} \to \chi + \chi$$

Raman Khurana

How do we find Dark Matter?

$$\boxed{\chi} + SM \rightarrow \chi + SM$$

Indirect detection:

$$\mathbf{v} \chi + \chi \rightarrow SM + SM$$

$$\mathbf{\mathbf{Y}}$$
SM + SM $\rightarrow \chi + \chi$

Dark Matter at LHC

Pros

- **M** Independent of astrophysical uncertainties.
 - ◆Local density/velocity
 - ✦Galaxy density
- Only possible way to create DM particles at laboratory.
- Complementary to other DM experiments.
- **M** Rich physics results due to many signatures.

- Main property of Dark Matter
 - ◆It is DARK
 - Invisible things are hard to see in the collider experiments detectors.
- Many objects can fake invisible particles.
- **M** Requires interaction with some component of proton.

In which final state(s) one should look for Dark Matter at LHC?

In which final state(s) one should look for Dark Matter?

List of simplified models discussed in ATLAS-CMS DM Forum: <u>http://arxiv.org/pdf/1507.00966v1.pdf</u>

8

Effective Field Theories

D Be as general as possible: everything but mediator is heavy

Vary Lorentz structure, spin assignment

ATLAS: http://arxiv.org/abs/1502.01518

$$\mathcal{L}_{D5} = \frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$$

$$\mathcal{L}_d \propto \Lambda^{4-d} \Rightarrow \sigma \propto \Lambda^{2(4-d)}$$

$$\Lambda \sim M/\sqrt{g_{\chi}g_q}$$
Several EFT Models have been considered
$$\mathcal{L}_{D5} = \frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$$

$$\mathcal{L}_{d} \propto \Lambda^{4-d} \Rightarrow \sigma \propto \Lambda^{2(4-d)}$$

$$M^{-1} = \frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$$

$$\mathcal{L}_{d} \propto \Lambda^{4-d} \Rightarrow \sigma \propto \Lambda^{2(4-d)}$$

$$\mathcal{L}_{d} \approx M^{-1} = \frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$$

$$\mathcal{L}_{d} \approx M^{4-d} \Rightarrow \sigma \propto \Lambda^{2(4-d)}$$

$$\mathcal{L}_{d} \approx M/\sqrt{g_{\chi}g_q}$$

Dark Matter Warsaw Workshop o

Failure of EFTs

Have to check that assumptions are valid. Can we really integrate out the mediators?

$$(g_{\chi}g_q) \times \frac{i}{q^2 - M^2} \to -\frac{g_{\chi}g_q}{M^2} \left(1 + \mathcal{O}(q^2/M^2) \cdots\right)$$
$$\Lambda^2 \equiv \frac{M^2}{g_{\chi}g_q}$$

• Effective theory is only valid if

$$Q_{\rm transfer} < M = \sqrt{g_{\chi}g_q}\Lambda < 4\pi\Lambda$$

• At the LHC $Q_{\mathrm{transfer}} \propto p_{T,\mathrm{jet}}$

10

Failure of EFTs

Have to check that assumptions are valid. Can we really integrate out the mediators?

$$(g_{\chi}g_q) \times \frac{i}{q^2 - M^2} \to -\frac{g_{\chi}g_q}{M^2} \left(1 + \mathcal{O}(q^2/M^2) \cdots\right)$$
$$\Lambda^2 \equiv \frac{M^2}{g_{\chi}g_q}$$

• Effective theory is only valid if

$$Q_{\text{transfer}} < M = \sqrt{g_{\chi}g_q}\Lambda < 4\pi\Lambda$$

• At the LHC $Q_{\mathrm{transfer}} \propto p_{T,\mathrm{jet}}$

Simplified Models

Now we have turned a 1-D problem into a multidimensional one.

 M_{χ} , $m_{mediator}$, g_{χ} , g_{q} , $\Gamma_{mediator}$...

Analysis strategy for Mono-X

Discussing one example of Mono-Jet in details

Rest of the analysis can be seen in details from quoted references. Larger X-section \Rightarrow Jet + E_{T}^{miss} $\Rightarrow W/Z (\rightarrow lep/jet)$ + E_Tmiss Cleaner final state - $\Rightarrow t/b + E_{T}^{miss}$ $\Rightarrow \gamma + \mathbf{E_{+}^{miss}}$ \diamond H + E_T^{miss}

Classifying the models

 $g_{\rm DM} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$

EWK style coupling (equal to all leptons)

Axial

 $g_{\rm DM} Z''_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$

EWK style coupling (equal to all leptons)

Scalar

$$g_{
m DM}S\,ar\chi\chi$$

Yukawa style coupling (Mass based coupling) Pseudoscalar

 $g_{\rm DM} P \, \bar{\chi} \gamma^5 \chi$

Yukawa style coupling (Mass based coupling)

Classifying the models

Warsaw Workshop o Dark Matter

ter

Background composition

☐ Main backgrounds:

- Z→vv is the main background [irreducible]
- $\mathbf{M} \rightarrow \mathbf{V}$ when one lepton is out of acceptance or not identified.

Minor backgrounds:

- 🗹 Top: Semi-leptonic tt
- ☑ Di-boson: WW and WZ production mainly
- **Μ**γ+Jets

Mono-Jet/Hadronic V selection

 \Box Look for events with high p_T jet and high MET.

CMS Analysis

CMS-PAS-EXO-16-013

event categorisation:	
◆Mono V	

✦Mono-jet

AK08 jet with $p_T > 250$ GeV

*mass compatible with W/Z mass
window (65-105 GeV)

*MET > 250 GeV
Dedicated MET triggers.

*No AK08 jets

*Two AK04 jets with leading jet $p_T > 100$ GeV.

◆MET > 200 GeV

 \square No additional lepton (e,µ, τ) in the event to reduce ZJets and WJets

 \Box No additional photons to reduce γ +Jets.

No additional b-jets to reduce the Top backgrounds.

Background extraction

 $Z \rightarrow \mu \mu + Jets$

Main backgrounds Z/W +Jets are estimated from data considering 5 control regions.

γ+Jets

W→ev+Jets

18

Background extraction

CMS-PAS-EXO-16-013

Warsaw Workshop of Dark Matter

MonoJet Event in ATLAS

Warsaw Workshop o

Dark Matter

-1 · · · · •

Mono-Jet

□ Not directly comparable.

Different couplings.

Different confidence level.

Warsaw Workshop o Dark Matter

Mono-y

24

Warsaw Workshop o

Mono-Z(→ll)

Main background: ZZ production.

 \Box Very critical to understand the ZZ p_T spectrum.

Dark Matter

Mono-H

New area to search for DM opens with the discovery of SM Higgs boson.

Interpretation in terms of simplified models.

Two decay channel considered:

Mbb

Main challenge: boosted vs resolved categorisation.

Ωγγ

Main challenge: low cross-section/statistics

2HDM q

MonoH→γγ ATLAS-CONF-2016-011 MonoH→ZZ ATLAS-CONF-2015-059

26

Warsaw Workshop o

Dark Matter

Mono-H

ATLAS-CONF-2016-019

Heavy Flavour

Sensitive to scalar and pseudo-scalar mediators.

Categorisation based on # of jets and # of b-tagged jets.

Heavy Flavour

Sensitive to relatively light (pseudo-)scalar

Warsaw Workshop o Dark Matter

Simplified model summary

Warsaw Workshop of Dark Matter

Summary and Conclusions

- A summary of dark matter search analyses at LHC experiments (CMS and ATLAS) are presented.
- **□** Results include usage of latest data collected in 2015 and from Run1.
- Proven to deal with main challenges from Run1 and early Run2.
- **C** Restricting the phase space for simplified models using existing data.
- Consistent signal models within ATLAS and CMS.
- **•** We are completing the picture:
 - Prepared to do various interpretations.
- **D** Looking forward to dark matter signal at LHC.
- This is just scratching the surface of the possibilities, and the program will become much richer (more searches, more signals) as Run 2 continues.

Thank you

Stay tuned with new results from 2016 data.

We may have new surprises this year.

Backup slides

Warsaw Workshop o Dark Matter

ark Matter

Mono-Mania

D Pool of MET+X analysis

- **MET**+J
- **MET**+V_{had}
- \square MET+ γ
- **MET+HF**
- \square MET+H ($\rightarrow \gamma \gamma$ and bb)
- **MET**+top

Mono-Jet CR selection

Single Muon (Wµv)

- E_T^{miss} trigger
- Invert muon veto
- One tight muon p_T > 20 GeV

Single Electron (Wev)

- Single Electron trigger
- Invert electron veto
- One tight electron p_T > 40 GeV
- E_T^{miss} > 50 GeV

Double Muon (Zµµ)

- E_T^{miss} trigger
- Two loose muons
- At least one tight, p_T > 20 GeV
- M_{µµ} [60,120] GeV

Double Electron (Zee)

- Single Electron trigger
- Two loose electrons
- At least one tight, p_T > 40 GeV
- M_{ee} [60,120] GeV

Single Photon (y+jet)

- Single Photon trigger
- One medium photon
- Photon p_T > 175 GeV, |η| < 1.44

35

• Hadronic Recoil:

- Control regions contain identified objects: leptons (µ,e) and photons
- · Identified leptons and photons are added back to the missing energy
- Used in the control regions as a proxy of the "real" E_T^{miss} in the signal one
- This means consider the boson p_T as invisible (W, Z or γ)

Warsaw Workshop o D

Dark Matter

Dark Matter @ LHC: Assumption

D DM can be discovered at LHC assuming that:

If the dark matter exist.

very likely exist.

If the dark matter is made from particles.

not established yet.

If the dark matter particles can be commonly produced at LHC in p-p collisions.

need not be the case.

Dirac DM Operators

Label	Operator	Usual coefficient	Dimension
0 ^{D1}	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3	6
$\mathscr{O}_{\mathrm{D2}}$	$ar{\chi}i\gamma_5\chiar{q}q$	m_q/M_{*}^{3}	6
$\mathcal{O}_{\mathrm{D3}}$	$ar{\chi}\chiar{q}i\gamma_5 q$	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D4}}$	$ar{\chi}i\gamma_5\chiar{q}i\gamma_5q$	m_q/M_{*}^{3}	6
$\mathcal{O}_{\mathrm{D5}}$	$ar{\chi} \gamma^\mu \chi ar{q} \gamma_\mu q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D6}}$	$ar{\chi} \gamma^{\mu} \gamma_5 \chi ar{q} \gamma_{\mu} q$	$1/M_{*}^{2}$	6
$\mathscr{O}_{\mathrm{D7}}$	$ar{oldsymbol{\chi}} \gamma^\mu oldsymbol{\chi} ar{q} \gamma_\mu \gamma_5 q$	$1/M_{*}^{2}$	6
$\mathscr{O}_{\mathrm{D8}}$	$ar{\chi} \gamma^{\mu} \gamma_5 \chi ar{q} \gamma_{\mu} \gamma_5 q$	$1/M_{*}^{2}$	6
$\mathscr{O}_{\mathrm{D9}}$	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
\mathscr{O}_{D10}	$ar{\chi}i\sigma^{\mu u}\gamma_5\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
$\mathscr{O}_{\mathrm{D11}}$	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_S/4M_*^3$	7
$\mathcal{O}_{\mathrm{D12}}$	$\bar{\chi}\gamma_5\chi G_{\mu u}G^{\mu u}$	$i\alpha_S/4M_*^3$	7
Ø _{D13}	$ar{\chi} \chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_S/4M_*^3$	7
$\mathcal{O}_{\mathrm{D14}}$	$ar{\chi}\gamma_5\chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_S/4M_*^3$	7

Raman Khurana 🥼 🧼 Warsaw Workshop 📭 Dark Matter

What are we discriminating against

• To find a signal we look for high MET :

"To find nothing you have to reconstruct everything"[1]

Mono-Z(→ll)

Main background: ZZ production.

 \Box Very critical to understand the ZZ p_T spectrum.

Warsaw Workshop o

Dark Matter

$$\frac{g_q g_\chi}{M_{\rm med}^2 - Q_{\rm tr}^2} = \frac{g_q g_\chi}{M_{\rm med}^2} \left(1 + \frac{Q_{\rm tr}^2}{M_{\rm med}^2} + \mathscr{O}\left(\frac{Q_{\rm tr}^4}{M_{\rm med}^4}\right) \right), \tag{3}$$

- 1. When $Q_{tr}^2 < M_{med}^2 \equiv g_q g_\chi M_*^2$, the approximation in Eq. (3) holds. This is clearly the only region where the EFT approximation remains valid.
- 2. In the region where $Q_{tr}^2 \sim M_{med}^2$ the production cross-section undergoes a resonant enhancement. The EFT approximation misses this enhancement, and is therefore conservative relative to the full theory.
- 3. When $Q_{tr}^2 \gg M_{med}^2$, the expansion in Eq. (3) fails and the signal cross section falls like Q_{tr}^{-1} rather than M_{med}^{-1} . In this region the EFT constraints will be stronger than the actual ones.