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Prolegomena

After the LHC Run 1, the SM has been completed, raising its status to that of a full theory. Despite its successes,
this SM has shortcomings vis-a-vis cosmological observations. At the same time, while the LHC restarts for Run 2
at 13 TeV, there is presently a lack of direct evidence for new physics phenomena at the accelerator energy frontier.
From this state of affairs arises the need for a consistent theoretical framework in which deviations from the SM
predictions can be calculated. Such a framework should be applicable to comprehensively describe measurements

in all sectors of particle physics: LHC Higgs measurements, past electroweak precision data, etc.

By simultaneously describing all existing measurements, this framework then
becomes an intermediate step toward the next SM, hopefully revealing the

underlying symmetries
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SMEFT is needed

= HEXT at the LHC
I3
coefficients \
+ EWPD
observables
Limit coefficients /
=new physics

Expansion

It is manifestly of interest to formulate joint analysis where all of
the data is fit simultaneously
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The x-framework: origin and problems

The original framework is defined in e-Print: arXiv:1209.0040
and has the following limitations:

@ o « touches kinematics. Therefore it works at the level of total
cross-sections, not for differential distributions
@ it is LO, partially accommodating factorizable QCD but not EW
corrections
@ @ it s not QFT-compatible (ad-hoc variation of the SM parameters,
violates gauge symmetry and unitarity)
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The role of SMEFT!

The role of SMEFT in paving the (as) Model Independent (as
possible) road cannot be undermined.

Bringing SMEFT to NLO is the correct way for focusing in
consistency of the approach where we can build POs that are
QFT-compatible. Furthermore, NLO SMEFT means “calculate

first, simplify later” and not “simplify first, calculate later”.
It is not justified to set individual Wilson coefficients to zero

The precision of EWPD overcomes the loop suppression

No NLO SMEFT i

TarXiv:1505.02646, arXiv:1505.03706
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COMSISTENT

Despite Wightman Axioms QFT is full of assumptions but, once
you accept them, QFT is a non flexible working environment:
you cannot work with the theory (pretending to get meaningful
results) before constructing it

What can be said at all can be said clearly and whereof one cannot speak thereof
one must be silent L. witgenstein

A

e

- constructing SMEFT
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The UV connection

Zgnd(4)+222gg+ (+2)

n=Ng I=1 k=1

where g is the SU(2) coupling constant and g, o = 1/(V2GpA2)k = gg, where G is the Fermi coupling constant
and A is the scale around which new physics (NP) must be resolved. For each process N defines the dim =4 LO
(e.g. N=1forH — VV etc. but N=3 for H — yy). Ng = N for tree initiated processes and N — 2 for loop initiated

ones. Here we consider single insertions of dim = 6 operators, which defines NLO SMEFT.

Ex: HAA (tree) vertex generated by ﬁéﬁ) = (@'®) FAVF2,, by
0% = ®TFAHVEZ, DP Dy & etc.
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SMEFT ordertable for tree initiated 1 — 2 processes

g/dim —
! gAY +9%A Y +9%A s
4 6 6
P +PgAyy + PRy,

© ggs <, LO SMEFT. There is also RG-improved LO
(arXiv:1308.2627) and MHOU for LO SMEFT
(arXiv:1508.05060)

o g3gs4 74 (arXiv:1505.03706) NLO SMEFT

© ggs 7, (arXiv:1510.00372), g° g& o451 MHOU for NLO
SMEFT

N.B. gg denotes a single &8 insertion, g2 denotes two, distinct, ¢(®) insertions
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Self-energies

+ 096 2@)

2
S = 16gn2 vy Zyy =Dyy* +Pyy pt p
4 6 4 6
Dyyv = D&;\); + 06 D&/\)/ Pyy = Pg,\), + 06 P&/\)/
2
Sia = 15 sZat0e T ay  Epy =Tza T +Pza p p¥

S = 1522[Af+(vf—Afy5)lp}
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Counterterms

2
R Auvzﬁ—y—lnn—ln%
nis space-time dimension
loop measure u4~"d"q

UR ren. scale

g 4 6
Z = 1454 (dz§)+gedz§ )) Auy

With field/parameter counterterms we can make

Sun,aa,Dvv,IIza, Vi, Af and the corresponding Dyson
resummed propagators UV finite at 6(g? ge) ( QE.D.)

which is enough when working under the assumption that gauge bosons
couple to conserved currents
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¥, Mixing

Field/parameter counterterms are not enough to make UV finite
the Green’s functions with more than two legs. A mixing matrix
among Wilson coefficients is needed:

W

g
LA 7=t qg

KEEP
CALM

MIX
ON

(@)

;
| A + g% g6 611 2~ gAY 2 120" K ggRe [‘Q‘{l\(ﬁ)] ‘52{1@.1

Remark negative bin entries judge the validity of the dim = 6 “linear” approach (arXiv:1511.05170)
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R

W=/
W/t /X* /@

LO SMEFT

qz /ot /X* >, e <[Z NLO SMEFT

W* /g /H/¢

W /g*
O Qe

Diagrams contributing to the amplitude for H — yy in the R¢ -gauge: SM (first row), LO SMEFT (second row), and
NLO SMEFT. Black circles denote the insertion of one dim = 6 operator. ¥, implies summing over all insertions in
the diagram (vertex by vertex). For triangles with internal charge flow (t, W*,¢%,X¥) only the clockwise orientation
is shown. Non-equivalent diagrams obtained by the exchange of the two photon lines are not shown. Higgs and
photon wave-function factors are not included. The Fadeev-Popov ghost fields are denoted by X.
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Define the following combinations of Wilson coefficients (where
Sp(cy) denotes the sine(cosine) of the renormalized
weak-mixing angle.

a; = SS aps + C§ dyw — Sp Cp Aywn
A = C2ays+ 538w+ SpCoaws
ay = 2CpSp (Gpw —an) + <2 ca— 1) E

and compute the (on-shell) decay H(P) — A, (p1)A, (p2) where
the amplitude is

Aia = Fua T MET™ =phpy —pi-p2 6+

Remark The amplitude is made UV finite by mixing @ with
aua,8rz, 82z and agw QE.D.
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Compute the (on-shell) decay H(P) — A, (p1)Z, (p2). After
adding 1Pl and 1PR components we obtain

Al = Fua T MGTH =php}—pi-p26*"

Remark The amplitude is made UV finite by mixing asz with
A, 8rz2,82z ANd @gw QE.D.
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M ©

Compute the (on-shell) decay H(P) — Z,,(p1)Z, (p2). The
amplitude contains
0 a Dyzz part proportional to 6*V and

0 a Py, part proportional to pg‘p}'.

Remark Mixing of a,; with other Wilson coefficients makes
Puzz UV finite, while the mixing of 8o makes Zz; UV finite

QE.D.
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Compute the (on-shell) decay H(P) — W™, (ps YW, (p2). This
process follows the same decomposition of H — ZZ and it is UV
finite in the dim = 4 part. However, for the dim = 6 one, there
are no Wilson coefficients left free in Pyww S0 that its UV
finiteness follows from gauge cancellations

Proposition

this is the first part in proving closure of NLO SMEFT under
renormalization Q.E.D.

Remark Mixing of @, makes Zuww UV finite QE.D.
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Compute the (on-shell) decay H(P) — b(p;)b(p2).

Remark
o ltis dim =4 UV finite and
o mixing of a4 makes it UV finite also atdim=6 QE.D.
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RN oV

Compute the (on-shell) decay Z(P) — f(p;)f(p2). It is dim = 4
UV finite and we introduce

aw = SeawB tCeaiBW aB = Sg AW — Co AWB
aw = SpdywB +CoaiBw 4B = Sg a4BW — Co dWB
Qw = Spauws +CoauBw QB =CpuwB — So GuBW
3 1 1 1
é|) él) = §(am|v+ao|A) 3¢|:§(30|A*3¢|v)
3 3 1
auv = A tautaly  aua=al —au+ahy
1 3 (1
Bdv = aéq 8y — aé,q) aDdA7a< )+a¢ —aw)

and obtain that ( QE.D.)

Z —11 requires mixing of aw, 814 and a1y With other coefficients,
Z —uu requires mixing of @sw,8pua and auv With other coefficients,
Z —dd requires mixing of ggw,dpda and @yqv With other coefficients,

Z — Vv requires mixing of ayy = 2(a4(,1) (3)) with other coefficients.
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At this point we are left with the universality of the electric charge. In QED
there is a Ward identity telling us that e is renormalized in terms of vacuum
polarization and Ward-Slavnov-Taylor identities allow us to generalize the
argument to the full SM.

We can give a quantitative meaning to the the previous statement by saying
that the contribution from vertices (at zero momentum transfer) exactly cancel
those from (fermion) wave function renormalization factors. Therefore,

Compute the vertex Aff (at g2 = 0) and the f wave function factor in SMEFT,
proving that the WST identity can be extended to dim = 6; this is non trivial
since there are no free Wilson coefficients in these terms (after the previous
steps); (non-trivial) finiteness of ete™ — ff follows.

Proposition

This is the second part in proving closure of NLO SMEFT under
renormalization Q.E.D.
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The IR connection (e.g. Z —11)

= pzy#[(lf(a)+iaL)'y+—20f1c23|n 8+IaQ]
%‘Iree _ gdw)

+90 7,

e

1;1:

41797# (VL+75) % = 2 (V1+A1 y5)

v, (439 7) aun + Co (1 +4s§) ., + S (439 3) 2
1

+

2
4C (7 39) a¢D+ a¢lv
32
A

2
—— @aa +Cp 872+ Sp az TacbDﬂL
0 Co

—a
Co DL A
After UV renormalization, i.e. after counterterms and mixing have been
introduced, we perform analytic continuation in n (space-time dimension),
n =4+ ¢ with € positive.

[
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gtree 1L _ U1%ﬁree~1Lv2e“(/l,P)

- N

1 tree] 1L
e
spin

wln

C(Z—1+1) gy =

(g, mg) -scheme for (IR, collinear) singularities

2 2 2
1 2 W m ™
- = 7+')/7|n72 Lcwzlniz LCZ:'“T
€ € H My M
Mz
¥ = y+hhr L=Ih_—=
My
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IR /collinear divergent factor

; 1
it _ _2<§+7) (14Ley) — L2, —4L¢,L+3L, —4L

M3,
2In- 5 (141e)) +2-84(2)

Sub-amplitudes

= %(1 se+839>c1—g:%(1+v12>%6

- 2(1 435) vl%z

_ (3—16s9+839>%aAA+<1—8sg)azz—(1 85 +8s)) 2 a.,
+ %( 1653 +8s¢) Clga¢n+cl§a¢lA+(1—4s§) clga‘“v
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Proposition

The infrared/collinear part of the one-loop virtual corrections
shows double factorization.

4 .
- 6
LZ—141) gy = 38‘3 3/‘/’2893”'”[ "(1+ g6 A1) + g5 T )}
2 2 c3 11
A = 2(2—sg> aAA+239aZZ+2£aAZ—§@a¢D

e ]
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Next we compute Z(P) — 1(py) +1(p2) +v(k), obtaining

= 1 1 |2
F(Z*)l+l+’y) = = 5 Z /dd>1ﬂ3 | or'eal |
3 (2m) spin
o = g%, et (A, P)eY (o, k)

We split the total into
O “approximated”, n# 4, approximated phase-space, reproducing the

exact structure of singularities
9 “remainder”, n=4, finite
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After expanding in € = n—4 we obtain an overall infrared/collinear (real) factor

1
greal _ o (54_)7) (1+Les) —L2, —2L¢, L+3Le, — 2L
Mz

and a partial width integrated over the whole photon phase space

4
app 7 _ g 2 gpreal
PP (Z - 1+1+(y)) T aax =3 Mz S5 [ (1+g6AF)+gel" }
Proposition

The infrared/collinear part of the real corrections shows double factorization.
The total = virtual + real is IR /collinear finite at 6(g* gg) ( QE.D.).
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Assembling everything gives

MS
1 -~ § g (6) 1 GeM;
Tan = 5 To- (1+96500) L0 52 vas (#+1)
3
6 C 512 w
A(<2El)3 = 2(2*33) aAA+2Sgaxz+2( 6+ 26 V2+1> aaz
_ la, ;5@
25 2 1 QED
6 1 1
6(151512» = < Vl_Vl) 5 (S(-)aAA 4a¢D)
So
+ ( +2V1—V1) (aZZ+FgaAZ)

+ —2 (@14 +Viap1v)
Co
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NLO SMEFT for Higgs and EW precision data %
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&
KEEP
CALM

FOCUS ON
DEVIATION

No NP yet?
A study of SM-deviations: here the reference process is gg — H
v x-approach: write the amplitude as

A — Z Kﬁg'!ngg_l_lcés
q=t,b

2 being the SM t-loop etc. The contact term (which is the LO
SMEFT) is given by kg . Furthermore

Kag=1+AKég
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Compute
R=G(‘§g,"§:g)/0'sm—1 [%]

@ InLO SMEFT « is non-zero and k, = 1. 2 You measure a
deviation and you get a value for k¢

(2] However, at NLO Axq is non zero and you get a
degeneracy

® The interpretation in terms of x¢° or in terms of {xg"°, Axg*°}
could be rather different.

2Certainly true in the linear realization
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Going interpretational

" gg§

8 = Z qugg
q=t,b
T 2050, o ant gg2g6 Y, A ag
A’ﬁ/ q=t,b

Remark use arXiv:1505.03706, adopt Warsaw basis (arXiv:1008.4884),
eventually work in the Einhorn-Wudka PTG scenario (arXiv:1307.0478)

@ LO SMEFT: kg =1 and ay, is scaled by 1/16 72 being LG (blue color)

- : ut only operators inserted in loops
2 NLO PTG-SMEFT K#1Db ly PTG i din |
(non-factorizable terms absent), ay¢ scaled as above

@ NLO full-SMEFT: xq # 1 LG/PTG operators inserted in loops
(non-factorizable terms present), LG coefficients scaled as above

AtNLO, Ak = g, p
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Warsaw basis
g = V2GA® /
%
1
Pi* = Apwtay+2800— 580

ge 1
Py = a¢w—ab¢+2a¢n—§a¢n

S Relaxing the PTG assumption introduces
non-factorizable sub-amplitudes proportional to a;g,apg With a
mixing among {&g, &g, @g}- Meanwhile, renormalization has

made one-loop SMEFT finite, e.g. in the Gg-scheme, with a
residual ugr -dependence.

What are POs? Experimenters collapse some “primordial quantities” (say
number of observed events in some pre-defined set-up) into some
“secondary quantities” which we feel closer to the theoretical description of
the phenomena.
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It is an error to believe that rigour is the enemy of simplicity. On the contrary we
find it confirmed by numerous examples that the rigorous method is at the same
time the simpler and the more easily comprebended. The very effort for rigor
forces us to find out simpler methods of proof o. Hivert

To conclude, the journey to the next SM may require crossing
narrow straits of precision physics. If that is what nature has in
store for us, we must equip ourselves with both a range of
concrete BSM models as well as a general SMEFT. Both will be
indispensable tools in navigating an ocean of future
experimental results.

It is possible that at some very large energy scale, all nonrenormalizable interactions disappear. This seems
unlikely, given the difficulty with gravity. It is possible that the rules change drastically, it may even be possible that
there is no end, simply more and more scales. H. Georgi
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