NON-LINEAR HIGGS PORTAL TO DARK MATTER

hep-ph/1511.01099

Belén Gavela Univ. Autonoma de Madrid (UAM and IFT)

SCALARS 2015

December 4, 2015, Warsaw

The discovered Higgs boson may be the end or the start

- 🖌 It's a scalar, CP even
- Couplings agree with the SM

- ? hierarchy, triviality, vacuum stablility
- ? origin of EWSB
- ? Dark Matter
- ? m_{ν} , gravity, baryogenesis...

Disclaimer: some beautiful insertions and drawings taken from Brivio, Saa

The discovered Higgs boson may be the end or the start

- It's a scalar, CP even
 Couplings agree with the SM
 a good place to study their interplay: Higgs portal to scalar DM S²(Φ[†]Φ)
- ? hierarchy, triviality, vacuum stablility
- ? origin of EWSB
- ? Dark Matter
 - ? m_{ν} , gravity, baryogenesis...

The discovered Higgs boson may be the end or the start

Method: Effective field theory \rightarrow connection between EW symmetry breaking and EFT

The discovered Higgs boson may be the end or the start

the Higgs portal for scalar Dark Matter in detail.

 \rightarrow the Higgs nature can have a relevant impact on the DM phenomenology!

Higgs sector: the chiral EFT

Scalar Resonance

Measurements compatible with the Standard Model. Higgs compatible with an exact doublet at 20-30% Still quite large uncertainties: all the possibilities above are still viable

Linear or **Chiral** (= non-linear)

Linear or Chiral

Physical **h** and Goldstone bosons π^a together in the **\phi** doublet

$$\mathbf{\Phi} = \begin{pmatrix} \pi^1 + i\pi^2 \\ \nu + \mathbf{h} + \pi^3 \end{pmatrix} \approx (\mathbf{v} + \mathbf{h}) e^{i\pi^a \sigma^a / \mathbf{v}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (\mathbf{v} + \mathbf{h}) \mathbf{U} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\phi \longrightarrow L \phi$ under SU(2)_L transformations L

Linear or Chiral

Physical **h** and Goldstone bosons π^a together in the **\phi** doublet

$$\mathbf{\Phi} = \begin{pmatrix} \pi^1 + i\pi^2 \\ \nu + \mathbf{h} + \pi^3 \end{pmatrix} \approx (\mathbf{v} + \mathbf{h}) e^{i\pi^a \sigma^a / \mathbf{v}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (\mathbf{v} + \mathbf{h}) \mathbf{U} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\phi \longrightarrow L \phi$ under SU(2)_L transformations L

Linear or Chiral

Physical **h** and Goldstone bosons π^a together in the **\phi** doublet

$$\mathbf{\Phi} = \begin{pmatrix} \pi^1 + i\pi^2 \\ \nu + \mathbf{h} + \pi^3 \end{pmatrix} \approx (\mathbf{v} + \mathbf{h}) e^{i\pi^a \sigma^a / \mathbf{v}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (\mathbf{v} + \mathbf{h}) \mathbf{U} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\phi \longrightarrow L \phi$ under SU(2)_L transformations L

Expansion in canonical dimensions: ϕ/Λ , D_{μ}/Λ :

Example of LINEAR Correlation

$$\mathcal{O}_B = (D_\mu \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_\nu \Phi)$$

In unitary gauge can be rewritten as:

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h)$$

Example of LINEAR Correlation

$$\mathcal{O}_B = (D_\mu \Phi)^{\dagger} B^{\mu\nu} (D_\nu \Phi)$$

In unitary gauge can be rewritten as:

it becomes a generic function

$$\mathcal{F}(h) = 1 + 2a\frac{h}{v} + b\frac{h^2}{v^2} + \cdots \neq \left(1 + \frac{h}{v}\right)^n$$

with arbitrary coefficients a, b...

h is included as a generic singlet

SM Higgs doublet recovered for a=b=1 Grinstein, Trott PRD76 073002 Contino et al. JHEP 1005 089

h as a pseudo-goldstone boson

h as a pseudo-goldstone boson

Agashe, Contino, Pomarol (2005)

h as a pseudo-goldstone boson

Agashe, Contino, Pomarol (2005)

h as a pseudo-goldstone boson

Agashe, Contino, Pomarol (2005)

h as a pseudo-goldstone boson

For instance:

instead of the SM coupling ($D_{\mu}\Phi^{\dagger}D^{\mu}\Phi$) $\supset 1/4 (v+h)^2$ ($D_{\mu}U^{+}D^{\mu}U$)

SO(5)—> SO(4) leads to
$$\frac{f^2}{4}\sin^2\left[\frac{\varphi}{2f}\right]$$
 (D_µU+D^µU)

h as a pseudo-goldstone boson

For instance: instead of the SM coupling ($D_{\mu}\Phi^{\dagger}D^{\mu}\Phi$) $\supset 1/4((v+h)^2)(D_{\mu}U^{+}D^{\mu}U)$ $\frac{\mathbf{f}^2}{4}\sin^2\left[\frac{\varphi}{2f}\right]$ $(D_{\mu}U^{+}D^{\mu}U)$ $SO(5) \rightarrow SO(4)$ leads to **F(h)** which implies V \neq f : $\xi \equiv \frac{v^2}{f^2} = 4 \sin^2 \frac{\langle \varphi \rangle}{2f}$ where: $\sin\left(\frac{\varphi}{2f}\right) = \frac{v}{2f}\cos\left(\frac{h}{2f}\right) + \sqrt{1 - \frac{v^2}{4f^2}}\sin\left(\frac{h}{2f}\right)$ $f^2 \sin^2 \left[\frac{\varphi}{2f}\right] \xrightarrow{\langle \varphi \rangle + h} v^2 + 2hv \sqrt{1 + \frac{\xi}{4}} + h^2 \left(1 - \frac{\xi}{2}\right) + \cdots \neq (v + h)^2$

Agashe et al Nucl.Phys.B719 165 Alonso et al JHEP 1412 034 Alonso, Brivio, Merlo, Rigolin, B.G. hep-ph/1409.1589

$c_i \mathcal{F}_i(h)$	$\frac{SU(5)/SO(5)}{SO(5)/SO(4)}$	SU(3)/SU(2) imes U(1)	linear $d \leq 6$
$\mathcal{F}_C(h)$	$rac{4}{\xi}\sin^2rac{arphi}{2f}$	$rac{4}{\xi}\sin^2rac{arphi}{2f}$	$1 + rac{(v+h)^2}{2\Lambda^2} c_{\Phi 4}$
$\mathcal{F}_{H}(h)$	1	1	$1 + rac{(v+h)^2}{2\Lambda^2} \left(c_{\Phi 1} + 2c_{\Phi 2} + c_{\Phi 4} ight)$
$\mathcal{F}_B(h)$	$1 - 4g'^2 \tilde{c}_{B\Sigma} \cos^2 rac{arphi}{2f}$	$1-g'^2rac{ ilde{c}_{B\Sigma}}{6}\left(1+3\cosrac{2\varphi}{f} ight)$	$1+rac{(v+h)^2}{2\Lambda^2}g'^2c_{BB}$
$\mathcal{F}_W(h)$	$1-4g^2 \tilde{c}_{W\Sigma} \cos^2 rac{arphi}{2f}$	$1-2g^2 \tilde{c}_{W\Sigma} \cos rac{\varphi}{f}$	$1+rac{(v+h)^2}{2\Lambda^2}g^2c_{WW}$
$c_{\Box H} \mathcal{F}_{\Box H}(h)$	$-2 ilde{c}_6\xi$	$-2 ilde{c}_6 \xi$	$rac{v^2}{2\Lambda^2}c_{\Box\Phi}$
$c_{\Delta H} \mathcal{F}_{\Delta H}(h)$	_	_	_
$c_{DH}\mathcal{F}_{DH}(h)$	$4\left(ilde{c}_4+ ilde{c}_5 ight)\xi^2$	$2\left(2 ilde{c}_4+2 ilde{c}_5+ ilde{c}_7 ight)\xi^2$	_
$c_1\mathcal{F}_1(h)$	$ ilde{c}_1 \sin^2 rac{arphi}{2f}$	$rac{ ilde{c}_1}{4}\sin^2rac{arphi}{f}$	$rac{(v+h)^2}{4\Lambda^2}c_{BW}$
$c_2\mathcal{F}_2(h)$	$ ilde{c}_2 \sin^2 rac{arphi}{2f}$	$rac{ ilde{c}_2}{4}\sin^2rac{arphi}{f}$	$rac{(v+h)^2}{8\Lambda^2}c_B$
$c_3\mathcal{F}_3(h)$	$2 ilde{c}_3 \sin^2 rac{arphi}{2f}$	$rac{ ilde{c}_3}{2}\sin^2rac{arphi}{f}$	$rac{(v+h)^2}{8\Lambda^2}c_W$
$c_4\mathcal{F}_4(h)$	$\tilde{c}_2 \sqrt{\xi} \sin rac{arphi}{f}$	$rac{ ilde{c}_2}{2}\sqrt{\xi}\sinrac{2arphi}{f}$	$rac{v(v+h)}{2\Lambda^2}c_B$
$c_5\mathcal{F}_5(h)$	$-2 ilde{c}_3\sqrt{\xi}\sinrac{arphi}{f}$	$-2 ilde{c}_3\sqrt{\xi}\sinrac{arphi}{f}$	$-rac{v(v+h)}{2\Lambda^2}c_W$
$c_6\mathcal{F}_6(h)$	$16 ilde{c}_4 \sin^4 rac{arphi}{2f} - rac{1}{2} ilde{c}_6 \sin^2 rac{arphi}{f}$	$8(2 ilde{c}_4+ ilde{c}_7)\sin^4rac{arphi}{2f}-rac{1}{2} ilde{c}_6\sin^2rac{arphi}{f}$	$rac{(v+h)^2}{8\Lambda^2}c_{\Box\Phi}$
$c_7\mathcal{F}_7(h)$	$-2 ilde{c}_6\sqrt{\xi}\sinrac{arphi}{f}$	$-2 ilde{c}_6\sqrt{\xi}\sinrac{arphi}{f}$	$rac{v(v+h)}{2\Lambda^2}c_{\Box\Phi}$
$c_8\mathcal{F}_8(h)$	$-16 ilde{c}_5 \xi \sin^2 rac{arphi}{2f} + 4 ilde{c}_6 \xi \cos^2 rac{arphi}{2f}$	$-4(4 ilde{c}_5+ ilde{c}_7)\xi\sin^2rac{arphi}{2f}+4 ilde{c}_6\xi\cos^2rac{arphi}{2f}$	$-rac{v^2}{\Lambda^2}c_{\Box\Phi}$
$c_9\mathcal{F}_9(h)$	$4 \tilde{c}_6 \sin^2 rac{\varphi}{2f}$	$4\tilde{c}_6\sin^2rac{\varphi}{2f}$	$-rac{(v+h)^2}{4\Lambda^2}c_{\Box\Phi}$
$c_{10}\mathcal{F}_{10}(h)$	$4\tilde{c}_6\sqrt{\xi}\sinrac{arphi}{f}$	$4 ilde{c}_6\sqrt{\xi}\sinrac{arphi}{f}$	$-rac{v(v+h)}{\Lambda^2}c_{\Box\Phi}$
$c_{11}\mathcal{F}_{11}(h)$	$16 ilde{c}_5 \sin^4 rac{arphi}{2f}$	$16 ilde{c}_5 \sin^4 rac{arphi}{2f}$	_
$c_{20}\mathcal{F}_{20}(h)$	$-16 ilde{c}_4 \xi \sin^2 rac{arphi}{2f}$	$-4(4 ilde{c}_4+ ilde{c}_7)\xi\sin^2rac{arphi}{2f}$	_

Geometric interpretation of F(h)

Alonso, Jenkins, Manohar 1511.00724

$$\mathscr{L} = \frac{1}{2} g_{ij}(\phi) D_{\mu} \phi^{i} D^{\mu} \phi^{j}$$
$$\underset{g_{ij}(\phi)}{\stackrel{(1+h/v)^{2}g_{ab}(\varphi)}{0}} [(1+h/v)^{2} g_{ab}(\varphi) 0] \longrightarrow g_{ij}(\phi) = \begin{bmatrix} F(h)^{2} g_{ab}(\varphi) & 0\\ 0 & 1 \end{bmatrix}$$

Riemann curvature tensor, Ricci tensor and Ricci scalar....

curvature param.—>
$$\mathfrak{r}_{0,2,4} \sim rac{v^2}{f^2} \equiv \xi$$

it becomes a generic function

$$\mathcal{F}(h) = 1 + 2a\frac{h}{v} + b\frac{h^2}{v^2} + \cdots \neq \left(1 + \frac{h}{v}\right)^n$$

with arbitrary coefficients a, b...

h is included as a generic singlet

SM Higgs doublet recovered for a=b=1 Grinstein, Trott PRD76 073002 Contino et al. JHEP 1005 089

with arbitrary coefficients a, b...

h is included as a generic singlet
SM Higgs doublet recovered for a=b=1

in linear, correlations: $D_{\mu}\Phi\sim(v+h)D_{\mu}\mathbf{U}+\partial_{\mu}h\mathbf{U}$

Example of LINEAR Correlation

$$\mathcal{O}_B = (D_\mu \Phi)^{\dagger} B^{\mu\nu} (D_\nu \Phi)$$

In unitary gauge can be rewritten as:

Example of CHIRAL Decorrelation

$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\Phi)$$
Chiral basis
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\Phi)$$

$$\mathcal{O}_{\mu\nu} \mathsf{D}^{\nu}\mathsf{U} \qquad \qquad \mathcal{O}_{\mu\nu} \mathsf{D}^{\nu}\mathsf{D}^{\mu} \mathsf{D}^{\nu}\mathsf{D}^{\mu} \mathsf{D}^{\nu}\mathsf{D}^{\mu} \mathsf{D}^{\nu}\mathsf{D}^{\mu} \mathsf{D}^{\nu}\mathsf{D}^{\mu}\mathsf{D}$$

 $\mathbf{V}_{\mu} = (D_{\mu}\mathbf{U})\mathbf{U}^{\dagger}$ $\mathbf{T} = \mathbf{U}\sigma^{3}\mathbf{U}^{\dagger}$

Example of CHIRAL Decorrelation

$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}\hat{B}^{\mu\nu}(D_{\nu}\Phi)$$
Chiral basis
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}\hat{B}^{\mu\nu}(D_{\nu}\Phi)$$

$$\frac{\partial^{\nu}h}{\partial^{\nu}h}$$

$$\mathcal{P}_{2} = ig'B_{\mu\nu}\operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu},\mathbf{V}^{\nu}])\mathcal{F}_{2}(h)$$

$$\mathcal{P}_{4} = ig'B_{\mu\nu}\operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu})\partial^{\nu}\mathcal{F}_{4}(h)$$

Decorrelations appear

 $\mathbf{V}_{\mu} = (D_{\mu}\mathbf{U})\mathbf{U}^{\dagger}$ $\mathbf{T} = \mathbf{U}\sigma^{3}\mathbf{U}^{\dagger}$

1) because of the F(h) :

Isidori, Trott, 1307.4501

Example of CHIRAL Decorrelation

$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\Phi)$$
Chiral basis
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu}\Phi)$$

$$\frac{\partial^{\nu} h}{\sqrt{2}}$$

$$\mathcal{P}_{2} = ig' B_{\mu\nu} \operatorname{Tr}(\mathbf{T}[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_{2}(h)$$

$$\mathcal{P}_{4} = ig' B_{\mu\nu} \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{4}(h)$$

Decorrelations appear

 $\mathbf{V}_{\mu} = (D_{\mu}\mathbf{U})\mathbf{U}^{\dagger}$ $\mathbf{T} = \mathbf{U}\sigma^{3}\mathbf{U}^{\dagger}$

2) because of the **unit**:

in fact, all decor related related vertically

. . .

U adimensional **Expansion** in derivatives: D_{μ}/Λ :

In EFT, the weight of h is arbitrary we use h/v, but the conclusions would be the same with h/f

Some recent bibliography

bosonic sector only	NLO (4 ∂) basis	Alonso et al. Phys.Lett.B722 330			
	phenomenology	Brivio et al. JHEP 1403 024 Brivio et al. JHEP 1412 004 Gavela et al. JHEP 1410 44			
	connection to composite Higgs models	Alonso et al. JHEP 1412 034 Hierro et al. 1510.07899			
	one-loop renormalization	Gavela et al. JHEP 1503 043			

with fermionic sector

complete NLO basis

Buchalla et al. Nucl.Phys.B880 552

Linear versus Chiral

Equivalent when considering the whole tower: all couplings contained.

The expansions are physically inequivalent.

Linear versus Chiral

Equivalent when considering the whole tower: all couplings contained.

The expansions are physically inequivalent.

Linear versus Chiral

Equivalent when considering the whole tower: all couplings contained.

The expansions are physically inequivalent.

Disentangling LINEAR signals from CHIRAL signals

Isidori, Trott; hep-ph/1307.4051 Brivio, Corbett, Evoli, Gonzalez-Garcia, Gonzalez-Fraile, Merlo, Rigolin, BG; JHEP 1403 (2014) 024 Brivio, Corbett, Evoli, Gonzalez-Garcia, Gonzalez-Fraile, Merlo, Rigolin, BG; JHEP 1412 (2014) 004

New Signals

A coupling that appears at NLO in the chiral and NNLO (d=8) in linear

 $\varepsilon^{\mu\nu\rho\lambda}\partial_{\mu}W^{+}_{\nu}W^{-}_{\rho}Z_{\lambda}\mathcal{F}_{14}(h)$

number of expected events (WZ production) with respect to the Z $p_{\rm T}$

@95% CL:
present
$$g_5^Z \in [-0.08, 0.04]$$

LHC(7+8+14) $g_5^Z \in [-0.033, 0.028]$

Linear versus Chiral

Equivalent when considering the whole tower: all couplings contained.

The expansions are physically inequivalent.

The chiral expansion is more general than the linear one

* It contains the linear EFT in a specific limit

* It allows to ask the question of whether the Higgs field is an exact doublet or not

Higgs portals to Dark Matter

hep-ph/1511.01099 I. Brivio, L. Merlo, K. Mimasu, J.M. No, R. del Rey, V. Sanz, BG

- * The presence of DM is only inferred through gravitational effects
- * It is (mainly?) a singlet under the SM

-> Does DM interact sizeably with visible matter? We don't know, but worth exploring

From film "particle fever"

С

S

 V_{μ}

L

 V_e

Q

H

е

SM "PORTALS" TO THE DARK SECTORS

H

Any hidden sector, singlet under SM, can couple to the dark portals

SM portals to the dark sectors

Only three singlet combinations in SM with d < 4: $\Phi^+\Phi S$ Scalar

 $B_{\mu\nu} V^{\mu\nu}$ Vector

 $\overline{L} H \Psi$ Fermionic

Any hidden sector, singlet under SM, can couple to the dark portals

SM portals to the dark sectors

Only three singlet combinations in SM with d < 4: $\Phi^+\Phi S^2$ Scalar (stable DM)

 $B_{\mu\nu} V^{\mu\nu}$ Vector

ΓΗΨ Fermionic

Any hidden sector, singlet under SM, can couple to the dark portals

Silveira + Zee ; Veltman+ Yndurain; Patt + Wilczek

SM standard Higgs portal to DM

Consider a singlet scalar DM particle S

SM standard Higgs portal to DM

Silveira + Zee ; Veltman+ Yndurain; Patt + Wilczek

Consider a singlet scalar DM particle S

$$\mathscr{L} = \mathscr{L}_{SM} + \mathscr{L}_{S}$$

$$\mathscr{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{\mu_{S}}{2} S^{2} + \bigotimes(\Phi^{\dagger} \Phi) S^{2} + \kappa S^{4}$$

$$\mathscr{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{\mathfrak{m}}{2} S^{2} + \frac{\mathfrak{M}}{2} S^{2} \left(2vh + h^{2} \right) + \dots$$

correlated: fixed relative strength

SM Higgs portal

$$\mathscr{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{m_{S}}{2} S^{2} - \lambda_{S} S^{2} \left(2vh + h^{2} \right) + \dots$$

Exclusion regions inferred from different eperimental measurements. Yellow : within the 95% CL projected sensitivity of Xenon1T recent analyses: Cline et al. PRD88 055025 Feng et al. JHEP 1503 045

I. Brivio

Relic abundance

Dominant contributions for $m_S > m_h$

imposing $\Omega_S \leqslant \Omega_{DM}$

and also new couplings appear ->

$$\mathscr{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{\mathfrak{m}}{2} S^{2} - \mathfrak{N} S^{2} \left(2vh + \mathbf{b} h^{2} \right) + \sum_{i=1}^{5} \mathbf{c}_{i} \mathcal{A}_{i} + \dots$$

$$\mathcal{A}_{1} = \operatorname{Tr}(D_{\mu}\mathbf{U}D^{\mu}\mathbf{U}^{\dagger})S^{2}\mathcal{F}_{1}(h) \qquad \qquad \mathcal{A}_{3} = \operatorname{Tr}(D_{\mu}\mathbf{U}\sigma^{3}\mathbf{U}^{\dagger})^{2}S^{2}\mathcal{F}_{3}(h) \\ \mathcal{A}_{4} = i\operatorname{Tr}(D_{\mu}\mathbf{U}\sigma^{3}\mathbf{U}^{\dagger})(\partial^{\mu}S^{2})\mathcal{F}_{4}(h) \\ \mathcal{A}_{5} = i\operatorname{Tr}(D_{\mu}\mathbf{U}\sigma^{3}\mathbf{U}^{\dagger})S^{2}\partial^{\mu}\mathcal{F}_{5}(h)$$

where:
$$\mathcal{F}_{i}(h) = 1 + 2a_{i}\frac{h}{v} + b_{i}\frac{h^{2}}{v^{2}} + \dots$$

several different couplings:

$$\mathscr{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{\mathfrak{m}}{2} S^{2} - \mathfrak{N} S^{2} \left(2vh + \mathbf{b} h^{2} \right) + \sum_{i=1}^{5} \mathbf{c}_{i} \mathcal{A}_{i} + \dots$$

$$\mathcal{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{ms}{2} S^{2} - \lambda s S^{2} \left(2vh + \mathbf{b} h^{2} \right) + \sum_{i=1}^{5} \mathbf{c}_{i} \mathcal{A}_{i} + \dots$$

custodial breaking

$$\mathcal{A}_{1} = \operatorname{Tr}(D_{\mu} \mathbf{U} D^{\mu} \mathbf{U}^{\dagger}) S^{2} \mathcal{F}_{1}(h)$$

$$\mathcal{A}_{2} = S^{2} \Box \mathcal{F}_{2}(h)$$

$$\mathcal{A}_{3} = \operatorname{Tr}(D_{\mu} \mathbf{U} \sigma^{3} \mathbf{U}^{\dagger})^{2} S^{2} \mathcal{F}_{3}(h)$$

$$\mathcal{A}_{4} = i \operatorname{Tr}(D_{\mu} \mathbf{U} \sigma^{3} \mathbf{U}^{\dagger}) (\partial^{\mu} S^{2}) \mathcal{F}_{4}(h)$$

$$\mathcal{A}_{5} = i \operatorname{Tr}(D_{\mu} \mathbf{U} \sigma^{3} \mathbf{U}^{\dagger}) S^{2} \partial^{\mu} \mathcal{F}_{5}(h)$$

where:
$$\mathcal{F}_{i}(h) = 1 + 2a_{i}\frac{h}{v} + b_{i}\frac{h^{2}}{v^{2}} + \dots$$

several different couplings: S Z_{μ} Z_{ν} S S S S h S C1 C3 **c**₁ (**c**₂) **C**4 **C**2 b **C**5

 W^+_{μ}

 W_{ν}^{-}

$$\mathcal{L}_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \underbrace{\frac{1}{2}}{2} S^{2} - \lambda_{S} S^{2} \left(2vh + \mathbf{b} h^{2} \right) + \sum_{i=1}^{5} \mathbf{c}_{i} \mathcal{A}_{i} + \dots$$

$$\mathbf{custodial breaking}$$

$$\mathcal{A}_{1} = \operatorname{Tr}(D_{\mu} \mathbf{U} D^{\mu} \mathbf{U}^{\dagger}) S^{2} \mathcal{F}_{1}(h)$$

$$\mathcal{A}_{2} = S^{2} \Box \mathcal{F}_{2}(h)$$

$$\mathcal{A}_{2} = S^{2} \Box \mathcal{F}_{2}(h)$$

$$\mathcal{A}_{3} = \operatorname{Tr}(D_{\mu} \mathbf{U} \sigma^{3} \mathbf{U}^{\dagger})^{2} S^{2} \mathcal{F}_{3}(h)$$

$$\mathcal{A}_{4} = i \operatorname{Tr}(D_{\mu} \mathbf{U} \sigma^{3} \mathbf{U}^{\dagger}) (\partial^{\mu} S^{2}) \mathcal{F}_{4}(h)$$

$$\mathcal{A}_{5} = i \operatorname{Tr}(D_{\mu} \mathbf{U} \sigma^{3} \mathbf{U}^{\dagger}) S^{2} \partial^{\mu} \mathcal{F}_{5}(h)$$

where:
$$\mathcal{F}_{i}(h) = 1 + 2a_{i}\frac{h}{v} + b_{i}\frac{h^{2}}{v^{2}} + \dots$$

several different couplings: W^+_{μ} S Z_{μ} Z_{ν} W_{ν}^{-} S S S S h S C1 C3 **c**₁ **C**₂ (λ_s) b **C**4 **C**5 C2 C4

Relic abundance

The insertion of the two custodial preserving operators A_1 and A_2 alters dramatically the exclusion regions!

Relic abundance

The insertion of the two custodial preserving operators A_1 and A_2 alters dramatically the exclusion regions!

Relic abundance + Direct detection + Invisible h width

Phenomenological analysis

	Observable Parameters contributing						
		b	c ₁	c ₂	C 3	C 4	C 5
Relic abundance	$\Omega_S h^2$	✓	✓	✓	✓	~	✓
Direct detection	$\sigma_{\rm SI}(SN \rightarrow SN)$	-	-	~	-	~	-
Invisible h width	$\Gamma(h \rightarrow \text{inv.})$	-	-	~	-	-	-
	$\sigma(pp ightarrow hSS)$	~	-	~	-	\checkmark	~
Mono X signatures	$\sigma(pp \rightarrow ZSS)$	-	\checkmark	\checkmark	~	\checkmark	~
	$\sigma(pp ightarrow W^+SS)$	-	~	~	-	\checkmark	-

->Talk (Sunday) by J.M. No

 σ (mono-Z) / σ (mono-W) a smoking gun

Ratio
$$R_{ZW} = rac{\sigma(pp o ZSS)}{\sigma(pp o W^+SS)}$$
 at $\sqrt{s} = 13 \, {
m TeV}$

σ (mono-Z) / σ (mono-W) a smoking gun

σ (mono-Z) / σ (mono-W) a smoking gun

Ratio
$$R_{ZW} = rac{\sigma(pp o ZSS)}{\sigma(pp o W^+SS)}$$
 at $\sqrt{s} = 13 \, {
m TeV}$

Or.... can a linear expansion mimic the same with higher dim. operators and fine-tuning of coeffs.?

Linear

$$\mathscr{L}_{S} = \mathscr{L}_{SM} + \mathscr{L}_{S}^{d=4} + \frac{1}{\Lambda^{2}}\mathscr{L}_{S}^{d=6}$$

$$\mathscr{L}_{S}^{d=4} = \frac{1}{2}\partial_{\mu}S\partial^{\mu}S + \frac{m_{S}^{2}}{2}S^{2} + \lambda_{S}S^{2}(\Phi^{\dagger}\Phi) + \kappa S^{4}$$

$$\mathscr{L}_{S}^{d=6} = \sum_{i}c_{i}^{L}\mathcal{O}_{i}$$

the basis $\{O_i\}$ contains 9 operators with 4 ∂ (e.g. $g^2 S^2 W_{\mu\nu} W^{\mu\nu}$) plus

$$\begin{array}{lll} \mathcal{O}_b = (\Phi^{\dagger} \Phi)^2 S^2 & \rightarrow b \\ \\ \mathsf{d=6} & \mathcal{O}_1 = D_{\mu} \Phi^{\dagger} D^{\mu} \Phi S^2 & \rightarrow \mathcal{A}_1 \\ \\ \mathcal{O}_2 = \Box (\Phi^{\dagger} \Phi) S^2 & \rightarrow \mathcal{A}_2 \\ \\ \mathcal{O}_4 = (\Phi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \Phi) D^{\mu} S^2 \rightarrow \mathcal{A}_4 \end{array}$$

while the couplings in A_3 and A_5 only appear in ops. with d=8

The (de)correlation effect between couplings with different and with equal and different numbers of h legs remains a disentangling tool

- * The chiral Effective Field Theory:
- -> Accounts for many different scenarios of EWSB
- —> Good to explore whether the physical Higgs is an SU(2) doublet, essential question!
- -> It contains the linear expansion in a specific limit
- —> Possible to disentangle from data linear from chiral EWSB realisations: decorrelations and different dominant couplings

- * We have defined the non-linear DM portal, and explored it
 - -> It has a dramatic phenomenological impact
 - -> Relic density, direct detection, collider signals ... smoking guns

-> Talk Sunday by J.M. No

The Higgs chiral Lagrangian: LO

It's useful to define two objects that transform nicely under $SU(2)_L$:

$$\begin{aligned} \mathbf{V}_{\mu} &= (D_{\mu}\mathbf{U})\mathbf{U}^{\dagger} &= \frac{ig}{2}W_{\mu}^{a}\sigma^{a} - \frac{ig'}{2}B_{\mu}\sigma^{3} \\ \mathbf{T} &= \mathbf{U}\sigma^{3}\mathbf{U}^{\dagger} &= \sigma^{3} \end{aligned}$$
 in unitary gauge

LO lagrangian: up to two derivatives.

$$\mathscr{L}_{EW} = [\text{kinetic terms for } W, Z, G] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) + \frac{v^2}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}) \mathcal{F}_{\mathsf{C}}(\mathbf{h}) + \mathbf{c}_{\mathsf{T}} \frac{\mathbf{v}^2}{4} \operatorname{Tr}(\mathsf{T} \mathbf{V}_{\mu}) \operatorname{Tr}(\mathsf{T} \mathbf{V}^{\mu}) \mathcal{F}_{\mathsf{T}}(\mathbf{h})$$

SM Lagrangian, up to the presence of arbitrary $\mathcal{F}_{i}(h)$ and of c_{T}

in particular: $D_{\mu} \Phi^{\dagger} D^{\mu} \Phi \rightarrow \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{(v+h)^2}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu})$ Brivio

The Higgs chiral Lagrangian: LO

It's useful to define two objects that transform nicely under $SU(2)_L$:

$$\begin{aligned} \mathbf{V}_{\mu} &= (D_{\mu}\mathbf{U})\mathbf{U}^{\dagger} &= \frac{ig}{2}W_{\mu}^{a}\sigma^{a} - \frac{ig'}{2}B_{\mu}\sigma^{3} \\ \mathbf{T} &= \mathbf{U}\sigma^{3}\mathbf{U}^{\dagger} &= \sigma^{3} \end{aligned}$$
 in unitary gauge

LO lagrangian: up to two derivatives.

$$-\frac{g^{2}v^{2}}{4} \left(\frac{1}{2c_{\theta}^{2}} Z_{\mu} Z^{\mu} + W_{\mu}^{+} W^{-\mu} \right) \mathcal{F}_{\mathsf{C}}(h)$$
gauge bosons' masses
$$Z, \mathcal{G}] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(h) +$$

$$-\frac{v^{2}}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}) \mathcal{F}_{\mathsf{C}}(\mathbf{h}) + \mathbf{c}_{\mathsf{T}} \frac{\mathbf{v}^{2}}{4} \operatorname{Tr}(\mathsf{T} \mathbf{V}_{\mu}) \operatorname{Tr}(\mathsf{T} \mathbf{V}^{\mu}) \mathcal{F}_{\mathsf{T}}(\mathbf{h})$$

SM Lagrangian, up to the presence of arbitrary $\mathcal{F}_i(h)$ and of c_T

in particular: $D_{\mu} \Phi^{\dagger} D^{\mu} \Phi \rightarrow \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{(v+h)^2}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu})$

Brivio

The Higgs chiral Lagrangian: LO

It's useful to define two objects that transform nicely under $SU(2)_L$:

$$\begin{split} \mathbf{V}_{\mu} &= (D_{\mu}\mathbf{U})\mathbf{U}^{\dagger} &= \frac{ig}{2}W_{\mu}^{a}\sigma^{a} - \frac{ig'}{2}B_{\mu}\sigma^{3} \\ \mathbf{T} &= \mathbf{U}\sigma^{3}\mathbf{U}^{\dagger} &= \sigma^{3} \end{split}$$
 in unitary gauge

2 2

LO lagrangian: up to two derivatives.

$$\mathscr{L}_{EW} = [\text{kinetic terms for } W, Z, \mathcal{G}] + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - V(\mathbf{V}^{\mu}) \mathcal{F}_{\mathsf{T}}(\mathsf{h})$$
breaks the custodial symmetry and
contributes to the ρ parameter
 \downarrow^{\downarrow}
 $-\frac{v^{2}}{4} \operatorname{Tr}(\mathsf{V}_{\mu}\mathsf{V}^{\mu})\mathcal{F}_{\mathsf{C}}(\mathsf{h}) + \mathsf{c}_{\mathsf{T}}\frac{\mathsf{v}^{2}}{4} \operatorname{Tr}(\mathsf{T}\mathsf{V}_{\mu})\operatorname{Tr}(\mathsf{T}\mathsf{V}^{\mu})\mathcal{F}_{\mathsf{T}}(\mathsf{h})$

SM Lagrangian, up to the presence of arbitrary $\mathcal{F}_i(h)$ and of c_T

in particular: $D_{\mu} \Phi^{\dagger} D^{\mu} \Phi \rightarrow \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{(v+h)^2}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu})$ Brivio

Example of CHIRAL Decorrelation

The linear coupling $\mathcal{O}_B = (D_\mu \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_\nu \Phi)$

splits into two chiral ones:

$$\mathcal{P}_{2}(h) = 2ieg^{2}A_{\mu\nu}W^{-\mu}W^{+\nu}\mathcal{F}_{2}(h) - 2\frac{ie^{2}g}{\cos\theta_{W}}Z_{\mu\nu}W^{-\mu}W^{+\nu}\mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = -\frac{eg}{\cos\theta_{W}}A_{\mu\nu}Z^{\mu}\partial^{\nu}\mathcal{F}_{4}(h) + \frac{e^{2}}{\cos^{2}\theta_{W}}Z_{\mu\nu}Z^{\mu}\partial^{\nu}\mathcal{F}_{4}(h)$$

due to the decorrelation in the $\mathcal{F}_i(h)$ functions: i.e. [see also Isidori&Trott, 1307.4051]

Example of CHIRAL Decorrelation

The linear coupling $\mathcal{O}_B = (D_\mu \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_\nu \Phi)$

splits into two chiral ones:

$$\mathcal{P}_{2}(h) = \frac{2ieg^{2}A_{\mu\nu}W^{-\mu}W^{+\nu}\mathcal{F}_{2}(h)}{\cos\theta_{W}} - 2\frac{ie^{2}g}{\cos\theta_{W}}Z_{\mu\nu}W^{-\mu}W^{+\nu}\mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = -\frac{eg}{\cos\theta_{W}}A_{\mu\nu}Z^{\mu}\partial^{\nu}\mathcal{F}_{4}(h) + \frac{e^{2}}{\cos^{2}\theta_{W}}Z_{\mu\nu}Z^{\mu}\partial^{\nu}\mathcal{F}_{4}(h)$$

due to the nature of the chiral operators (different c_i coefficients): i.e.

Decorrelations

Data: Tevatron D0 and CDF Collaborations and LHC, CMS, and ATLAS Collaborations at 7 TeV and 8 TeV for final states γγ, W+W⁻, ZZ, Zγ, b⁻b, and ττ⁻