HIDDEN VALLEY PHENOMENOLOGY: FROM COSMOLOGY TO COLLIDERS

Giovanni Grilli di Cortona

ggrillidc@fuw.edu.pl

UNIVERSITY OF WARSAW **Faculty of Physics**

based on: H. Beauchesne, E. Bertuzzo, G²dC and Z. Tabrizi, JHEP1808(2018)101, [1712.07160] H. Beauchesne, E. Bertuzzo and G²dC, JHEP 1904(2019)118, [1809.10152] H. Beauchesne and G²dC, [19xx.xxxx]

Scalars 2019 - University of Warsaw - 12th September 2019

- Introduction and motivation
- Collider signatures
- Dark Matter
 - I. Production mechanisms
 - 2. Benchmark models constraints
- Conclusions

Introduction

Introduction

Scalars 12/09/2019

G.Grilli di Cortona

dark QC

- I) SU(N) dark sector;
- neutral dark quarks; 2)
- confinement scale Λ ; 3)
- dark mesons can be 4) unstable or long lived.

Motivated in Twin Higgs, Folded SUSY and **Relaxion models**

Introduction

 $\lambda_{D_{ijk}^c}^S (X_{D_k^c}^S)^{\dagger} \bar{n}_i P_R D_j^c + h.c.$ $\lambda_{D_{ijk}^c}^S = \lambda \delta_{i1} \delta_{jk}$ two unstable dark pions

three stable dark pions

G.Grilli di Cortona

 $\begin{array}{cccc} \frac{1}{\sqrt{6}} \pi_2^u & \pi_1^s & \pi_2^s \\ & -\frac{1}{\sqrt{2}} \pi_1^u + \frac{1}{\sqrt{6}} \pi_2^u & \pi_3^s \\ & & & & \\ & & & \\ \hline \pi_3^s & & -\sqrt{\frac{2}{3}} \pi_2^u \end{array}$

G.Grilli di Cortona

Signatures

Scalars 12/09/2019

$$\mathcal{L} \supset \left\{ \frac{2N_c}{15\pi^2 f_{\pi_D}^5} \epsilon^{\mu\nu\rho\sigma} \mathrm{Tr}[\Pi \partial_\mu \Pi \partial_\nu \Pi \partial_\rho \Pi$$

Scalars 12/09/2019

$$\mathcal{L} \supset \left\{ \frac{2N_c}{15\pi^2 f_{\pi_D}^5} \epsilon^{\mu\nu\rho\sigma} \mathrm{Tr} [\Pi \partial_\mu \Pi \partial_\nu \Pi \partial_\rho \Pi$$

Scalars 12/09/2019

G.Grilli di Cortona

 $\partial_{\sigma}\Pi] + i\frac{\lambda^2}{m_X^2}(\pi_i^s\partial_{\mu}\bar{\pi}_i^s - \bar{\pi}_i^s\partial_{\mu}\pi_i^s)\bar{f}\gamma^{\mu}f$

NB: qualitative Lagrangian, some terms have missing numerical factors, momentum dependence, etc. etc.

$$\mathcal{L} \supset \left(\frac{2N_c}{15\pi^2 f_{\pi_D}^5} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}[\Pi \partial_\mu \Pi \partial_\nu \Pi \partial_\rho \Pi \partial_\sigma \Pi] + \left[i \frac{\lambda^2}{m_X^2} (\pi_i^s \partial_\mu \pi_i^s - \bar{\pi}_i^s \partial_\mu \pi_i^s) \bar{f} \gamma^\mu f \right] \right)$$

$$+ g_i \bar{\pi}_i^s \pi_i^s \bar{\pi}_j^u \pi_k^u$$

Scalars 12/09/2019

G.Grilli di Cortona

NB: qualitative Lagrangian, some terms have missing numerical factors, momentum dependence, etc. etc.

Scalars 12/09/2019

$$[\partial_{\sigma}\Pi] + \left[i \frac{\lambda^2}{m_X^2} (\pi_i^s \partial_{\mu} \bar{\pi}_i^s - \bar{\pi}_i^s \partial_{\mu} \pi_i^s) \bar{f} \gamma^{\mu} f \right]$$

G.Grilli di Cortona

[Hochberg et al. '14,...] [Kuflik et al. '15,...]

DM production mechanism

G.Grilli di Cortona

Direct Detection

XenonIT bounds [Xenon Coll.'17]

Running effects [Crivellin et al. '14, D'Eramo et al. '15, '16]

Scalars 12/09/2019

G.Grilli di Cortona

G.Grilli di Cortona

Conclusions

 Hidden confining dark sectors arise in many new physics models (Twin Higgs, Folded SUSY, Relaxion, DM) and lead to interesting collider signatures, such as emerging/semivisible jets.

 Stable Dark Mesons of confining sectors can be suitable DM candidates. Their parameter space can be mapped to possible exotic signatures at colliders and future indirect detection experiments.