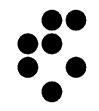
New Physics in Lepton Flavor Violating Higgs Decays

Svjetlana Fajfer



Physics Department, University of Ljubljana and Institute J. Stefan, Ljubljana, Slovenia

Outline

> Motivation

establish connection with LFV observables;

to search for viable scenarios;

Model independent approach;

Extended scalar sector;

Extended fermion sector;

Summary.

(In collaboration with I. Doršner, A.Grelljo, J.F.Kamenik, N. Košnik and I. Nišandžić , arXiv: 1502.077)

Lepton flavour violating Higgs decays

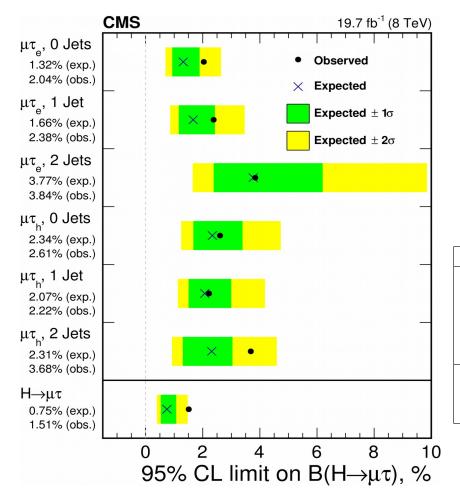
CMS result 2014:

$$BR(H \to \tau \mu) = (0.84^{+0.39}_{-0.37})\%$$

 2.4σ excess

ATLAS result 2015:

 $BR(H \to \tau \mu) = (0.77 \pm 0.62)\%$



ATLAS arXiv:1508.03372 m

	SR1	SR2	Combined
Expected limit on Br($H \rightarrow \mu \tau$) [%] Observed limit on Br($H \rightarrow \mu \tau$) [%]	$\frac{1.60^{+0.64}_{-0.45}}{1.55}$	$1.75_{-0.49}^{+0.71}$ 3.51	$\frac{1.24^{+0.50}_{-0.35}}{1.85}$
Best fit $Br(H \to \mu \tau)$ [%]	$-0.07^{+0.81}_{-0.86}$	$1.94^{+0.92}_{-0.89}$	0.77±0.62

Naive average of ATLAS+CMS: B = 0.8 ± 0.3

from Landsberg @ SCALAR 2015

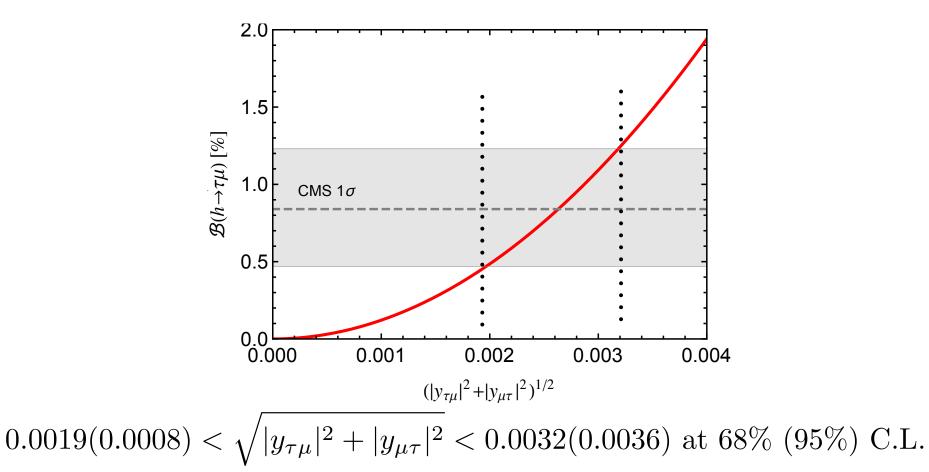
Assumption: SM contains all relevant degrees of freedom at energies few hundred GeV .

General parametrization of Higgs couplings to charged leptons after electroweak symmetry breaking:

 $\Gamma_h = \Gamma_h^{\rm SM} / [1 - \mathcal{B}(h \to \tau \mu)]$

Experimentally measured $H \to \mu \tau$ event does not depend only on $y_{\tau\mu}, y_{\mu\tau}$ couplings, but also on couplings contributing to total Higgs decay width and production cross section.

If NP enters only in $\,H
ightarrow au\mu$

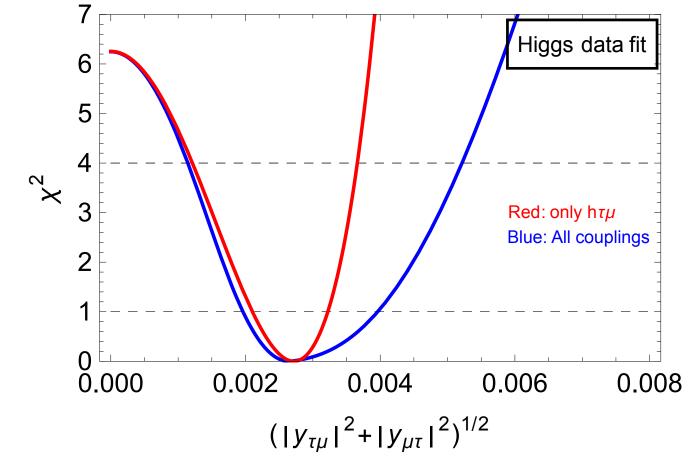


Testing robustness of the lower bound on LFV Yukawa couplings allowing for non-SM production and total decay rate

Decay channel	Production mode Signal strength (
	CMS		
$h o b \overline{b}$	VH	1.0 ± 0.5	
	VBF	0.7 ± 1.4	
	ttH	1.0 ± 2.0	
$h \rightarrow WW^*$	ggF+ttH	0.76 ± 0.23	
	VBF+VH	0.74 ± 0.62	
$h \rightarrow ZZ^*$	ggF+ttH	0.90 ± 0.45	
	VBF+VH	1.7 ± 2.3	
$h ightarrow \gamma \gamma$	ggF+ttH	0.50 ± 0.41	
	VBF+VH	1.64 ± 0.88	
h ightarrow au au	0-jet	0.34 ± 1.09	
	1-jet	1.07 ± 0.46	
	2-jet (VBF-tag)	0.94 ± 0.41	
	VH-tag	-0.33 ± 1.02	
$\mathcal{B}(h \to \tau \mu) [\%]$	0-jet	0.77 ± 0.55	
	1-jet	0.59 ± 0.62	
	2-jet	1.1 ± 0.80	
$h \rightarrow \text{invisible}$	VBF+VH	0.14 ± 0.22	
$h \to Z \gamma$	inclusive	0.0 ± 4.8	
$h ightarrow \mu \mu$	inclusive	2.9 ± 2.8	

 $N_{h \to \tau \mu} \sim \sigma_h \, \frac{\Gamma_{h \to \tau \mu}}{\Gamma_h}$

	ATLAS		
	ATLAS		
VH	0.2 ± 0.65		
ggF+ttH	1.8 ± 0.65		
VBF+VH	-0.2 ± 3.7		
ggF+ttH	0.82 ± 0.37		
VBF+VH	1.74 ± 0.80		
ggF+ttH	1.61 ± 0.41		
VBF+VH	1.87 ± 0.80		
ggF+ttH	1.5 ± 1.6		
VBF+VH	1.7 ± 0.84		
VH	0.13 ± 0.31		
inclusive	2.0 ± 4.6		
inclusive	1.6 ± 4.2		
	ggF+ttH VBF+VH ggF+ttH VBF+VH ggF+ttH VBF+VH ggF+ttH VBF+VH VBF+VH VH inclusive		

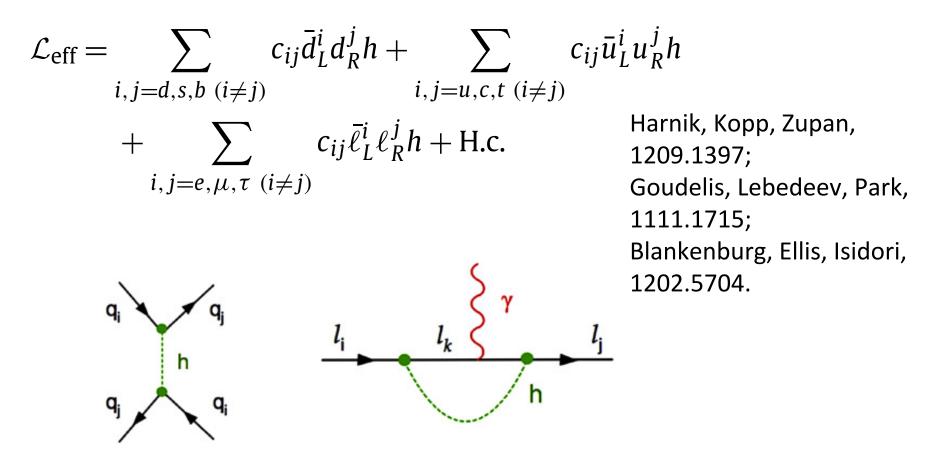


robust lower bound!

 $0.0017(0.0007) < \sqrt{|y_{\tau\mu}|^2 + |y_{\mu\tau}|^2} < 0.0036(0.0047)$ at 68% (95%) C.L

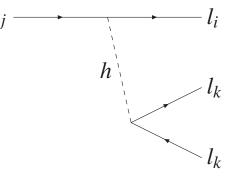
Main goal of our study: to interpret these bounds in terms of NP!

Flavor violating Higgs decays



In the quark sector strong bounds come from $\Delta F=2$ sector.

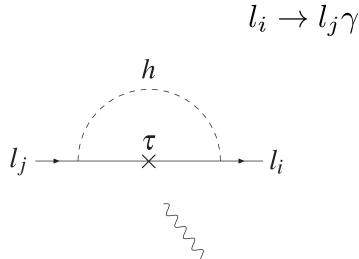
In the lepton sector no analog of $\Delta F=2$ transitions.



Higgs coupling to tree level decays of charged: lepton flavor violating (LFV) decays and μ -e conversion in nuclei;

One-loop induced amplitudes:

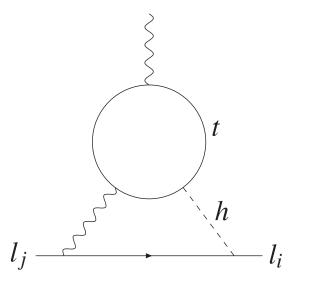
- a) Logarithmically divergent corrections to the lepton masses;
- b) Finite contributions to the anomalous magnetic moments and the electric dipole moments of charged leptons;
- c) Finite contributions to LFV processes



Eff. couplings	Bound	Constraint
$ c_{e\tau}c_{\tau e} \ (c_{e\mu}c_{\mu e})$	$1.1 \times 10^{-2} \ (1.8 \times 10^{-1})$	$ \delta m_e < m_e$
$ \operatorname{Re}(c_{e\tau}c_{\tau e}) \ (\operatorname{Re}(c_{e\mu}c_{\mu e}))$	$0.6 imes 10^{-3} \ (0.6 imes 10^{-2})$	$ \delta a_e < 6 imes 10^{-12}$
$ \mathrm{Im}(c_{e\tau}c_{\tau e}) \ (\mathrm{Im}(c_{e\mu}c_{\mu e}))$	$0.8\times 10^{-8}~(0.8\times 10^{-7})$	$ d_e < 1.6 imes 10^{-27} e \mathrm{cm}$
$ c_{\mu\tau}c_{\tau\mu} $	2	$ \delta m_{\mu} < m_{\mu}$
$ \operatorname{Re}(c_{\mu\tau}c_{\tau\mu}) $	2×10^{-3}	$ \delta a_{\mu} < 4 imes 10^{-9}$
$ \mathrm{Im}(c_{\mu\tau}c_{\tau\mu}) $	0.6	$ d_{\mu} < 1.2 imes 10^{-19} e { m cm}$
$ c_{e\tau}c_{\tau\mu} , c_{\tau e}c_{\mu\tau} $	$1.7 imes 10^{-7}$	$\mathcal{B}(\mu ightarrow e \gamma) < 2.4 imes 10^{-12}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$0.9 imes 10^{-2}$ [*]	$\mathcal{B}(au o \mu \gamma) < 4.4 imes 10^{-8}$
$ c_{e\tau} ^2, c_{\tau e} ^2$	$0.6 imes 10^{-2}$ [*]	$\mathcal{B}(au ightarrow e \gamma) < 3.3 imes 10^{-8}$

Blankenburg, Ellis, Isidori, 1202.5704

Interesting: Barr-Zee two-loops, with top-quark in the loop, can be important (Davidson, Granier, 1001.0434, Goudelis, Lebedevs, Park, 1111.1715).



Effective Lagrangian approach

Integrating out heavy Higgses, fermions, scalars, keeping terms up to dimension 6: (Harnik, Kopp, Zupan, 1209.1397)

$$\mathcal{L}_{Y_{\ell}} = -\lambda_{ij}^{\alpha} \bar{L}_{i} H_{\alpha} E_{j} - \lambda_{ij}^{\prime \alpha \beta \gamma} \frac{1}{\Lambda^{2}} \bar{L}_{i} H_{\alpha} E_{j} (H_{\beta}^{\dagger} H_{\gamma}) + \text{h.c.}$$
multiple Higgses $H_{\alpha} = (h_{\alpha}^{+}, v_{\alpha} + x_{\alpha}h + \dots)^{T}$
Electroweak precision tests constrain $\sum_{\alpha} v_{\alpha}^{2} \sim v^{2}/2$ $\sum_{\alpha} |x_{\alpha}|^{2} \sim 1/2$

Dimension 6 creates mismatch between masses and Yukawa matrices:

$$y_{ij} = \frac{m_i}{v} \delta_{ij} + \epsilon_{ij} \qquad \frac{m}{v} = V_L \left(\lambda^\alpha \bar{v}_\alpha + \lambda^{\prime \alpha \beta \gamma} \frac{v^2}{\Lambda^2} \bar{v}_\alpha \bar{v}_\beta \bar{v}_\gamma \right) V_R^{\dagger}$$

$$\boldsymbol{\epsilon} = V_L \left[\lambda^{\alpha} \bar{v}_{\alpha} \left(\frac{x_{\alpha}}{\bar{v}_{\alpha}} - 1 \right) + \lambda^{\prime \alpha \beta \gamma} \frac{v^2}{\Lambda^2} \bar{v}_{\alpha} \bar{v}_{\beta} \bar{v}_{\gamma} \left(\frac{x_{\alpha}}{\bar{v}_{\alpha}} + \frac{x_{\beta}}{\bar{v}_{\beta}} + \frac{x_{\gamma}}{\bar{v}_{\gamma}} - 1 \right) \right] V_R^{\dagger}$$

Two possible sources of non-vanishing y_{\tau\mu} and y_{\mu\tau} ($\bar{v}_{\alpha}=v_{\alpha}/v_{-})$

a) If $x_{\alpha} \neq \bar{v}_{\alpha}$ first term is different then 0 (NP possible bellow NP scale Two Higgs doublet model!) In single Higgs theory, first term vanishes ($v_1 = v/\sqrt{2}$, $x_1 = 1/\sqrt{2}$)

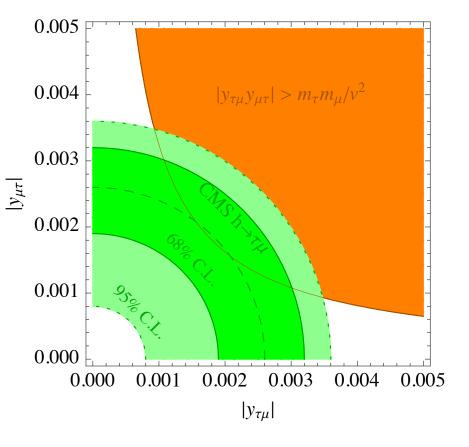
b) If the first term vanishes, then LFV Higgs decay is due to second term.

If only one Higgs, CMS result can be interpreted as giving bound on the NP scale

$$\Lambda \simeq 4 \text{ TeV} \left[\left(\frac{0.84\%}{\mathcal{B}(h \to \tau\mu)} \right) \left(|V_L \lambda'^{111} V_R^{\dagger}|_{\tau\mu}^2 + |V_L \lambda'^{111} V_R^{\dagger}|_{\mu\tau}^2 \right) \right]^{1/4}$$

Hierarchy between τ and μ mass (Cheng- Sher anzatz)

$$\sqrt{|y_{\tau\mu}y_{\mu\tau}|} \lesssim \frac{\sqrt{m_{\mu}m_{\tau}}}{v} = 0.0018 \quad \text{(Cheng, Sher, PRD 35, 3484, Branco et al, PR 516, 1)}$$



One more model independent constraints: Operator of dim-6 will mix with the SM. In single Higgs setup λ' will mix under charged lepton renormalisation! Small effect - according to: Jenkins et al., 1308.2627, Jenkins et al.,1310.4838. Constraints from τ radiative lepton flavor violating decays

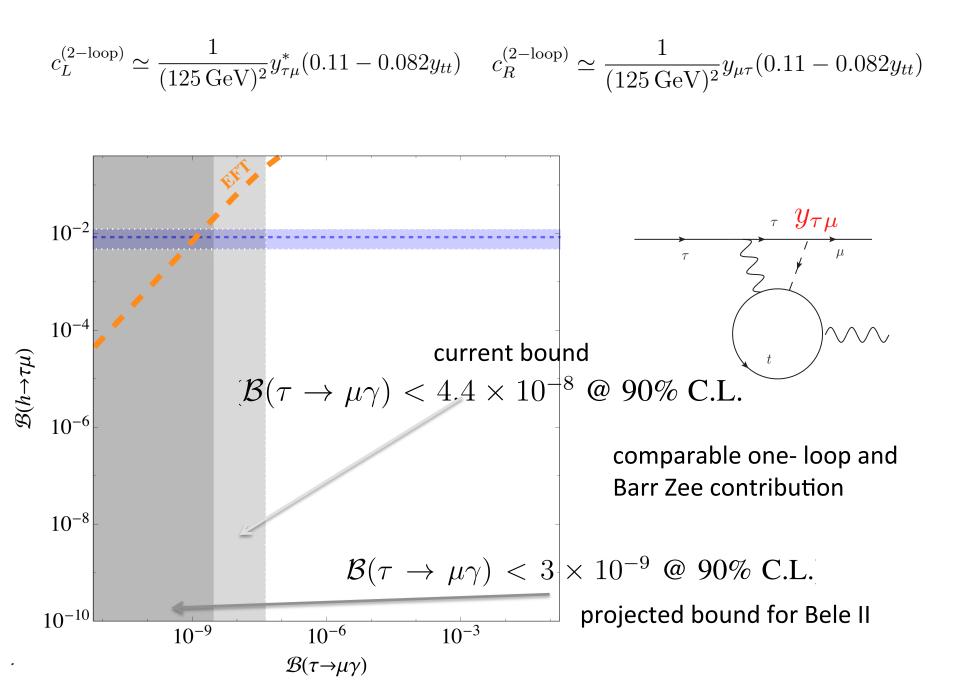
Important for phenomenology: UV finite one and two-loop contributions to radiative LFV decays, anomalous muon magnetic moments, lepton dipole moments. The stringent constraint comes from τ LFV decays.

$$\mathcal{L}_{\text{eff.}} = c_L \mathcal{Q}_{L\gamma} + c_R \mathcal{Q}_{R\gamma} + \text{h.c.}$$

$$\mathcal{Q}_{L,R\gamma} = (e/8\pi^2)m_{\tau}(\bar{\mu}\sigma^{\alpha\beta}P_{L,R}\tau)F_{\alpha\beta}$$

Harnik, Kopp, Zupan, 1209.1397; Goudelis, Lebedeev, Park, 1111.1715; Blankenburg, Ellis, Isidori, 1202.5704.

$$c_L^{(1-\text{loop})} \simeq \frac{1}{m_h^2} y_{\tau\mu}^* y_{\tau\tau} \left(-\frac{1}{3} + \frac{1}{4} \log \frac{m_h^2}{m_\tau^2} \right) \quad c_R^{(1-\text{loop})} \simeq \frac{1}{m_h^2} y_{\mu\tau} y_{\tau\tau} \left(-\frac{1}{3} + \frac{1}{4} \log \frac{m_h^2}{m_\tau^2} \right)$$



Comment on LFV Higgs decay and τ radiative decay:

 $L \sim (3,1), E \sim (1,3)$ under $\mathcal{G}_{\ell} \equiv SU(3)_L \times SU(3)_E \in \mathcal{G}_{F^*}$

 $\bar{L}HE(H^{\dagger}H)$ dim-6 part of the Lagrangian transforms the same way as

 $\overline{L}H(\sigma \cdot B)E$ and $\overline{L} au^a H(\sigma \cdot W_a)E_a$

If $\overline{L}HE(H^{\dagger}H)$ is generated at loop level, then in the loops are necessarily charged particles.

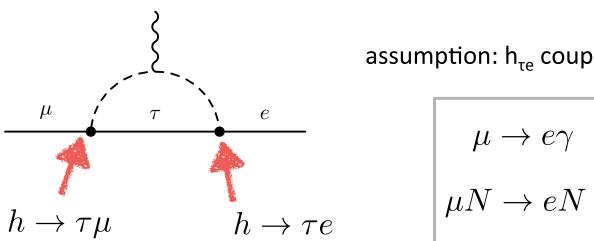
Therefore:

$$c_{L,R} \sim 8\pi y_{\tau\mu,\mu\tau}/vm_{\tau}$$

It implies that for $\mathcal{B}(h \to \tau \mu) \sim \%$ level that $\mathcal{B}(\tau \to \mu \gamma)$ can be an order of magnitude bigger!

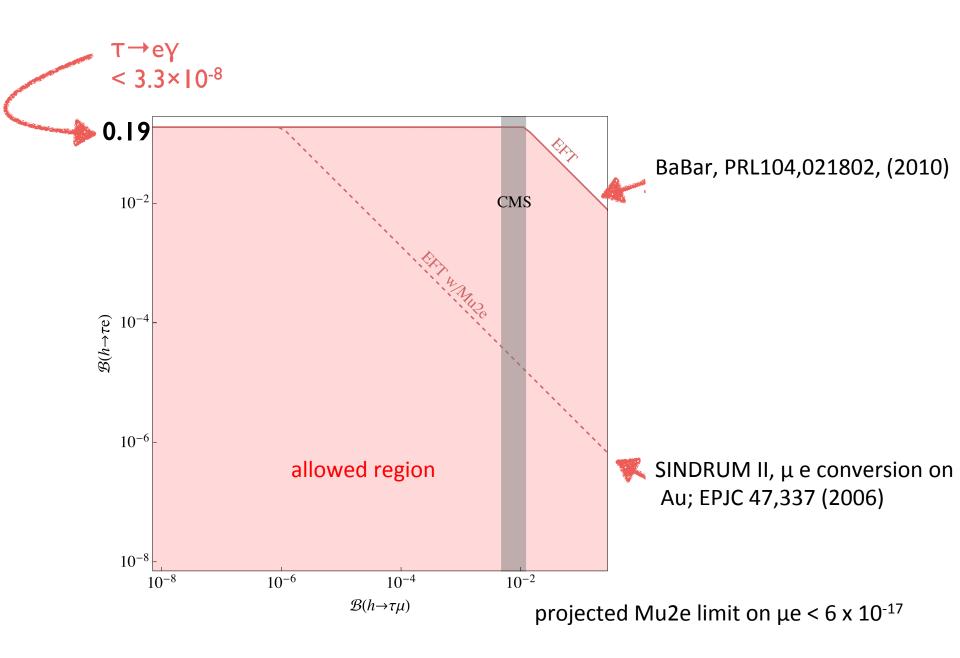
It means that an accidental cancellation should occur in the amplitude of the radiative decays (of the order 10⁻³)!

Additional correlation: $\mu \to e \gamma\;$ and $\mu - {\rm e}\; {\rm conversion}\;$



assumption: $h_{\tau e}$ coupling is nonzero!

$$\mathcal{B}(h \to \tau\mu) \times \mathcal{B}(h \to \tau e) = 7.95 \times 10^{-10} \left[\frac{\mathcal{B}(\mu \to e\gamma)}{10^{-13}} \right] + 3.15 \times 10^{-4} \left[\frac{\mathcal{B}(\mu \to e)_{\mathrm{Au}}}{10^{-13}} \right]$$



From symmetry point of view, LFV Higgs interactions:

$$L \sim (3,1), E \sim (1,3)$$
 under $\mathcal{G}_{\ell} \equiv SU(3)_L \times SU(3)_E \in \mathcal{G}_F$

In SM (without neutrino masses) Yukawa matrix $\lambda \sim (3, \overline{3})$ is the only source of \mathcal{G}_{ℓ} breaking.

At tree level there are only possibilities:

- 1) Extend scalar sector:
 - 2HDM type III;
 - Scalar leptoquarks;
- 2) Extend fermion sector: vector-like leptons;
- 3) LQ + vector-like up-quark (?).

Two Higgs Doublet Model-Type III

Framework $H_d = \begin{pmatrix} H_d^0 \\ H_u^- \end{pmatrix}, \quad H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$ (e.g. Branco et al, PR 516,1; Crivellin et al, PRD87, 094031) $H_u^0 = \frac{1}{\sqrt{2}} \left(H^0 \sin \alpha + h^0 \cos \alpha + i A^0 \cos \beta \right)$ 5 physical scalar states: $H_d^0 = \frac{1}{\sqrt{2}} \left(H^0 \cos \alpha - h^0 \sin \alpha + i A^0 \sin \beta \right)$ H, H^0, H^{\pm}, A $H^1_u = H^+ \cos \beta$ $H_{u}^{2} = H^{-}\sin\beta$ $\tan \beta = \frac{v_u}{v_d}, \quad \tan 2\alpha = \tan 2\beta \frac{m_A^2 + m_Z^2}{m_A^2 - m_Z^2},$ 2 parametrers: $\tan\beta$, m_A $m_{H^{\pm}}^2 = m_A^2 + m_W^2$ $m_H^2 = m_A^2 + m_Z^2 - m_h^2$

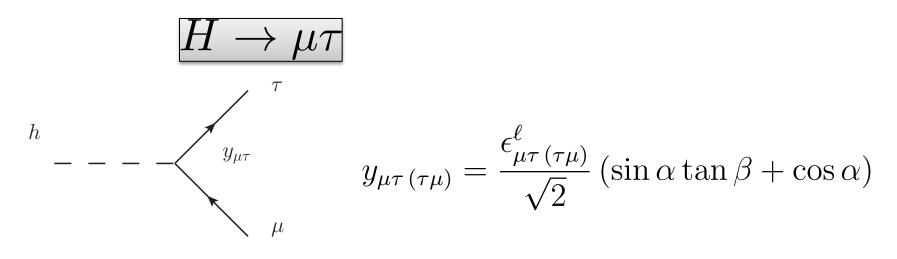
Couplings to flavors

- No restriction on Higgs couplings to fermions;
- Tree level Higgs couplings:
 - charged and FCN transition in the quark sector (K, D, B, mixing and rare decays)
 - lepton flavor violation

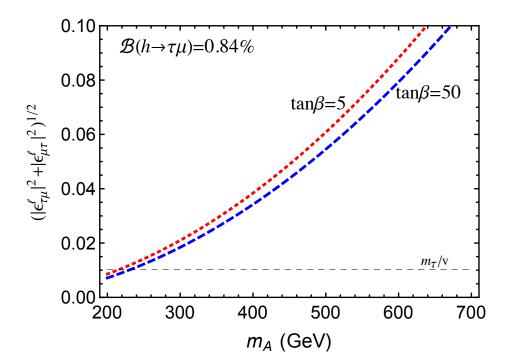
$$\mathcal{L} = \frac{y_{fi}^{H_k}}{\sqrt{2}} H_k \bar{\ell}_{L,f} \ell_{R,i} + \frac{y_{fi}^{H^+}}{\sqrt{2}} H^+ \bar{\nu}_{L,f} \ell_{R,i} + \text{h.c.}$$

$$y_{fi}^{H_k} = x_d^k \frac{m_{\ell_i}}{v_d} \delta_{fi} - \epsilon_{fi}^\ell \left(x_d^k \tan \beta - x_u^{k*} \right)$$

$$y_{fi}^{H^{\pm}} = \sqrt{2} \sum_{j=1}^{3} \sin\beta V_{fj}^{\text{PMNS}} \left(\frac{m_{\ell_i}}{v_d} \delta_{ji} - \epsilon_{ji}^{\ell} \tan\beta\right)$$



$$\mathcal{B}(h \to \tau \mu) = \frac{m_h}{16\pi\Gamma_h} \left(\sin\alpha \tan\beta + \cos\alpha\right)^2 \left(|\epsilon_{\mu\tau}^{\ell}|^2 + |\epsilon_{\tau\mu}^{\ell}|^2 \right)$$

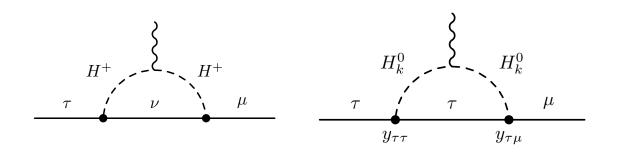


small dependence on large tan β

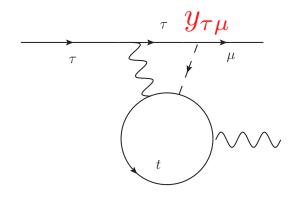
$$\sin\alpha\tan\beta + \cos\alpha \simeq -\frac{2m_Z^2}{m_A^2}$$

For large tan β , effect decouples (large m_A).

Constraints from $au
ightarrow \mu \gamma$

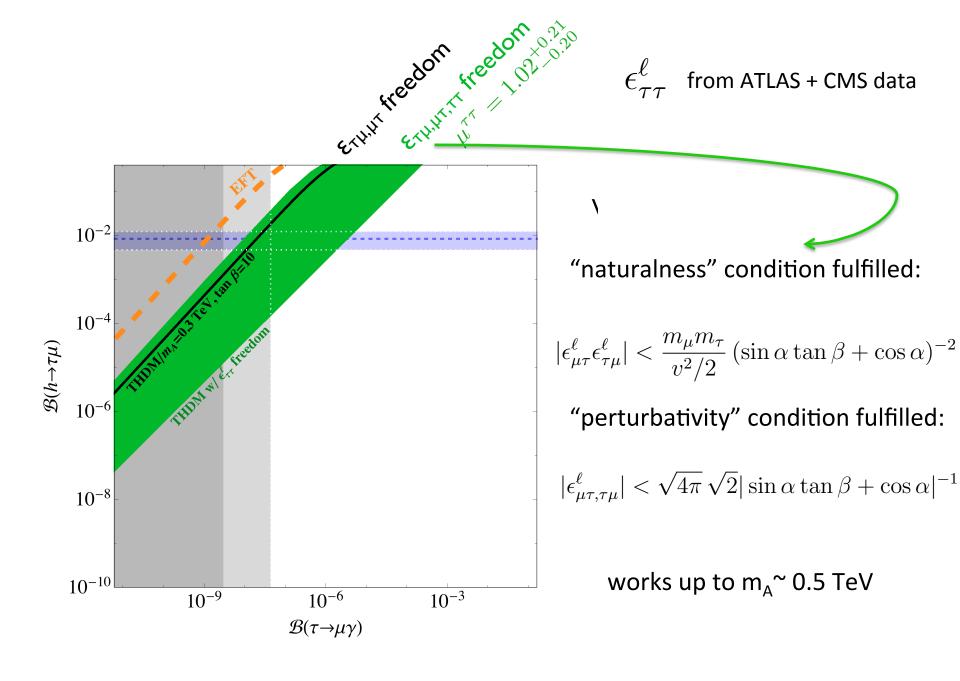


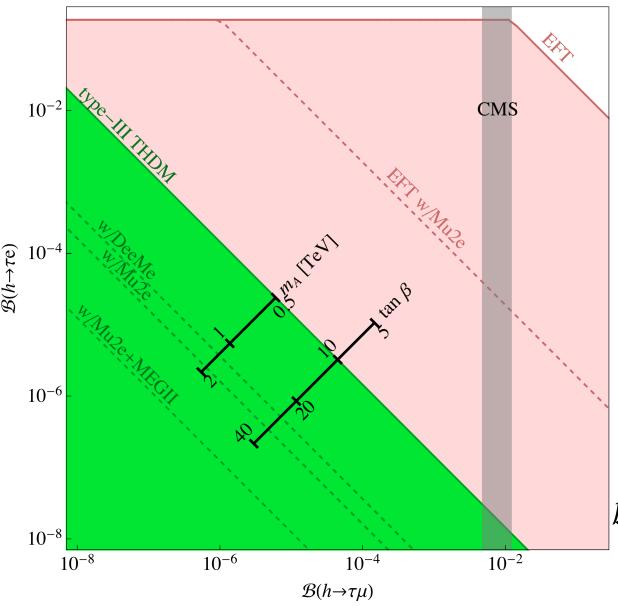
At one loop level amplitude is proportional to product of small Yukawa and LFV coupling.



Barr-Zee contribution dominant!

Chang et al., PRD48, 217





$$\mathcal{B}(h \to \tau e) < 6 \times 10^{-6}$$

(taking central value of $h
ightarrow au \mu$)

From SINDRUMII μ - e conversion on AU EPJC47,337; and MEG 1303.0754 $\mathcal{B}(\mu \to e \gamma) < 5.7 \times 10^{-13}$

Vector-like fermions appear in some GUT or in scenarios with compositeness

$$SU(3)_c \times SU(2)_L \times U(1)_{Y_1} \xrightarrow{(1,2)_{1/2} \oplus (1,2)_{-1/2}}_{(1,1)_1 \oplus (1,1)_{-1}} \xrightarrow{\text{either weak doublet (L) or singlet (E)}}_{\text{singlet (E)}}$$

Higgs couplings to VL are directly related to Z boson couplings (SF, Greljo, Kamenik, Mustac, arXiv:1304.4219)

$$\mathcal{L}_{\rm LFV}^Z = \frac{g}{2c_W} \left(X_{ij} \bar{\ell}_L^i \gamma^\mu \ell_L^j - Y_{ij} \bar{\ell}_R^i \gamma^\mu \ell_R^j \right) Z_\mu$$

 $X_{\tau\mu,\mu\tau}, Y_{\tau\mu,\mu\tau} \lesssim 10^{-3}$ from $au o \mu\mu\mu$

too small contribution to $\,H \to \tau \mu$

Direct couplings to the Higgs by mixing with heavy vector-like leptons

$$-\mathcal{L}_{VLL} = \lambda_{\Psi} \bar{\Psi}^E H(1-\gamma_5) \Psi^L + \tilde{\lambda}_{\Psi} \bar{\Psi}^E H(1+\gamma_5) \Psi^L$$
$$+ M_{\Psi} \left(\lambda_e \bar{E} \Psi^E + \lambda_l \bar{L} \Psi^L + C_L \bar{\Psi}^L \Psi^L + C_R \bar{\Psi}^E \Psi^E \right) + \text{h.c.}$$

mixing terms

Dirac mass terms

Flavor off-diagonal Higgs coupling

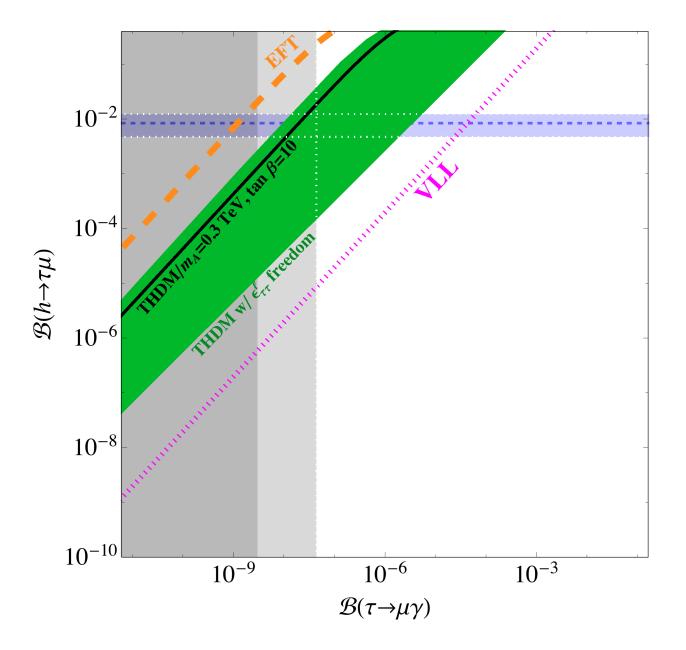
$$\epsilon = \frac{8v^2}{M_{\Psi}^2} \lambda_l C_L^{-1} \lambda_{\Psi} C_R^{-1} \tilde{\lambda}_{\Psi} C_L^{-1} \lambda_{\Psi} C_R^{-1} \lambda_e$$

Falkowski, Straub, Vicente, 1312.5329

SM leptons get masses only through mixing with VLL

 $\frac{\mathcal{B}(h \to \tau \mu)}{\mathcal{B}(\tau \to \mu \gamma)} = \frac{4\pi}{3\alpha} \frac{\mathcal{B}(h \to \tau^+ \tau^-)_{\rm SM}}{\mathcal{B}(\tau \to \mu \bar{\nu} \nu)_{\rm SM}} \approx 2 \times 10^2$

one-loop



Scalar Leptoquarks

In B physics there are three puzzles:

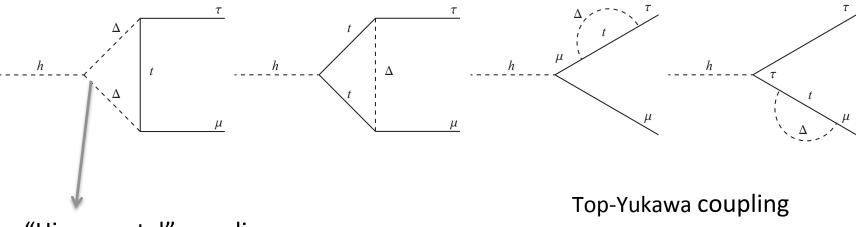
1)
$$R_{D^{(*)}} = \frac{BR(B \to D^{(*)} \tau \nu_{\tau})}{BR(B \to D^{(*)} \mu \nu_{\mu})}$$
 3.5 σ charged current

2) P₅' in
$$~B
ightarrow K^* \mu^+ \mu^-$$
 3 σ

3)
$$R_K = \frac{\Gamma(B \to K \mu \mu)}{\Gamma(B \to K e e)}$$

in the dilepton invariant mass bin $1~{
m GeV^2} \le q^2 \le 6~{
m GeV^2}$ 2.60

e.g. Bauer, Neubert. arXiv:1511.01900 Bečirević, SF, Košnik. arXiv:1503.09024 Hiller,Schmaltz. arXiv:1411.4773 Freytsis, Ligeti,. Ruderman.arXiv:1506.08896 Doršner, SF, Košnik, Nišandžić. arXiv:1306.6493 Dorsner,SF, Kosnik. arXiv:1204.0674



"Higgs portal" coupling

 $\mathcal{L} \ni -\lambda H^{\dagger} H \Delta^{\dagger} \Delta$

- Loop induced LFV;
- Need top-quark mass chiral enhancement: non-chiral LQ!
- $au
 ightarrow \mu \gamma$ enhanced in the same way as $H
 ightarrow au \mu$

(3,1, 1/3) leptoquark

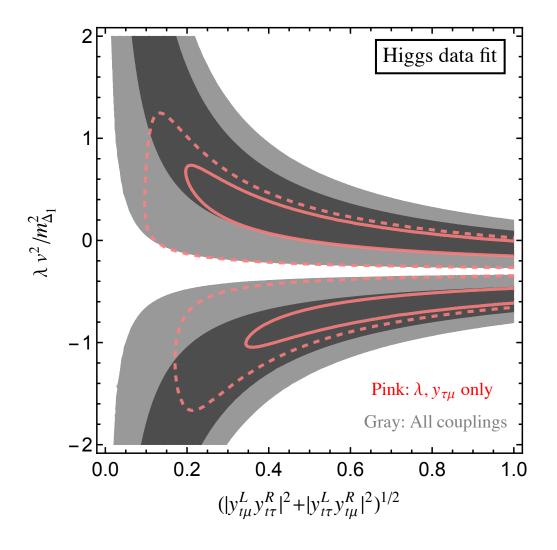
 Δ_1 used recently by Bauer & Neubert, arXiv:1511.01900 for B anomalies! Can couple to diquarks and destabilize proton.

$$\mathcal{L}_{\Delta_1} = y_{ij}^L \bar{u}_L^i \ell_L^{C\,j} \Delta_1 - (V_{\text{CKM}}^\dagger y_{ij}^L V_{\text{PMNS}}) \bar{d}_L^i \nu_L^{C\,j} \Delta_1 + y_{ij}^R \bar{u}_R^i \ell_R^{C\,j} \Delta_1 + \text{h.c.}$$

$$\mathcal{B}(\tau \to \mu \gamma) = \frac{\alpha m_{\tau}^3}{2^{12} \pi^4 \Gamma_{\tau}} \frac{m_t^2}{m_{\Delta_1}^4} h_1(x_t)^2 \left(\left| y_{t\mu}^L y_{t\tau}^R \right|^2 + \left| y_{t\tau}^L y_{t\mu}^R \right|^2 \right)$$

Constraints come from (g-2) $_{\mu}$, $\mathcal{B}(Z \to b\overline{b})$.

Portal coupling has an effect on $H\to\gamma\gamma$ and $gg\to H$



$$\frac{\Gamma_{h \to \gamma \gamma}}{\Gamma_{h \to \gamma \gamma}^{SM}} = |\hat{c}_{\gamma}|^2$$

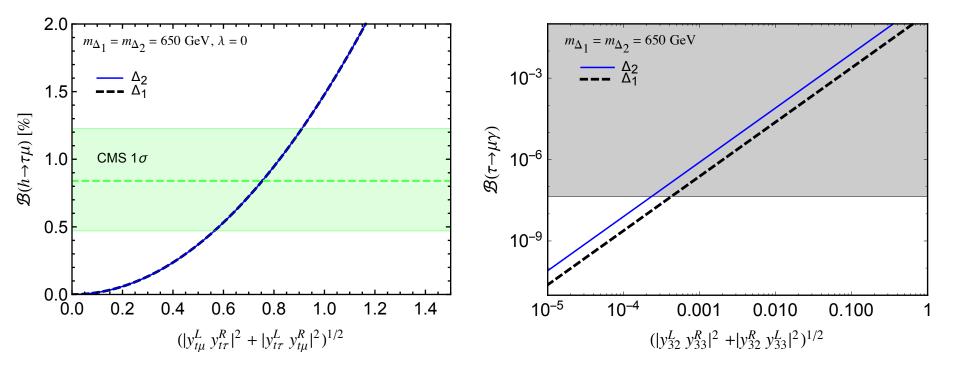
$$\hat{c}_{\gamma} = 1 - 0.025 \frac{\lambda v^2}{m_{\Delta}^2} d(r_{\Delta}) \sum_{i} Q_{\Delta^i}^2$$

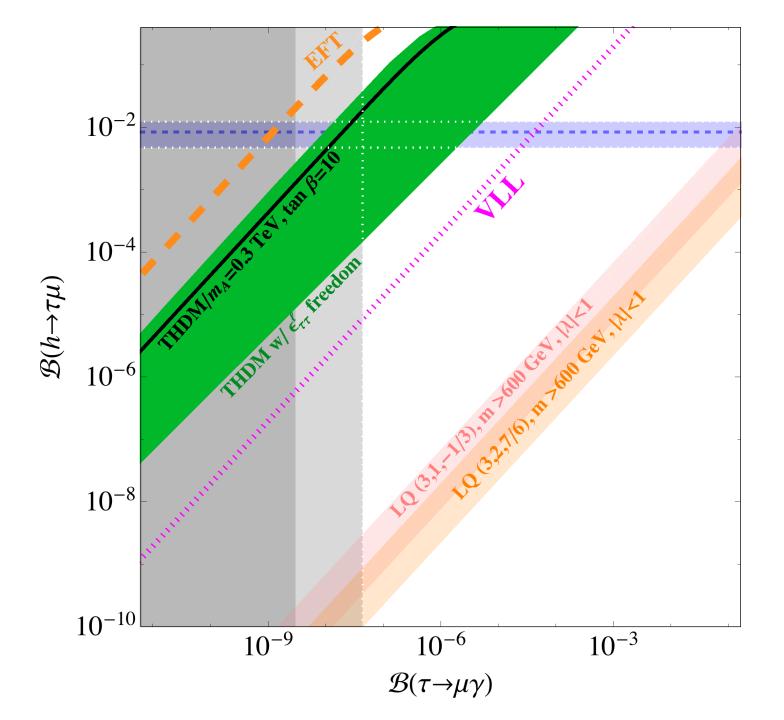
(3,2,7/6) Leptoquark

Good candidate to explain $R_{D(*)}$ anomaly (Doršner, SF, Košnik, arXiv:1306.6493), cannot destabilize proton;

$$\mathcal{L}_{\Delta_{2}} = y_{ij}^{L} \bar{\ell}_{R}^{i} d_{L}^{j} \Delta_{2}^{2/3*} + (y^{L} V_{\text{CKM}}^{\dagger})_{ij} \bar{\ell}_{R}^{i} u_{L}^{j} \Delta_{2}^{5/3*} + (y^{R} V_{\text{PMNS}})_{ij} \bar{u}_{R}^{i} \nu_{L}^{j} \Delta_{2}^{2/3} - y_{ij}^{R} \bar{u}_{R}^{i} \ell_{L}^{j} \Delta_{2}^{5/3} + \text{h.c.}$$

$$\mathcal{B}(\tau \to \mu \gamma) = \frac{\alpha m_{\tau}^3}{2^{12} \pi^4 \Gamma_{\tau}} \frac{m_t^2}{m_{\Delta}^4} h_2(x_t)^2 \left(|y_{t\tau}^R y_{\mu t}^L|^2 + |y_{t\mu}^R y_{\tau t}^L|^2 \right)$$





Fine-tuning solution

LQ (3,1-1/3) and vector-like top partner T_L' and T_R' (3,1,2/3)

$$-\mathcal{L} \supset y_t \bar{q}'_{3L} \tilde{H} t'_R + y_T \bar{q}'_{3L} \tilde{H} T'_R + M_T \bar{T}'_L T'_R + \text{h.c.}$$

$$m_t \approx y_t v / \sqrt{2} , \quad m_T \approx M_T ,$$

$$\sin \theta_L \approx \frac{m_t y_T}{m_T y_t}, \quad \sin \theta_R \approx \frac{m_t}{m_T} \sin \theta_L$$

LHC lower bound on $m_{T_{L}}$ electroweak observable (p parameter) constrain ϑ_{L}

$$m_T = 700 \text{ GeV}$$
$$\sin \theta_L = 0.2$$

$$\mathcal{L} \supset y_{3j}^L \bar{q'}_{3L}^a \Delta_1 \epsilon^{ab} L^{C\,j,b} + y_{3j}^R \bar{t'}_R \Delta_1 E^{C\,j} + x_{3j}^R \bar{T'}_R \Delta_1 E^{C\,j} + \text{h.c.}$$

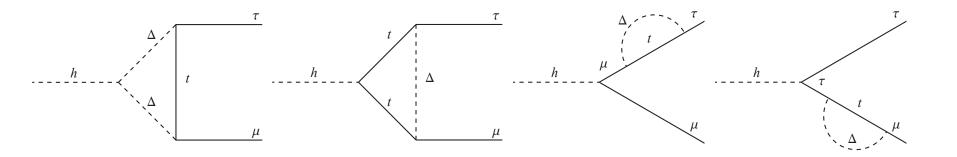
After rotating to the mass-basis

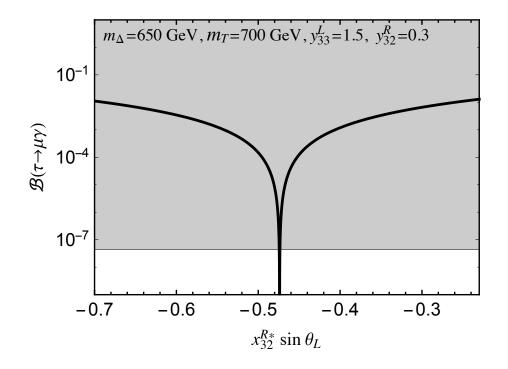
$$\mathcal{L} \supset y_{3j}^{L}(\cos\theta_{L}\bar{t}_{L} + \sin\theta_{L}\bar{T}_{L})\ell_{L}^{C\,j}\Delta_{1} + y_{3j}^{R}(\cos\theta_{R}\bar{t}_{R} + \sin\theta_{R}\bar{T}_{R})\ell_{R}^{C\,j}\Delta_{1} + x_{3j}^{R}(\cos\theta_{R}\bar{T}_{R} - \sin\theta_{R}\bar{t}_{R})\ell_{R}^{C\,j}\Delta_{1} + \text{h.c.}$$

$$\mathcal{B}(\tau \to \mu \gamma) = \frac{\alpha_{\rm EM} m_{\tau}^3 |y_{33}^L|^2}{2^{12} \pi^4 \Gamma_{\tau} m_{\Delta_1}^4} \left| y_{32}^{R*} m_t h_1(m_t^2/m_{\Delta_1}^2) + x_{32}^{R*} \sin \theta_L m_T h_1(m_T^2/m_{\Delta_1}^2) \right|^2$$

Numerical benchmark point $y_{\tau\mu} \approx \frac{N_c}{16\pi^2} \frac{m_t}{v} (0.26y_{32}^R + 0.43 x_{32}^R \sin \theta_L) y_{33}^{L*}$

$$m_{\Delta_1} = 650 \,\text{GeV} \qquad \text{cancellation in the rate for} \quad \tau \to \mu \gamma$$
$$m_T = 700 \,\text{GeV} \qquad y_{32}^R = -0.63 \, x_{32}^R \sin \theta_L$$





T, t, Δ_1 are running in the loops (4 vertex + 4 legs) result is finite.

 $y_{32}^R y_{33}^{L*} = 0.47$

best fit point for the $h \to \tau \mu$ excess.

For $m_T > m_{\Delta}, T \to \Delta \ell$ signature for LHC.

Summary

 \succ Signal on $\mathcal{B}(H
ightarrow au \mu)$ implies lower bound on Higgs LFV couplings;

> This bound is robust even after allowing for a deviation of other Higgs couplings

From Higgs effective Lagrangian approach: Belle II should observe \(\tau \rightarrow \mu \gamma \rightarrow \mu \gamma \gamma \rightarrow \mu \gamma \gamma \gamma \gamma \gamma \beta \vee \foota \gamma \gamma \gamma \beta \vee \foota \gamma \gamma

 \succ Specific models are restrictive on $~{\cal B}(au o \mu \gamma).$

1. Vector-like leptons (Leptoquarks) with loop induced $H \to \tau \mu$ imply too large $\mathcal{B}(\tau \to \mu \gamma)$;

2. Two Higgs doublet model is testable in $\,\mathcal{B}(au o\mu\gamma)\,$ at Belle II;

3. Two Higgs doublet model is further testable by μe conversion. Correlation $~{\cal B}(H\to\tau\mu){\cal B}(H\to e\tau)<10^{-10}~$

Thanks!

ATLAS and CMS results on Higgs decay modes

