Asymmetric Dark Matter

And the LHC Diphoton Excess

Mads Toudal Frandsen

(M.T.F & Sarkar, Phys.Rev.Lett. '10 M.T.F, Sarkar & Schmidt-Hoberg, PRD '11 (M.T.F & Shoemaker JCAP '16)

Cosmology & Particle Physics

Origin of the DM relic density

$$\eta_{\rm B} \equiv \frac{n_{\rm B} - \bar{n}_{\rm B}}{n_{\gamma}} \sim 10^{-9}$$

Asymmetric Dark Matter

- Dynamical EWSB -> TeV Technibaryon ADM
- Solar neutrino problem -> 5 GeV Cosmion ADM

- Dynamical EWSB & Sphalerons-> TeV Technibaryon ADM
- Dynamical EWSB & Sphalerons-> 5 GeV ADM

 DAMA, GoGENT, Solar composition problemt -> 5 GeV ADM (Nussinov '85)

(Gelmini,Hall & Lin '86)

(Barr, Chivukula & Farhi '91)

(Barr '91)

(Kaplan, Luty & Zurek '09,... Frandsen & Sarkar '10,...)

Asymmetry Transfer

- Asymmetry transferred to DM (or baryons)
- Transfer operator decouples, asymmetric component fixed
- Symmetric component is annihilated away

(Barr, Chivukula & Farhi '91)

Possible Transfer Operator Sphalerons

E

 $T_{\rm dec}$

Sakharov conditions for baryogenesis: I. Baryon number violation 2. C and CP violation 3. Departure from thermal equilibrium

When T> m_W baryon number is also violated in the SM through sphaleron-mediated processes that preserve B – L, but violate B + L ...

... CP-violation is too weak (and the electroweak phase transition is a 'cross-over')

The matter we know originated non-thermally in the early universe

ADM via Sphalerons

(Barr, Chivukula and Farhi 90)

ADM via Sphalerons

(Barr, Chivukula and Farhi 90)

Direct Detection

Weak scale scattering cross-section ruled out from GeV - TeV

Solution I: Composite DM

(Barr, Chivukula and Farhi 90)

'Hide' weak quantum numbers (weak) neutral composite states

Solution I: Composite DM

(Barr, Chivukula and Farhi 90)

'Hide' weak quantum numbers (weak) neutral composite states

Minimal Technicolor: 2 Dirac Flavors. No QCD charges.

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}\right)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$

(Gudnason, Kouvaris & Sannino 05; MTF & Sannino 09; ...)

(Barr, chivukula & Farhi 90)

(Ryttov and Sannino 09)

Solution I: Composite DM

(Barr, Chivukula and Farhi 90)

'Hide' weak quantum numbers (weak) neutral composite states

Natural setting for diphoton resonances...

Minimal Technicolor: 2 Dirac Flavors. No QCD charges.

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}\right)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$

(Gudnason, Kouvaris & Sannino 05; MTF & Sannino 09; ...)

(Barr, chivukula & Farhi 90)

(Ryttov and Sannino 09)

 $S_1 = X_2$, Φ (constituents) carry weak charges and are connected to sphalerons $S_2 = X_1$ (constituents) is singlet

Diphotons

(Frandsen & Shoemaker '16)

- New weak charged fermions X_2 asymmetry transfer to dark sector
- New scalars decay of X_2 to DM.
- Basic ingredients for a new resonance in diphoton searches

Diphotons

(Frandsen & Shoemaker '16)

- New weak charged fermions X_2 asymmetry transfer to dark sector
- New scalars decay of X_2 to DM.
- Basic ingredients for a new resonance in diphoton searches

LHC Diphoton Excess

(From M. Delmastro and P. Musella, Moriond '16)

LHC Diphoton Excess

(From M. Delmastro and P. Musella, Moriond '16)

 Atlas diphoton cross section ~10 fb

Pseudoscalar diphoton cross-section at 14 TeV from gluon/photon-fusion

$$\begin{split} \sigma_{\gamma\gamma} &\simeq (\sigma_{gg \to P,0} \, y_{Pt}^2 + \sigma_{\gamma\gamma \to P,0} \frac{\Gamma_{P \to \gamma\gamma}}{\Gamma_{\gamma\gamma,0}}) \\ &\times \frac{\Gamma_{P \to \gamma\gamma}}{\Gamma_{P \to \gamma\gamma} + \Gamma_{P \to VV} + \Gamma_{P \to tt}} \,, \end{split}$$

Normalized to top-Yukawa of I

$$\sigma_{gg \rightarrow P,0} = 1.9 \text{ pb}$$

Pseudoscalar diphoton cross-section at 14 TeV from gluon/photon-fusion

$$\begin{split} \sigma_{\gamma\gamma} &\simeq (\sigma_{gg \to P,0} \, y_{Pt}^2 + \sigma_{\gamma\gamma \to P,0} \frac{\Gamma_{P \to \gamma\gamma}}{\Gamma_{\gamma\gamma,0}}) \\ &\times \frac{\Gamma_{P \to \gamma\gamma}}{\Gamma_{P \to \gamma\gamma} + \Gamma_{P \to VV} + \Gamma_{P \to tt}} \,, \end{split}$$

: $\sigma_{gg \rightarrow P,0} = 1.9 \text{ pb}$

Need very large diphoton partial width

$$\Gamma_{P,S \to ff} \simeq \frac{N_c(f)}{8\pi} y_{P,Sf}^2 \, m_P$$

 $\Gamma_{P
ightarrow \gamma \gamma}/m_P \gtrsim 3-6 imes 10^{-4}$

Realized in CP conserving 2HDM $\Phi_{1,2}, X_{1,2}$

$$\begin{split} \mathcal{V} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \left[\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2) \right] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\} \,. \end{split}$$

With new fermions and type-I Yukawa interactions

$$\mathcal{L} \sim -y_X X X \Phi_1 - y_f f f \Phi_2$$

(Frandsen & Shoemaker '16)

Two angles define the scalar sector:

$$t_{\beta} \equiv an eta \equiv rac{v_2}{v_1}$$

2 new (pseudo-) scalar resonances:

Decoupling limit controlled by:

Couplings of new scalars:

 $c_{AX_2} = -i \tan \beta$ $c_{HX_2} = c_{\alpha}/c_{\beta} \simeq \tan \beta - \delta$ $c_{hX_2} = -s_{\alpha}/c_{\beta} \simeq 1 + \delta \tan \beta$

$$\begin{split} \Phi_1^{\pm} &= c_{\beta}G^{\pm} - s_{\beta}H^{\pm} \,, \\ \Phi_2^{\pm} &= s_{\beta}G^{\pm} + c_{\beta}H^{\pm} \,, \\ \Phi_1^0 &= \frac{1}{\sqrt{2}} \left[v_1 + c_{\alpha}H - s_{\alpha}h + ic_{\beta}G - is_{\beta}A \right] \\ \Phi_2^0 &= \frac{1}{\sqrt{2}} \left[v_2 + s_{\alpha}H + c_{\alpha}h + is_{\beta}G + ic_{\beta}A \right] \,. \end{split}$$

$$\Phi_{1,2} \to h, H, A$$

$$\delta \equiv \beta - \alpha - \pi/2$$

$$c_{Hf} = s_{lpha}/s_{eta} \simeq -\delta - \coteta$$

 $c_{HV} = c_{eta-lpha} \simeq -\delta$
 $c_{Af} = ic_{eta}/s_{eta} = i\cot_{eta}$.

ADM and Diphotons

Diphoton width large near threshold For large tan β

$$\Gamma_{A\gamma\gamma} \simeq \frac{\alpha^2 G_F}{32\sqrt{2}\pi^3} \tan\beta^2 m_A^3 \left| A_{X_2}^A(\tau_{X_2}) \right|^2$$

Can get sufficient cross-section from top-induced gluon fusion

(Frandsen & Shoemaker '16)

$$\sigma_{\gamma\gamma} \simeq \left((5-8)\frac{\tan\beta^2}{10^2} + (1-2)\frac{\tan\beta^6}{10^6} \right) \times \frac{1}{1+5\times 10^{-5}\tan\beta^4} \, \text{fb} \; .$$

Model has composite interpretation:

(Frandsen, Sarkar & Schmidt-Hoberg '10)

Summary

• Dark and bright matter densities of the same order

• May be adressed in models of Asymmetric Dark Matter

• Possible to address the current LHC diphoton excess.