SUPERSYMMETRIC ASPECTS OF **STERILE NEUTRINO DARK MATTER**

to Warsaw

MAY 25, 2017

BIBHUSHAN SHAKYA

20th Planck Conference
from Kazimierz

BASED ON

Sterile Neutrino Dark Matter with Supersymmetry B. Shakya, J. D. Wells arXiv:1611.01517

Cosmological imprints of frozen-in light sterile neutrinos

S. B. Roland, B. Shakya arXiv:1609.06739

Sterile neutrino dark matter from freeze-in

B. Shakya Mod.Phys.Lett. A31 (2016) no.06, 1630005, arXiv:1512.02751

PeV neutrinos and a 3.5 keV X-ray line from a PeV scale supersymmetric neutrino sector

S. B. Roland, B. Shakya, J. D. Wells Phys.Rev. D92 (2015) no.9, 095018, arXiv:1506.08195

Neutrino masses and sterile neutrino dark matter from the PeV scale S. B. Roland, B. Shakya, J. D. Wells Phys.Rev. D92 (2015) no.11, 113009, arXiv:1412.4791

MOTIVATION

STERILE NEUTRINO DARK MATTER

popular alternative to the WIMP paradigm right-handed neutrinos necessary for neutrino masses recent observational hint (7 keV X-ray line)

MOTIVATION

STERILE NEUTRINO DARK MATTER

popular alternative to the WIMP paradigm right-handed neutrinos necessary for neutrino masses recent observational hint (7 keV X-ray line)

SUPERSYMMETRY

- might not be at the weak scale, solve the hierarchy problem, or provide wimp dark matter...
- appealing for several other reasons (gauge coupling unification,
 - mathematical elegance, stable vacua in string theory...)
 - most likely realized in nature at some (heavy?) scale!

Theory: Can this connection give insight on parameters needed for dark matter?

Phenomenology: Does the underlying (supersymmetric) theory modify observable dark matter properties?

STERILE NEUTRINO DARK MATTER (A LIGHTNING REVIEW)

traditional approach: Dodelson-Widrow mechanism: production via active-sterile oscillation due to mixing with active neutrinos

constrained by **X-ray line searches** (gives upper bound) and **Lyman-alpha measurements** (gives lower bound); together, these now rule out the DW mechanism several escape routes:

- resonant production (Shi-Fuller mechanism): lepton chemical potential in plasma
- freeze-out: additional gauge interactions lead to equilibrium and freeze-out
- freeze-in: gradual production through feeble coupling to some BSM particle in the bath

STERILE NEUTRINO DARK MATTER (A LIGHTNING REVIEW)

traditional approach: Dodelson-Widrow mechanism: production via active-sterile oscillation due to mixing with active neutrinos

constrained by **X-ray line searches** (gives upper bound) and **Lyman-alpha measurements** (gives lower bound); together, these now rule out the DW mechanism several escape routes:

- resonant production (Shi-Fuller mechanism): lepton chemical potential in plasma
- freeze-out: additional gauge interactions lead to equilibrium and freeze-out
- <u>freeze-in: gradual production through feeble coupling to some BSM particle in the bath</u>

many realizations:

inflaton (0604236); radion (0711.1570); scalar in extended Higgs sector (0711.4646, 0609081, 0702143,1105.1654,1306.3996, 1409.4330, 1411.2773); scalar breaking a new symmetry in the neutrino sector (1412.4791)

[for a review: Shakya, 1512.02751]

STERILE NEUTRINO DARK MATTER FROM FREEZE-IN

MeV

Basic ingredients

1. some BSM particle in the early Universe that decays to DM 3. Sterile neutrino DM candidate, (effectively) stable

(technically natural, corresponds to a Z_2 symmetry for N_1)

> [does not need to be at keV scale]

2. some feeble coupling ($x^2 < \frac{m_{\phi}}{M_{\rm Pl}}$)

 N_1

$$\mathcal{L} \supset y_{ij}L_ihN_j + x_i\phi\bar{N}_i^cN_i + \lambda(H^{\dagger}H)\phi^2$$

+ SUPERSYMMETRY

many new particles/ interactions/ decay modes !

THE STERILE SNEUTRINO $\, ilde{N}_1$

PRODUCTION $\phi \to \tilde{N}_1 \tilde{N}_1$ if allowed, due to the soft term $x_i A_{xi} \phi \tilde{N}_1 \tilde{N}_1$ (similarly from psi)

DECAY

charged under the approximate / exact Z₂ symmetry that stabilizes N₁. must decay into N₁; must go through $x_i\psi N_i\tilde{N}_i$ with the feeble coupling x₁ If $m_{\tilde{N}_1} > m_{\psi}$, $\tilde{N}_1 \rightarrow \psi N_1$ if $m_{\tilde{N}_1} < m_{\psi}$, $\tilde{N}_1 \rightarrow N_1\tilde{H}h$ through an off-shell ψ

- each decay produces an N₁ particle
- can be fairly long lived (and dominate energy density)
- must decay before LSP decoupling

FREEZE-OUT VS FREEZE-IN

from hep-ph 0911.1120

Freeze-out: earlier properties are washed out, decoupling is an IR dominated process Freeze-in: DM never "thermalizes", final properties are sensitive to details from the early Universe

RELIC DENSITY AND COMPOSITION

(at least) two distinct production mechanisms: phi decay, sterile sneutrino decay the two populations don't talk to each other!

second population is hotter

(sterile sneutrino is long-lived and decays out of equilibrium)

extremely nontrivial momentum distribution possible!

coupling x chosen to produce correct relic density

cold/warm/hot dark matter, or some combination, are all possible in this setup

$\Delta N_{\rm eff}$

- cannot be all of DM, else DM today is too hot, inconsistent with structure formation
- can be a subdominant (e.g. <1%) fraction of dark matter (from sterile sneutrino decay), if the rest of dark matter is cold (from phi decay)

$$\Delta N_{\rm eff} = \left. \frac{\rho_{N_1}}{\rho_{\nu}} \right|_{T = T_{BBN}}$$

 generally needs a multi-component dark matter setup; in our framework, N1 can be both! cold component from phi decay, hot component from sterile sneutrino decay!

NEED FOR "NEW" PHYSICS IN THE NEUTRINO SECTOR

(WITH LIGHT STERILE NEUTRINO DARK MATTER FROM FREEZE-IN)

"mysteries" in the neutrino sector:

- keV/GeV scale masses for sterile neutrinos
 - tiny Yukawa couplings (y~10⁻⁷)
 - BSM particle sourcing DM production
- feeble ($< 10^{-8}$) coupling for DM production

Hints of an underlying structure?

A MODIFIED NEUTRINO SECTOR

• Recall: traditional seesaw requires

$$\mathcal{L} \supset y_{\alpha i} \bar{L}_{\alpha} H_{u}^{\dagger} N_{i} + M_{i} \bar{N}_{i}^{c} N_{i}$$

Naively: GUT/Planck scale

- Assume RH neutrinos charged under a new symmetry: U(1)'
- Prohibits the above terms; traditional seesaw not allowed!

A MODIFIED NEUTRINO SECTOR

- Introduce an exotic field ϕ , equal and opposite U(1)' charge to N
- This allows the following terms

$$\frac{y}{M_*}LH_u\mathcal{N}\Phi + \frac{x}{M_*}\mathcal{N}\mathcal{N}\Phi\Phi$$

• If the scalar ϕ gets a vev, U(1)' broken, effective neutrino mass matrix:

$$M_{\nu} = \begin{pmatrix} 0 & \frac{\langle \phi \rangle \langle H_{u}^{0} \rangle}{M_{*}} \mathbf{Y} \\ \frac{\langle \phi \rangle \langle H_{u}^{0} \rangle}{M_{*}} \mathbf{Y}^{\dagger} & \frac{\langle \phi \rangle^{2}}{M_{*}} \mathbf{X} \end{pmatrix}$$

$$m_s = m_M = \frac{x\langle\phi\rangle^2}{M_*} \qquad m_a = \frac{m_D^2}{m_M} = \frac{y^2\langle H_u^0\rangle^2}{xM_*}$$
$$\theta \approx \sqrt{\frac{m_a}{m_s}} = \frac{y\langle H_u^0\rangle}{x\langle\phi\rangle} \qquad m_s = \frac{1}{m_a} \left(\frac{y\langle\phi\rangle\langle H_u^0\rangle}{M_*}\right)^2$$

see also hep-ph 9805281, 0006312, 0007001

Contours of y< ϕ >. $M_* = M_{GUT} (= 10^{16} \, \text{GeV})$ Can get desired active and sterile masses with O(1) couplings and <φ>~O(1)-O(100) PeV Maps onto vMSM

Can get desired active and sterile masses with O(1) couplings and <φ>~O(1)-O(100) PeV Maps onto vMSM

<φ>~O(1)-O(100) PeV~ SUSY breaking scale?

Compatible with m_h=126 GeV with heavy superpartners

 $M_* = M_{GUT} (= 10^{16} \, \text{GeV})$

Split Supersymmetry

J. D. Wells (2003), hep-ph/0306127.

- N. Arkani-Hamed and S. Dimopoulos, JHEP $0506,\ 073$ (2005), hep-th/0405159.
- G. Giudice and A. Romanino, Nucl.Phys. **B699**, 65 (2004), hep-ph/0406088.
- J. D. Wells, Phys.Rev. **D71**, 015013 (2005), hep-ph/0411041.

NEED FOR "NEW" PHYSICS IN THE NEUTRINO SECTOR

(WITH LIGHT STERILE NEUTRINO DARK MATTER FROM FREEZE-IN)

"mysteries" in the neutrino sector:

- keV/GeV scale masses for sterile neutrinos $\sim \frac{\langle \phi \rangle^2}{M_{CUT}}$
- tiny Yukawa couplings (y~10⁻⁷) $\sim \frac{\langle \phi \rangle}{M_{GUT}}$
- feeble coupling for DM from freeze-in $\sim \frac{\langle \phi \rangle}{M_{CUT}}$
- BSM particle sourcing DM production

 $\langle \phi \rangle \sim \text{PeV}$ from supersymmetry breaking!

