Implications of Dark Matter bound states

Andrea Mitridate

AM, M. Redi, J. Smirnov, A. Strumia [1702.01141]

$\Omega_{\mathrm{DM}} h^{2}=0.119$

The standard (thermal) picture

$$
\frac{d Y_{D M}}{d z}=-\frac{s\left\langle\sigma v_{r e l}\right\rangle}{H z}\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)
$$

$$
\left\langle\sigma v_{r e l}\right\rangle=\sigma_{0}\left[M_{\chi}, \ldots\right]
$$

Imposing $\Omega_{\mathrm{DM}} h^{2}=0.119$ we get the DM mass or at least bounds on its value.

Thermal DM Dark matter belongs to a representation, \mathbf{R}, of a

 prototype generic gauge group with vector mediators, $\mathbf{V}_{\mathbf{a}}$Thermal DM prototype

Dark matter belongs to a representation, \mathbf{R}, of a generic gauge group with vector mediators, $\mathbf{V}_{\mathbf{a}}$

Thermal DM prototype

Dark matter belongs to a representation, \mathbf{R}, of a generic gauge group with vector mediators, $\mathbf{V}_{\mathbf{a}}$

If the interaction is long ranged ($\alpha M_{\chi}>M_{V}$), non perturbative effects can spoil the perturbative results [Sommerfeld (1931);

Hisano et al. (2002);
Cirelli et al. (2005);
Fenget al. (2009);
Slatyer et al. (2013);...] prototype

Dark matter belongs to a representation, \mathbf{R}, of a generic gauge group with vector mediators, $\mathbf{V}_{\mathbf{a}}$

If the interaction is long ranged ($\alpha M_{\chi}>M_{V}$), non perturbative effects can spoil the perturbative results

[Sommerfeld (1931); Hisano et al. (2002);
Cirelli et al. (2005);
Fenget al. (2009);
Slatyer et al. (2013);...]
[Wise et al. (2014);
Petraki et al. (2014);
Ellis al. (2015);
Slatyer et al. (2016);...]

DM

What is the cross section for the production of a bound state?

What is the fate of a bound state once it is formed?

How bound states enter in the Boltzmann equations?

What is the cross section for the production of a bound state?

What is the fate of a bound state once it is formed?

How bound states enter in the Boltzmann equations?

What is the cross section for the production of a bound state?

What is the fate of a bound state once it is formed?

How bound states enter in the Boltzmann equations?

What is the cross section for the production of a bound state?

$$
\mathrm{DM}_{i}\left(P_{1}\right)+\mathrm{DM}_{j}\left(P_{2}\right) \rightarrow \mathrm{B}_{i^{\prime} j^{\prime}}^{n l m}+\mathrm{V}^{a}(K)
$$

What is the cross section for the production of a bound state?

$$
\mathrm{DM}_{i}\left(P_{1}\right)+\mathrm{DM}_{j}\left(P_{2}\right) \rightarrow \mathrm{B}_{i^{\prime} j^{\prime}}^{n l m}+\mathrm{V}^{a}(K)
$$

Conceptually it is the same problem of computing the cross section for the formation of a non relativistic hydrogen atom

$$
\mathscr{A}_{p, n l m} \approx\left\langle\psi_{n \ell m, i^{\prime} j^{\prime}} V_{a}\right| H_{I}\left|\phi_{p l, i j}\right\rangle
$$

What is the cross section for the production of a bound state?

$$
\mathrm{DM}_{i}\left(P_{1}\right)+\mathrm{DM}_{j}\left(P_{2}\right) \rightarrow \mathrm{B}_{i^{\prime} j^{\prime}}^{n l m}+\mathrm{V}^{a}(K)
$$

Conceptually it is the same problem of computing the cross section for the formation of a non relativistic hydrogen atom

$$
\mathscr{A}_{p, n l m} \approx\left\langle\psi_{n \ell m, i^{\prime} j^{\prime}} V_{a}\right| H_{I}\left|\phi_{p l, i j}\right\rangle
$$

What is the cross section for the production of a bound state?

$$
\mathrm{DM}_{i}\left(P_{1}\right)+\mathrm{DM}_{j}\left(P_{2}\right) \rightarrow \mathrm{B}_{i^{\prime} j^{\prime}}^{n l m}+\mathrm{V}^{a}(K)
$$

Conceptually it is the same problem of computing the cross section for the formation of a non relativistic hydrogen atom

$$
\mathscr{A}_{p, n l m} \approx\left\langle\psi_{n \ell m, i^{\prime} j^{\prime}} V_{a}\right| H_{I}\left|\phi_{p l, i j}\right\rangle
$$

What is the cross section for the production of a bound state?

$$
\mathrm{DM}_{i}\left(P_{1}\right)+\mathrm{DM}_{j}\left(P_{2}\right) \rightarrow \mathrm{B}_{i^{\prime} j^{\prime}}^{n l m}+\mathrm{V}^{a}(K)
$$

Conceptually it is the same problem of computing the cross section for the formation of a non relativistic hydrogen atom

$$
\mathscr{A}_{p, n l m} \approx\left\langle\psi_{n \ell m, i^{\prime} j^{\prime}} V_{a}\right| H_{I}\left|\phi_{p l, i j}\right\rangle
$$

A couple of remarks:
(We only considered single boson emission $\quad \Rightarrow \Delta \ell= \pm 1 \quad \& \quad \Delta S=0$
(O The process is kinematically possible only if $P^{2} / M_{\chi}+E_{B} \geq M_{V}$

$$
H_{I}=-\frac{g}{M_{\chi}}\left(\vec{A}^{a} \cdot \vec{p}_{1} T_{i^{\prime} i}^{a} \delta_{j j^{\prime}}+\vec{A}^{a} \cdot \vec{p}_{2} \bar{T}_{j^{\prime} j}^{a} \delta_{i i^{\prime}}\right)-\left(g \alpha \vec{A}^{a}(0) \cdot \hat{r} e^{-M_{a} r}\right) T_{i^{\prime} i}^{b} \bar{T}_{j^{\prime} j}^{c} f^{a b c}
$$

$$
H_{I}=-\frac{g}{M_{\chi}}\left(\vec{A}^{a} \cdot \vec{p}_{1} T_{i^{\prime} i}^{a} \delta_{j j^{\prime}}+\vec{A}^{a} \cdot \vec{p}_{2} \bar{T}_{j^{\prime} j}^{a} \delta_{i i^{\prime}}\right)-\left(g \alpha \vec{A}^{a}(0) \cdot \hat{r} e^{-M_{a} r}\right) T_{i^{\prime} i}^{b} \bar{T}_{j^{\prime} j}^{c} f^{a b c}
$$

Slatyer et al. (2013)

$$
H_{I}=-\frac{g}{M_{\chi}}\left(\vec{A}^{a} \cdot \vec{p}_{1} T_{i^{\prime} i}^{a} \delta_{j j^{\prime}}+\vec{A}^{a} \cdot \vec{p}_{2} \bar{T}_{j^{\prime} j}^{a} \delta_{i i^{\prime}}\right)-\left(g \alpha \vec{A}^{a}(0) \cdot \hat{r} e^{-M_{a} r}\right) T_{i^{\prime} i}^{b} \bar{T}_{j^{\prime} j}^{c} f^{a b c}
$$

$$
H_{I}=-\frac{g}{M_{\chi}}\left(\vec{A}^{a} \cdot \vec{p}_{1} T_{i^{\prime} i}^{a} \delta_{j j^{\prime}}+\vec{A}^{a} \cdot \vec{p}_{2} \bar{T}_{j^{\prime} j}^{a} \delta_{i i^{\prime}}\right)-\left(g \alpha \vec{A}^{a}(0) \cdot \hat{r} e^{-M_{a} r}\right) T_{i^{\prime} i}^{b} \bar{T}_{j^{\prime} j}^{c} f^{a b c}
$$

How we compute wave functions?

$$
H_{I}=-\frac{g}{M_{\chi}}\left(\vec{A}^{a} \cdot \vec{p}_{1} T_{i^{\prime} i}^{a} \delta_{j j^{\prime}}+\vec{A}^{a} \cdot \vec{p}_{2} \bar{T}_{j^{\prime} j}^{a} \delta_{i i^{\prime}}\right)-\left(g \alpha \vec{A}^{a}(0) \cdot \hat{r} e^{-M_{a} r}\right) T_{i^{\prime} i}^{b} \bar{T}_{j^{\prime} j}^{c} f^{a b c}
$$

How we compute wave functions?
(- Two-particle states decompose under the gauge group as

$$
R \otimes R^{\prime}=\sum_{J} J
$$

$$
H_{I}=-\frac{g}{M_{\chi}}\left(\vec{A}^{a} \cdot \vec{p}_{1} T_{i^{\prime} i}^{a} \delta_{j j^{\prime}}+\vec{A}^{a} \cdot \vec{p}_{2} \bar{T}_{j^{\prime} j}^{a} \delta_{i i^{\prime}}\right)-\left(g \alpha \vec{A}^{a}(0) \cdot \hat{r} e^{-M_{a} r}\right) T_{i^{\prime} i}^{b} \bar{T}_{j^{\prime} j}^{c} f^{a b c}
$$

How we compute wave functions?

(- Two-particle states decompose under the gauge group as

$$
R \otimes R^{\prime}=\sum_{J} J
$$

(- In each sector the interactions can be schematized with a potential

$$
V=-\frac{\alpha_{e f f}}{r} e^{-M_{V} r} \quad \alpha_{e f f}=\alpha\left(C_{J}-C_{R}-C_{R^{\prime}}\right) \equiv \lambda_{J} \alpha
$$

$$
H_{I}=-\frac{g}{M_{\chi}}\left(\vec{A}^{a} \cdot \vec{p}_{1} T_{i^{\prime} i}^{a} \delta_{j j^{\prime}}+\vec{A}^{a} \cdot \vec{p}_{2} \bar{T}_{j^{\prime} j}^{a} \delta_{i i^{\prime}}\right)-\left(g \alpha \vec{A}^{a}(0) \cdot \hat{r} e^{-M_{a} r}\right) T_{i^{\prime} i}^{b} \bar{T}_{j^{\prime} j}^{c} f^{a b c}
$$

How we compute wave functions?

(- Two-particle states decompose under the gauge group as

$$
R \otimes R^{\prime}=\sum_{J} J
$$

O In each sector the interactions can be schematized with a potential

$$
V=-\frac{\alpha_{e f f}}{r} e^{-M_{V} r} \quad \alpha_{e f f}=\alpha\left(C_{J}-C_{R}-C_{R^{\prime}}\right) \equiv \lambda_{J} \alpha
$$

(The wave functions are solutions of $-\frac{\nabla^{2} \psi}{M_{\chi}}+V \psi=E \psi$

In general BS cross sections have to be computed numerically，however for $\mathrm{M}_{\mathrm{V}}=0$ we can get an analytic expression，e．g．

$$
\left(\sigma v_{\mathrm{rel}}\right)_{\mathrm{bsf}}^{n=1, \ell=0}=\sigma_{0} \lambda_{i}\left(\lambda_{f} \zeta\right)^{5} \frac{2 S+1}{g_{\chi}^{2}} \frac{2^{11} \pi\left(1+\zeta^{2} \lambda_{i}^{2}\right) e^{-4 \zeta \lambda_{i} \operatorname{arccot}\left(\zeta \lambda_{f}\right)}}{3\left(1+\zeta^{2} \lambda_{f}^{2}\right)^{3}\left(1-e^{-2 \pi \zeta \lambda_{i}}\right)} \times \sum_{a M M^{\prime}}\left|C_{\mathcal{J}}^{a M M^{\prime}}+\frac{1}{\lambda_{f}} C_{\mathcal{T}}^{a M M^{\prime}}\right|^{2}
$$

Physics becomes more clear in the limit $v_{\text {rel }} \ll \alpha \Leftrightarrow \zeta \gg 1$

$$
\left(\sigma v_{\mathrm{rel}}\right)_{\mathrm{bsf}}^{n=1, \ell=0} \propto \frac{\pi \alpha^{2}}{M_{\chi}^{2}} \times \frac{\lambda_{i}^{3} \alpha}{\lambda_{f} v_{\mathrm{rel}}} \times \sum_{a M M^{\prime}}\left|C_{\mathcal{J}}^{a M M^{\prime}}+\frac{1}{\lambda_{f}} C_{\mathcal{T}}^{a M M^{\prime}}\right|^{2}
$$

－The wave functions are solutions of $-\frac{\nabla^{2} \psi}{M_{\chi}}+V \psi=E \psi$

What is the fate of a bound state once it is formed?

Decay

Decays happen mostly in the $\ell=0$ states

Spin 0
$\Gamma_{d}\left(B_{n 0} \rightarrow V V\right) \propto \alpha_{e f f}^{5} M_{\chi}$
Spin 1
$\Gamma_{d}\left(B_{n 0} \rightarrow \bar{f} f\right) \propto \alpha_{e f f}^{5} M_{\chi}$
$\Gamma_{d}\left(B_{n 0} \rightarrow V V V\right) \propto \alpha_{e f f}^{6} M_{\chi}$

Break

The breaking rate is related to the formation cross section by the Milne relation
$2 n_{B} \Gamma_{b}=\left(n_{\chi}^{e q}\right)^{2}\left\langle\sigma_{\mathrm{bsf}} v_{r e l}\right\rangle$

In the non rel. limit this reduces to
$\Gamma_{b} \propto\left(M_{\chi} T\right)^{3 / 2} e^{-E_{B} / T}\left\langle\sigma_{\mathrm{bsf}} v_{r e l}\right\rangle$

What is the fate of a bound state once it is formed?

Decay

Decays happen mostly in

 the $\ell=0$ statesSpin 0 $\Gamma_{d}\left(B_{n 0} \rightarrow V V\right) \propto \alpha_{e f f}^{5} M_{\chi}$ Spin 1 $\Gamma_{d}\left(B_{n 0} \rightarrow \bar{f} f\right) \propto \alpha_{e f f}^{5} M_{\chi}$ $\Gamma_{d}\left(B_{n 0} \rightarrow V V V\right) \propto \alpha_{e f f}^{6} M_{\chi}$

Break

The breaking rate is related to the formation cross section by the Milne relation

$$
2 n_{B} \Gamma_{b}=\left(n_{\chi}^{e q}\right)^{2}\left\langle\sigma_{\mathrm{bsf}} v_{r e l}\right\rangle
$$

In the non rel. limit this reduces to

$$
\Gamma_{b} \propto\left(M_{\chi} T\right)^{3 / 2} e^{-E_{B} / T}\left\langle\sigma_{\mathrm{bsf}} v_{r e l}\right\rangle
$$

What is the fate of a bound state once it is formed?

Decay

Decays happen mostly in the $\ell=0$ states

Spin 0
$\Gamma_{d}\left(B_{n 0} \rightarrow V V\right) \propto \alpha_{e f f}^{5} M_{\chi}$
Spin 1
$\Gamma_{d}\left(B_{n 0} \rightarrow \bar{f} f\right) \propto \alpha_{e f f}^{5} M_{\chi}$
$\Gamma_{d}\left(B_{n 0} \rightarrow V V V\right) \propto \alpha_{e f f}^{6} M_{\chi}$

Breal

The breaking rate is related to the formation cross section by the Milne relation

$$
2 n_{B} \Gamma_{b}=\left(n_{\chi}^{e q}\right)^{2}\left\langle\sigma_{\mathrm{bsf}} v_{r e l}\right\rangle
$$

In the non rel. limit this reduces to
$\Gamma_{b} \propto\left(M_{\chi} T\right)^{3 / 2} e^{-E_{B} / T}\left\langle\sigma_{\mathrm{bsf}} v_{r e l}\right\rangle$

Bound state formation is important when $\Gamma_{d} \gg \Gamma_{b}$

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

To the Boltzmann eq. for the DM we should add one Boltzmann eq. for each bound state
$\frac{d Y_{I}}{d z}=\frac{1}{H z}\left[s\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)+\left\langle\Gamma_{I, d}\right\rangle\left(Y_{I}^{e q}-Y_{I}\right)+\sum_{J}\left\langle\Gamma_{I \rightarrow J}\right\rangle\left(Y_{I}-\frac{Y_{J}}{Y_{J}^{e q}} Y_{I}^{e q}\right)\right]$

$$
\mathrm{BS}_{\mathrm{I}}+\mathrm{V}^{\mathrm{a}} \leftrightarrow \mathrm{DM}+\mathrm{DM}
$$

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

To the Boltzmann eq. for the DM we should add one Boltzmann eq. for each bound state
$\frac{d Y_{I}}{d z}=\frac{1}{H z}\left[s\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)+\left\langle\Gamma_{I, d}\right\rangle\left(Y_{I}^{e q}-Y_{I}\right)+\sum_{J}\left\langle\Gamma_{I \rightarrow J}\right\rangle\left(Y_{I}-\frac{Y_{J}}{Y_{J}^{e q}} Y_{I}^{e q}\right)\right]$

$$
\mathrm{BS}_{\mathrm{I}} \leftrightarrow \mathrm{~V}^{\mathrm{a}}+\mathrm{V}^{\mathrm{b}}
$$

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

To the Boltzmann eq. for the DM we should add one Boltzmann eq. for each bound state

$$
\frac{d Y_{I}}{d z}=\frac{1}{H z}\left[s\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)+\left\langle\Gamma_{I, d}\right\rangle\left(Y_{I}^{e q}-Y_{I}\right)+\sum_{J}\left\langle\Gamma_{I \rightarrow J}\right\rangle\left(Y_{I}-\frac{Y_{J}}{Y_{J}^{e q}} Y_{I}^{e q}\right)\right]
$$

$$
\mathrm{BS}_{\mathrm{I}} \leftrightarrow \mathrm{BS}_{\mathrm{J}}+\mathrm{V}^{\mathrm{a}}
$$

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

To the Boltzmann eq. for the DM we should add one Boltzmann eq. for each bound state
$\frac{d Y_{I}}{d z}=\frac{1}{H z}\left[s\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)+\left\langle\Gamma_{I, d}\right\rangle\left(Y_{I}^{e q}-Y_{I}\right)+\sum_{J}\left\langle\Gamma_{I \rightarrow J}\right\rangle\left(Y_{I}-\frac{Y_{J}}{Y_{J}^{e q}} Y_{I}^{e q}\right)\right]$

This looks like a nightmare!

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

To the Boltzmann eq. for the DM we should add one Boltzmann eq. for each bound state
$\frac{d Y_{I}}{d z}=\frac{1}{H z}\left[s\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)+\left\langle\Gamma_{I, d}\right\rangle\left(Y_{I}^{e q}-Y_{I}\right)+\sum_{J}\left\langle\Gamma_{I \rightarrow J}\right\rangle\left(Y_{I}-\frac{Y_{J}}{Y_{J}^{e q}} Y_{I}^{e q}\right)\right]$

This looks like a nightmare...but!

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I which collectively denotes all its quantum numbers.

$$
\frac{d Y_{D M}}{d z}=-\frac{s}{H z}\left[\left\langle\sigma v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2}\right)+\sum_{I}\left\langle\sigma_{I} v_{r e l}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)\right]
$$

To the Boltzmann eq. for the DM we should add one Boltzmann eq. for each bound state
(4Y $\frac{1}{4 z}\left[s\left\langle\sigma_{I} v_{\text {rel }}\right\rangle\left(Y_{D M}^{2}-Y_{D M}^{e q 2} \frac{Y_{I}}{Y_{I}^{e q}}\right)+\left\langle\Gamma_{I, d}\right\rangle\left(Y_{I}^{e q}-Y_{I}\right)+\sum_{J}\left\langle\Gamma_{I \rightarrow J}\right\rangle\left(Y_{I}-\frac{Y_{J}}{Y_{J}^{e q}} Y_{I}^{e q}\right)\right]$

Typically $\Gamma_{I, d}, \Gamma_{I \rightarrow J} \gg H$ so we can neglect the expansion of the Universe and solve for $Y_{I} / Y_{I}^{\text {eq }}$

How bound states enter in the Boltzmann equations?

Each bound states is identified by an index I whieh collectively denotes all

$$
\frac{d Y_{\mathrm{DM}}}{d z}=-\frac{\left\langle\sigma_{\mathrm{eff}} v_{\mathrm{rel}}\right\rangle s}{H z}\left(Y_{\mathrm{DM}}^{2}-Y_{\mathrm{DM}}^{\mathrm{eq} 2}\right)
$$

In the simple case of a single bound state

$$
\left\langle\sigma_{\mathrm{eff}} v_{\mathrm{rel}}\right\rangle=\left\langle\sigma v_{\mathrm{rel}}\right\rangle+\mathrm{BR}\left\langle\sigma_{\mathrm{bsf}} v_{\mathrm{rel}}\right\rangle \quad \mathrm{BR}=\frac{\left\langle\Gamma_{\mathrm{d}}\right\rangle}{\left\langle\Gamma_{\mathrm{d}}+\Gamma_{\mathrm{b}}\right\rangle}
$$

(Finally) Results!

5-plet

Temperature in GeV

(Finally) Results!

More results: neutralino co-annihilating with...

Squark

Squark co-annihilation, $M_{\chi^{\prime}}=1.5 \mathrm{TeV}$

DM mass in TeV

Gluino

$z=M_{\chi} / T$

Outlook

Bound State formation is an additional non- perturbative effect which affects the DIM annihilation cross section

In models with massless or light ($\alpha M_{\chi}>M_{V}$) mediators it can be the dominant effect setting the relic density

Today bound states formation can lead to observable indirect
detection signals and give precision information about dark matter?

For the quintuplet there is hope

More precise studies are needed ... stay tuned!

Thanks for your attention!

$$
\begin{gathered}
C_{\mathcal{J}}^{a M M^{\prime}}=\frac{1}{2} \operatorname{Tr}\left[\mathrm{CG}^{M^{\prime}}\left\{\mathrm{CG}^{M}, T^{a}\right\}\right] C_{\mathcal{T}}^{a M M^{\prime}}=-i \operatorname{Tr}\left[\mathrm{CG}^{M^{\prime}} T^{b} \mathrm{CG}^{M} T^{c}\right] f^{a b c} . \\
\sigma_{b s f} \propto \sum_{a M M^{\prime}}\left|C_{\mathcal{J}}^{a M M^{\prime}}+\gamma C_{\mathcal{T}}^{a M M^{\prime}}\right|^{2}
\end{gathered}
$$

$$
R \otimes R^{\prime}=\sum_{J} J
$$

$$
\mathrm{CG}_{i j}^{M} \equiv\left\langle J, M \mid R, i ; R^{\prime}, j\right\rangle
$$

5-plet

$I_{J} \rightleftarrows I_{J^{\prime}}$	$\sum_{a M M}\left\|C_{J}^{a M M^{\prime}}+\gamma C_{T}^{a M M^{\prime}}\right\|^{2}$
$1 \rightleftarrows 3$	$6\|1 \pm \gamma\|^{2}$
$3 \rightleftarrows 5$	$\frac{21}{2}\|1 \pm 2 \gamma\|^{2}$
$5 \rightleftarrows 7$	$12\|1 \pm 3 \gamma\|^{2}$
$7 \rightleftarrows 9$	$9\|1 \pm 4 \gamma\|^{2}$

$$
C_{\mathcal{J}}^{a M M^{\prime}}=\frac{1}{2} \operatorname{Tr}\left[\mathrm{CG}^{M^{\prime}}\left\{\mathrm{CG}^{M}, T^{a}\right\}\right] \quad C_{\mathcal{T}}^{a M M^{\prime}}=-i \operatorname{Tr}\left[\mathrm{CG}^{M^{\prime}} T^{b} \mathrm{CG}^{M} T^{c}\right] f^{a b c}
$$

$$
3 \otimes 3=1_{S} \oplus 3_{A} \oplus 5_{S}
$$

$$
\mathrm{CG}_{i j}^{M} \equiv\left\langle J, M \mid R, i ; R^{\prime}, j\right\rangle
$$

5-plet

Wino

$I_{J} \rightleftarrows I_{J^{\prime}}$	$\sum_{a M M^{\prime}}\left\|C_{J}^{a M M^{\prime}}+\gamma C_{\mathcal{T}}^{a M M^{\prime}}\right\|^{2}$
$1 \rightleftarrows 3$	$2\|1 \pm \gamma\|^{2}$
$3 \rightleftarrows 5$	$\frac{5}{2}\|1 \pm 2 \gamma\|^{2}$

$$
5 \otimes 5=1_{S} \oplus 3_{A} \oplus 5_{S} \oplus 7_{A} \oplus 9_{S} \quad \mathrm{CG}_{i j}^{M} \equiv\left\langle J, M \mid R, i ; R^{\prime}, j\right\rangle
$$

5-plet

$I_{J} \rightleftarrows I_{J^{\prime}}$	$\sum_{a M M^{\prime}}\left\|C_{\mathcal{J}}^{a M M^{\prime}}+\gamma C_{\mathcal{T}}^{a M M^{\prime}}\right\|^{2}$
$1 \rightleftarrows 3$	$6\|1 \pm \gamma\|^{2}$
$3 \rightleftarrows 5$	$\frac{21}{2}\|1 \pm 2 \gamma\|^{2}$
$5 \rightleftarrows 7$	$12\|1 \pm 3 \gamma\|^{2}$
$7 \rightleftarrows 9$	$9\|1 \pm 4 \gamma\|^{2}$

$$
\begin{aligned}
& C_{\mathcal{J}}^{a M M^{\prime}}=\frac{1}{2} \operatorname{Tr}\left[\mathrm{CG}^{M^{\prime}}\left\{\mathrm{CG}^{M}, T^{a}\right\}\right] \quad \quad C_{\mathcal{T}}^{a M M^{\prime}}=-i \operatorname{Tr}\left[\mathrm{CG}^{M^{\prime}} T^{b} \mathrm{CG}^{M} T^{c}\right] f^{a b c} \\
& \sigma_{b s f} \propto \sum_{a M M^{\prime}}\left|C_{\mathcal{J}}^{a M M^{\prime}}+\gamma C_{\mathcal{T}}^{a M M M^{\prime}}\right|^{2}
\end{aligned}
$$

Bound states summary

5-plet

Name	I	S	n	ℓ	λ	$\Gamma_{\mathrm{ann}} / M_{\chi}$	$\Gamma_{\text {dec }} / M_{\chi}$	Produced from
$1 s_{1}$	1	0	1	0	6	$3240 \alpha_{2}^{5}$	0	p_{3}
$1 s_{3}$	3	1	1	0	5	$15625 \alpha_{2}^{5} / 48$	0	p_{1}, p_{5}
$1 s_{5}$	5	0	1	0	3	$567 \alpha_{2}^{5} / 4$	0	p_{3}, p_{7}
$2 s_{1}$	1	0	2	0	6	$405 \alpha_{2}^{5}$	$\mathcal{O}\left(\alpha_{2}^{4} \alpha_{\mathrm{e}}^{2}\right)$	p_{3}
$2 s_{3}$	3	1	2	0	5	$15625 \alpha_{2}^{5} / 384$	$\mathcal{O}\left(\alpha_{2}^{4} \alpha_{2}^{2}\right)$	p_{1}, p_{5}
$2 s_{5}$	5	0	2	0	3	$567 \alpha_{2}^{5} / 32$	$\mathcal{O}\left(\alpha_{2}^{4} \alpha_{\mathrm{em}}^{2}\right)$	p_{3}, p_{7}
$2 p_{1}$	1	1	2	1	6	$\mathcal{O}\left(\alpha_{2}^{7}\right)$	$\approx 2 \alpha_{2}^{4} \alpha_{\mathrm{em}}$	s_{3}
$2 p_{3}$	3	0	2	1	5	$\mathcal{O}\left(\alpha_{2}^{7}\right)$	$\approx 1 \alpha_{2}^{4} \alpha_{\mathrm{em}}$	s_{1}, s_{5}
$2 p_{5}$	5	1	2	1	3	$\mathcal{O}\left(\alpha_{2}^{7}\right)$	$\approx 0.2 \alpha_{2}^{4} \alpha_{\mathrm{em}}$	s_{3}, s_{7}

Gluino

Name	R	S	n	ℓ	λ	$\Gamma_{\mathrm{ann}} / M_{\chi}$	$\Gamma_{\mathrm{dec}} / M_{\chi}$	Produced from
$1 s_{1}$	1_{S}	0	1	0	3	$243 \alpha_{3}^{5} / 4$	0	$p_{8_{A}}$
$1 s_{8_{A}}$	8_{A}	1	1	0	$3 / 2$	$243 \alpha_{3}^{5} / 64$	0	$p_{1}, p_{8_{S}}, p_{27_{S}}$
$1 s_{8_{S}}$	8_{S}	0	1	0	$3 / 2$	$243 \alpha_{3}^{5} / 128$	0	$p_{8_{A},}, p_{10_{A}}$
$2 s_{1}$	1_{S}	0	2	0	3	$243 \alpha_{3}^{5} / 32$	$\mathcal{O}\left(\alpha_{3}^{6}\right)$	$p_{8_{A}}$
$2 s_{8_{A}}$	8_{A}	1	2	0	$3 / 2$	$243 \alpha_{3}^{5} / 512$	$\mathcal{O}\left(\alpha \alpha_{3}^{6}\right)$	$p_{1}, p_{8_{S}}, p_{27_{S}}$
$2 s_{8_{S}}$	8_{S}	0	2	0	$3 / 2$	$243 \alpha_{3}^{5} / 1024$	$\mathcal{O}\left(\alpha_{3}^{6}\right)$	$p_{8}, p_{10_{A}}$
$2 p_{1}$	1_{S}	1	2	1	3	$\mathcal{O}\left(\alpha_{3}^{7}\right)$	$\approx \alpha_{3}^{6}$	$s_{8_{A}}$
$2 p_{8_{A}}$	8_{A}	0	2	1	$3 / 2$	$\mathcal{O}\left(\alpha_{3}^{7}\right)$	$\approx 0.1 \alpha_{3}^{5}$	$s_{1}, s_{8_{S}}, s_{27_{S}}$
$2 p_{8_{S}}$	8_{S}	1	2	1	$3 / 2$	$\mathcal{O}\left(\alpha_{3}^{7}\right)$	$\approx 0.1 \alpha_{3}^{5}$	$s_{8_{A}}, s_{10_{A}}$

