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Relaxation of the Electroweak scale
Graham, Kaplan, Rajendran, ‘15

Higgs mass as a dynamical field   
: Relaxion
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Recently cosmological relaxation of the Higgs boson mass has been proposed as a new

solution to the weak scale hierarchy problem [? ], leading to a number of subsequent

works to explore its viability [? ? ? ? ? ? ? ? ? ? ? ? ? ? ]1. The scheme
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1 For a similar earlier idea, see Ref. [? ].
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In order to stabilise the relaxion at the point <h> = v = 246 GeV,  
the ratio between the two periodicities fL and fS must be larger than the above ratio.
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where fe↵ is a mass scale describing the relaxion excursion2 necessary to scan the Higgs

mass-square µ2
h from O(M2) to the final value of O(v2), and c0 is a positive dimensionless

2 Note that we are using a di↵erent notation from [1], which appears to be more convenient for describing

the physics of axion-like �. The relaxion coupling g introduced in [1] corresponds to g = M2/fe↵ in

our notation.

4

Axion scale hierarchy problem : clockwork K. Choi, H.J. Kim, S.H. Yun ’14 
K. Choi, SHI ’15 
Kaplan, Rattazzi ‘15 



•Slow roll :  
•Inflaton energy density > Relaxion energy density :  

Cosmological relaxion evolution : Long e-folding

ΛSM4/16π2 ~
ϕ

V(ϕ)

The relaxion kinetic energy should be efficiently dissipated away to stop the relaxion 
before going into the global minimum.

If the relaxion dynamics occurs during inflation, the Hubble friction can be responsible 
for the dissipation.  

5/18

There are three conditions on the Hubble scale of inflation.
First is that the vacuum energy during inflation is greater
than the vacuum energy change along the ϕ potential,
namely, M4, so

Hi >
M2

Mpl
ðvacuum energyÞ: ð5Þ

The second constraint is the requirement that the Hubble
scale during inflation is lower than the QCD scale (so the
barriers form in the first place):

Hi < ΛQCD ðbarriers formÞ; ð6Þ

where ΛQCD is taken to be the scale where the instanton
contributions to the axion potential are unsuppressed. We
expect numerically that ΛQCD ∼ Λ. Finally, a condition
could be placed on the Hubble scale by requiring that ϕ’s
evolution be dominated by classical rolling (and not
quantum fluctuations—similar to a constraint of δρ=ρ < 1
in inflation) so that every inflated patch of the Universe
makes it to the electroweak vacua

Hi <
V 0
ϕ

H2
i
→ Hi < ðgM2Þ1=3 ðclassical beats quantumÞ:

ð7Þ

We will see below that, while this constraint will be a bit
stronger than the previous one, a certain variation of the
model can avoid this constraint, in which case the previous
one becomes the relevant one.
The slow rolling of ϕ stops when Λ has risen to the point

where the slope of the barriers Λ4=f matches the slope of
the potential, gM2. This occurs at [19]

gM2f ∼ Λ4: ð8Þ

From the three condition equations (5), (7), and (8), we
have a constraint on the cutoff M:

M <
!Λ4M3

pl

f

"1=6

∼ 107 GeV ×
!
109 GeV

f

"
1=6

; ð9Þ

where we have scaled f by its lower bound of 109 GeV set
by astrophysical constraints on the QCD axion (see, for
example, Ref. [20]).
Note that in order to have a cutoff M above the weak

scale, mW , Eq. (8) requires gf ≪ m2
W . This implies that the

effective step size of the Higgs mass from one minimum to
the next is much smaller than the weak scale. So the barriers
grow by a tiny fractional amount compared to ΛQCD per
step. Classically, ϕ stops rolling as soon as the slope of its
potential changes sign. However, since gf ≪ m2

W , the slope
of the first barrier after this point is exceedingly small,

much smaller than Λ4=f. Therefore, around this point,
quantum fluctuations of ϕ will be relevant. The field ϕ will
be distributed over many periods f (see Fig. 2), but in all
of these the Higgs boson will have a weak-scale VEV.
This quantum spreading is an oddity of the model. As the
Universe inflates, different patches of the Universe will
have a range of ϕ field values and a range of Higgs VEVs,
but all around the weak scale. In future work, we will show
it is possible to build models which land the full initial
patch in a single vacuum, thus removing this feature of our
solution [21].
At the end of inflation, part of the resulting ϕ range stops

before the classical stopping point and is therefore classi-
cally unstable. This is because, during inflation, the
relaxion’s quantum fluctuations dominates its classical
rolling on these “ledges” in the potential, and thus some
tiny fraction of Hubble patches remain there until they can
classically roll. The vast majority of Hubble patches find ϕ
in vacua with varying potential barrier heights. Because of
the small value of gf ∼ Λ4=M2, barrier heights grow
slowly, with subsequent minima increasing their barriers
by ∼Λ4(Λ4=ðM2m2

hÞ) such that many barriers can be
“walked over” via field fluctuations of the order of the
Hubble scale. Eventually, most patches reach vacua where
the barrier height does not allow quantum fluctuations to
randomly walk over the barrier. Today, nearly all of the
classically stable vacua have lifetimes exponentially larger
than the age of the Universe. Therefore, the vast majority of
the Hubble patches at the end of inflation are in vacua
which last much longer than today’s Hubble time. As a
result of these multiple vacua, there will, in principle, be
domain walls after reheating in the full initial patch of the

(a)

(b)

(c)

(d)

FIG. 2 (color online). A close-up of the region of ϕ’s potential
as the barriers appear. The evolution in these regions are
(a) classical rolling dominated, (b) dominated by quantum
fluctuations in the steps but classical rolling between steps,
(c) classically stable, but quantum fluctuations or tunneling rates
shorter than N e-folds, and (d) classically stable, quantum
transition rates longer than both N e-folds and 10 Gyr. Again,
for clarity, the potential is not to scale.
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Δt >		1/HI

Hierarchy	transmutation

• Number	of	e-folding

(VInflaton>		VRelaxion)and for	slow	rolling	

(slow	rolling)

Lower	bound	on	HI	:

This bound is normally much stronger than the following requirement that the inflaton

energy density be dominant over the relaxion energy density.
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An important quantity for relaxion cosmology is the total number of e-folding required

for the relaxion excursion before it stops. This is estimated as
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where ⇤b < O(v) and HI & max (⇤2

b/f, M
2/M

Pl

) are used for the inequality. For the

QCD model for the back reaction, ⇤b = 0.1 GeV and f & 4 ⇥ 108 GeV from the SN

1987A bound []. The resultant number of e-folding is
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⇤b = 0.1GeV, f & 4⇥ 108 GeV (27)
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where we use HI & ⇤2

b/f & 2.5 ⇥ 10�11 GeV for M & 1 TeV for the minimum value of

N
QCD

. Such a large e-folding number is hardly realized in the SFI without involving a

huge amount of fine-tuning []. The natural value for the total e-folding during the SFI is

expected to be within N ⇠ O(102 � 104) quite generically. Therefore, a non-QCD model

for the back reaction should be invoked to realize a natural scenario.

For a non-QCD model for the back reaction sector, the astrophysical bound on f is

relaxed so that one can consider f & M & 1 TeV. Then the e-folding number can be

parameterized as

f > M > 1TeV (29)
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This bound is normally much stronger than the following requirement that the inflaton

energy density be dominant over the relaxion energy density.

HI &
M2

M
Pl

(22)

An important quantity for relaxion cosmology is the total number of e-folding required

for the relaxion excursion before it stops. This is estimated as

N ⇠ f
e↵

�̇/HI

⇠ f
e↵

V 0(�)/H2

I

⇠ f 2

e↵

H2

I

M4

⇠ f 2M4H2

I

⇤8

b

& max

"✓
M

v

◆
4

,

✓
f

M
Pl

◆
2

✓
M

v

◆
8

#
(23)

N ⇠ ��

�̇/HI

⇠ H2

I

g2
⇠ f 2M4H2

I

⇤8

b

& max

"✓
M

v

◆
4

,

✓
f

M
Pl

◆
2

✓
M

v

◆
8

#
> O(102 � 104) (24)

N & max

"✓
M

v

◆
4

,

✓
f

M
Pl

◆
2

✓
M

v

◆
8

#
> O(102 � 104) (25)

where ⇤b < O(v) and HI & max (⇤2

b/f, M
2/M

Pl

) are used for the inequality. For the
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where we use HI & ⇤2

b/f & 2.5 ⇥ 10�11 GeV for M & 1 TeV for the minimum value of
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QCD

. Such a large e-folding number is hardly realized in the SFI without involving a

huge amount of fine-tuning []. The natural value for the total e-folding during the SFI is

expected to be within N ⇠ O(102 � 104) quite generically. Therefore, a non-QCD model

for the back reaction should be invoked to realize a natural scenario.

For a non-QCD model for the back reaction sector, the astrophysical bound on f is

relaxed so that one can consider f & M & 1 TeV. Then the e-folding number can be

parameterized as

f > M > 1TeV (29)

5

generated. Otherwise, the relaxion keeps rolling down even after the condition (10) is

satisfied because of a non-vanishing kinetic energy. Since it takes about a Hubble time to

dissipate the kinetic energy by the Hubble friction, this requires that the relaxion moving

distance over a Hubble time is smaller than the period of barrier potential around the

time when the relaxion kinetic energy becomes comparable to the height of the barrier

potential:

�̇

H
I

⇠ ⇤2

b

H
I

< f ! H
I

>
⇤2

b

f
⇠ m

�

. (14)

This bound is normally stronger than the following requirement that the inflaton energy

density should be dominant over the relaxion energy density:

H
I

>
M2

M
Pl

. (15)

An important quantity for relaxion cosmology is the total number of e-foldings required

for the relaxion to move over a field distance �� ⇠ f
e↵

to scan the Higgs mass from O(M)

to the weak scale. For the case that the barrier potential V
b

is generated by new physics,

this is estimated as
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p
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�
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M4
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⇤
b

(h = v) < O(
p
4⇡v) (19)

where the stabilization condition (10) is used together with H
I

& max (⇤2

b

/f, M2/M
Pl

).

As we have noticed, the height of the barrier potential can not be arbitrarily high. To avoid

a fine-tuning in the new physics sector to generate the barrier potential, it is bounded

as ⇤4

b

. O(16⇡2v4) for the weak scale v = 246 GeV. Saturating this bound, one can

raise the Higgs mass cuto↵ M up to for instance 10 TeV with an inflationary e-folding

N
e

= O(104).

6

where the relaxion stabilization condition (6) is used. This means that the inflationary

Hubble scale after some time must be smaller than the electroweak scale for the relaxion

dynamics to work,

HI . O(v) (18)

Such a low inflation scale demands the slow roll parameter ✏ before the time of horizon

exit to be fairly small in order to explain the observed density perturbation.1

✏  ✏⇤ . 10�26 (19)

where ✏⇤ is the slow roll parameter evaluated at the time of horizon exit. In this sense, the

small field inflation (SFI) would be a possible background for relaxion dynamics during

the primordial inflation.

The inflation scale HI has also a lower bound in order to provide an enough Hubble

friction that can dissipate the relaxion kinetic energy while relaxion moves over a period of

the back reaction potential. Otherwise, relaxion cannot stop but rolls down continuously

even after the condition (6) is satisfied because of a non-vanishing kinetic energy. Since

it takes about a Hubble time to dissipate the kinetic energy by the Hubble friction, this

requires the relaxion moving distance over a Hubble time be smaller than a period of back

reaction potential:

�̇

HI

⇠ ⇤2

b

HI

< f ! HI &
⇤2

b

f
⇠ m� (20)

�t ⇠ f

�̇
⇠ f

⇤2

b

& 1

HI

! HI &
⇤2

b

f
(21)

1 The curvaton scenario for the density perturbation is hard to work out because of too low inflation

scale. On the other hand, if the total e-folding number for the relaxion stabilization is smaller than

about 60, it is conceivable for relaxion to start to move and be stabilized between the time of horizon

exit and the end of inflation. Then the Hubble scale at the time of horizon exit may not be necessarily

smaller than the electroweak scale. Still, this will cause the domain wall problem arising from the

quantum spreading of relaxion [1].

4

Here the factor v2/(⇤2
b + v2) accounts for the shrinking of the barrier potential when

⇤b > v, which is explained in Appendix (A)5. This bound is normally stronger than

the following requirement that the inflaton energy density should be dominant over the

relaxion energy density ⇢� ⇠ c0M
4:

HI >
p
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(53)

H2
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(54)
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SM (55)

From (48) and (52), we obtain an upper bound on the relaxion mass:

m� . v (56)

From (48) and (52), we obtain an upper bound on the relaxion mass:

m� . v (57)

On the other hand, (48) and (53) impose an upper bound on the Higgs mass cuto↵ M as

specified later.

An important quantity for relaxion cosmology is the total number of e-foldings required

for the relaxion to move over a field distance ⇠ fe↵ to scan the Higgs mass from O(M)

to the weak scale. For the case that the barrier potential Vb is generated by new physics,

this is estimated as
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(58)

5 In fact, the barrier potential takes the form of a potential well when ⇤b > v as will be noticed in

Appendix (A).
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II. COSMOLOGICAL RELAXION WINDOW

In this section, we summarize the conditions for the relaxion solution to be successfully

implemented, under the assumption that the initial relaxion potential energy density of

O(c0M4) is dissipated away by the Hubble friction during the inflationary period. First of

all, there is an upper bound on the inflationary Hubble scale HI in order for the classical

motion of relaxion to be dominant over the de-Sitter quantum fluctuation:

�̇

HI

⇠ V 0
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H2
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implying
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⇤b(h = v) < O(
p
4⇡v) (50)

where the stabilization condition (44) is used. Note that here ⇤b corresponds to the value

when the Higgs field has the present VEV, i.e. ⇤b = ⇤b(h = v).

The inflationary Hubble scale has also a lower bound coming from the condition to

provide an enough friction to stop the relaxion motion after the barrier potential Vb is

generated. Otherwise, the relaxion keeps rolling down even after the condition (44) is

satisfied because of a non-vanishing kinetic energy. Since it takes about a Hubble time

to dissipate significantly the kinetic energy by the Hubble friction, this requires that the

relaxion moving distance over a Hubble time be smaller than the width of the barrier

potential around the time when the relaxion kinetic energy becomes comparable to the

height of the barrier potential:
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Here the factor v2/(⇤2
b + v2) accounts for the shrinking of the barrier potential when

⇤b > v, which is explained in Appendix (A)5. This bound is normally stronger than

the following requirement that the inflaton energy density should be dominant over the

relaxion energy density ⇢� ⇠ c0M
4:
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From (48) and (52), we obtain an upper bound on the relaxion mass:

m� . v (56)

From (48) and (52), we obtain an upper bound on the relaxion mass:

m� . v (57)

On the other hand, (48) and (53) impose an upper bound on the Higgs mass cuto↵ M as

specified later.

An important quantity for relaxion cosmology is the total number of e-foldings required

for the relaxion to move over a field distance ⇠ fe↵ to scan the Higgs mass from O(M)

to the weak scale. For the case that the barrier potential Vb is generated by new physics,

this is estimated as
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5 In fact, the barrier potential takes the form of a potential well when ⇤b > v as will be noticed in

Appendix (A).
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Necessary number of  
e-folding



• Necessary e-folding for the QCD barrier  

Such a long e-folding in a low scale inflation would imply a fine-tuning on the inflaton sector. 
        For a natural scenario, we need a new physics for the barrier sector.

Barrier from QCD
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⇤b < O(
p
4⇡v), f > M (64)
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where the stabilization conditions (44) and (45) are used together with the lower bounds

(52) and (53) on the Hubble scale, and c0 & 1/16⇡2. Here we see that the required

number of e-folding is minimized by M4/16⇡2v4 ⇠ (M/TeV)4 for a barrier amplitude

⇤b & O(v). Therefore, one can raise the Higgs mass cuto↵ M up to for instance 10 TeV

with an inflationary e-folding Ne = O(104) if the barrier amplitude is similar to or above

the weak scale.

On the other hand, if Vb is generated by low energy QCD dynamics, one needs much

more e-foldings. In fact, in this case the scheme should be modified to avoid the strong CP
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where the stabilization conditions (44) and (45) are used together with the lower bounds

(52) and (53) on the Hubble scale, and c0 & 1/16⇡2. Here we see that the required

number of e-folding is minimized by M4/16⇡2v4 ⇠ (M/TeV)4 for a barrier amplitude

⇤b & O(v). Therefore, one can raise the Higgs mass cuto↵ M up to for instance 10 TeV

with an inflationary e-folding Ne = O(104) if the barrier amplitude is similar to or above

the weak scale.
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number of e-folding is minimized by M4/16⇡2v4 ⇠ (M/TeV)4 for a barrier amplitude

⇤b & O(v). Therefore, one can raise the Higgs mass cuto↵ M up to for instance 10 TeV

with an inflationary e-folding Ne = O(104) if the barrier amplitude is similar to or above

the weak scale.

On the other hand, if Vb is generated by low energy QCD dynamics, one needs much

more e-foldings. In fact, in this case the scheme should be modified to avoid the strong CP

problem [1]. Taking into account the inflaton-induced relaxion coupling during inflation,

which was introduced in [1] to avoid the strong CP problem, the resulting number of

e-foldings is estimated as
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where we use again the lower bounds (53) and (54) on the Hubble scale with ⇤2
b ⇠ f⇡m⇡,

together with c0 & 1/16⇡2 and |✓QCD| . 10�10. Although not being a rigorous argument,

it is likely that the above huge e-folding number causes a severe fine-tuning problem in

the inflaton sector [28–30]. To avoid this potential problem, in the following we will focus

on the scenario that the barrier potential is generated by new physics, which allows the

e-folding number to be much smaller than the case of QCD-induced barrier.

Requiring NNP < Ne for a certain value of the acceptable e-folding number Ne, the

bound (59) is translated to

M < min

"
9TeV
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✓
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f
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#

(72)

11

number of e-folding is minimized by M4/16⇡2v4 ⇠ (M/TeV)4 for a barrier amplitude

⇤b & O(v). Therefore, one can raise the Higgs mass cuto↵ M up to for instance 10 TeV

with an inflationary e-folding Ne = O(104) if the barrier amplitude is similar to or above

the weak scale.
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more e-foldings. In fact, in this case the scheme should be modified to avoid the strong CP
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which was introduced in [1] to avoid the strong CP problem, the resulting number of

e-foldings is estimated as
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where we use again the lower bounds (53) and (54) on the Hubble scale with ⇤2
b ⇠ f⇡m⇡,

together with c0 & 1/16⇡2 and |✓QCD| . 10�10. Although not being a rigorous argument,

it is likely that the above huge e-folding number causes a severe fine-tuning problem in

the inflaton sector [28–30]. To avoid this potential problem, in the following we will focus

on the scenario that the barrier potential is generated by new physics, which allows the

e-folding number to be much smaller than the case of QCD-induced barrier.

Requiring NNP < Ne for a certain value of the acceptable e-folding number Ne, the
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Low scale inflation

II. COSMOLOGICAL RELAXION WINDOW

In this section, we summarize the conditions for the relaxion solution to be successfully

implemented, under the assumption that the initial relaxion potential energy density of

O(c0M4) is dissipated away by the Hubble friction during the inflationary period. First of

all, there is an upper bound on the inflationary Hubble scale HI in order for the classical

motion of relaxion to be dominant over the de-Sitter quantum fluctuation:
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where the stabilization condition (44) is used. Note that here ⇤b corresponds to the value

when the Higgs field has the present VEV, i.e. ⇤b = ⇤b(h = v).

The inflationary Hubble scale has also a lower bound coming from the condition to

provide an enough friction to stop the relaxion motion after the barrier potential Vb is

generated. Otherwise, the relaxion keeps rolling down even after the condition (44) is

satisfied because of a non-vanishing kinetic energy. Since it takes about a Hubble time

to dissipate significantly the kinetic energy by the Hubble friction, this requires that the

relaxion moving distance over a Hubble time be smaller than the width of the barrier

potential around the time when the relaxion kinetic energy becomes comparable to the

height of the barrier potential:
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On the other hand, if V
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is generated by low energy QCD dynamics, one needs much

more e-foldings. In fact, in this case the scheme should be modified to avoid the strong CP

problem [1]. Taking into account the inflaton-induced relaxion coupling during inflation,

which was introduced in [1] to avoid the strong CP problem, the resulting number of
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Although not being a rigorous argument, it is likely that a huge e-folding number bigger

than 1026 causes a severe fine-tuning problem in the inflaton sector [28–30]. To avoid this

potential problem, in the following we will focus on the scenario that the barrier potential

is generated by new physics, which allows the e-folding number much smaller than 1026.
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where we assume f > M for the theoretical consistency, and ⇤
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4⇡v) to avoid

a fine-tuning problem in the new physics sector to generate the barrier potential. The

above parameter range corresponds to the cosmological relaxion window for the Higgs

mass cuto↵ M , the barrier height ⇤
b

, and the relaxion decay constant f , expressed in

7

On the other hand, if V
b

is generated by low energy QCD dynamics, one needs much

more e-foldings. In fact, in this case the scheme should be modified to avoid the strong CP

problem [1]. Taking into account the inflaton-induced relaxion coupling during inflation,

which was introduced in [1] to avoid the strong CP problem, the resulting number of

e-foldings is estimated as

N
QCD

⇠ 1

✓
QCD

f 2M4H2

I

⇤8

b

& 1

✓
QCD

⇥max


M4

f 2

⇡

m2

⇡

,
f 2

M2

Pl

M8

f 4

⇡

m4

⇡

�

& max

"
1026

✓
M

TeV

◆
4

, 2⇥ 1023
✓

f

109 GeV

◆
2

✓
M

TeV

◆
8

#
, (20)

N
QCD

& max

"
1026

✓
M

TeV

◆
4

, 2⇥ 1023
✓

f

109 GeV

◆
2

✓
M

TeV

◆
8

#✓
10�10

✓
QCD

◆
(21)

⇤4

b

' f 2

⇡

m2

⇡

⇠ (0.1GeV)4, f & 4⇥ 108GeV (22)

where we use again H
I

& max (⇤2

b

/f, M2/M
Pl

) with ⇤2

b

⇠ f
⇡

m
⇡

and |✓
QCD

| . 10�10.

Although not being a rigorous argument, it is likely that a huge e-folding number bigger
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where we assume f > M for the theoretical consistency, and ⇤
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a fine-tuning problem in the new physics sector to generate the barrier potential. The

above parameter range corresponds to the cosmological relaxion window for the Higgs

mass cuto↵ M , the barrier height ⇤
b

, and the relaxion decay constant f , expressed in

7

generated. Otherwise, the relaxion keeps rolling down even after the condition (10) is

satisfied because of a non-vanishing kinetic energy. Since it takes about a Hubble time to

dissipate the kinetic energy by the Hubble friction, this requires that the relaxion moving

distance over a Hubble time is smaller than the period of barrier potential around the

time when the relaxion kinetic energy becomes comparable to the height of the barrier

potential:

�̇

H
I

⇠ ⇤2

b

H
I

< f ! H
I

>
⇤2

b

f
⇠ m

�

. (14)

This bound is normally stronger than the following requirement that the inflaton energy

density should be dominant over the relaxion energy density:

H
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An important quantity for relaxion cosmology is the total number of e-foldings required

for the relaxion to move over a field distance �� ⇠ f
e↵

to scan the Higgs mass from O(M)

to the weak scale. For the case that the barrier potential V
b

is generated by new physics,

this is estimated as
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where the stabilization condition (10) is used together with H
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/f, M2/M
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As we have noticed, the height of the barrier potential can not be arbitrarily high. To avoid

a fine-tuning in the new physics sector to generate the barrier potential, it is bounded

as ⇤4

b

. O(16⇡2v4) for the weak scale v = 246 GeV. Saturating this bound, one can

raise the Higgs mass cuto↵ M up to for instance 10 TeV with an inflationary e-folding

N
e

= O(104).
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terms of the acceptable number of e-folding N
e

. Notice that the Higgs mass cuto↵ is

bounded above by O(10) TeV if one requires a relatively small number of e-foldings

smaller than O(104).

Since the relaxion gets its mass dominantly by the barrier potential as m
�
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/f , the

above relaxion window leads to
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In Fig. (1), we depict the cosmological relaxion window in terms of the relaxion mass

m
�

and the relaxion decay constant f for the acceptable number of e-folding N
e

. 1026

and the Higgs mass cuto↵ M > 1 TeV. The gray region with ⇤
b

> 1 TeV is theoretically

disfavoured as it requires a fine-tuning in the new physics sector to generate the barrier

potential. In the next section, we will discuss a variety of observational constraints on

this parameter region for N
e

< 1026, including those from cosmological and astrophysical

considerations.

III. OBSERVATIONAL CONSTRAINTS

In this section, we investigate phenomenological constraints on the cosmological relax-

ion window summarised in (23)-(26). As argued in the previous section, one needs a new

physics to generate the barrier potential in order for N
e

< 1026, which generically results

in [1–3]
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. O(4⇡v) for v = hhi = 246 GeV. The new physics generating the

above barrier potential induces also the following relaxion-photon coupling
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F̃ µ⌫ , (28)

where c
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= O(1). As µ
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and f are constrained by the acceptable number of e-foldings
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, one can examine the phenomenological consequences of those couplings for a given
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On the other hand, if V
b

is generated by low energy QCD dynamics, one needs much

more e-foldings. In fact, in this case the scheme should be modified to avoid the strong CP

problem [1]. Taking into account the inflaton-induced relaxion coupling during inflation,

which was introduced in [1] to avoid the strong CP problem, the resulting number of

e-foldings is estimated as
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Although not being a rigorous argument, it is likely that a huge e-folding number bigger

than 1026 causes a severe fine-tuning problem in the inflaton sector [28–30]. To avoid this

potential problem, in the following we will focus on the scenario that the barrier potential

is generated by new physics, which allows the e-folding number much smaller than 1026.
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where we assume f > M for the theoretical consistency, and ⇤
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. O(
p
4⇡v) to avoid

a fine-tuning problem in the new physics sector to generate the barrier potential. The

above parameter range corresponds to the cosmological relaxion window for the Higgs

mass cuto↵ M , the barrier height ⇤
b

, and the relaxion decay constant f , expressed in
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generated. Otherwise, the relaxion keeps rolling down even after the condition (10) is

satisfied because of a non-vanishing kinetic energy. Since it takes about a Hubble time to

dissipate the kinetic energy by the Hubble friction, this requires that the relaxion moving

distance over a Hubble time is smaller than the period of barrier potential around the

time when the relaxion kinetic energy becomes comparable to the height of the barrier

potential:
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. Notice that the Higgs mass cuto↵ is

bounded above by O(10) TeV if one requires a relatively small number of e-foldings
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In Fig. (1), we depict the cosmological relaxion window in terms of the relaxion mass
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and the relaxion decay constant f for the acceptable number of e-folding N
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and the Higgs mass cuto↵ M > 1 TeV. The gray region with ⇤
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> 1 TeV is theoretically

disfavoured as it requires a fine-tuning in the new physics sector to generate the barrier

potential. In the next section, we will discuss a variety of observational constraints on

this parameter region for N
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< 1026, including those from cosmological and astrophysical

considerations.

III. OBSERVATIONAL CONSTRAINTS

In this section, we investigate phenomenological constraints on the cosmological relax-

ion window summarised in (23)-(26). As argued in the previous section, one needs a new

physics to generate the barrier potential in order for N
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< 1026, which generically results

in [1–3]
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where c
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= O(1). As µ
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and f are constrained by the acceptable number of e-foldings
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, one can examine the phenomenological consequences of those couplings for a given
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where we assume f > M for theoretical consistency, and ⇤b . O(
p
4⇡v) to avoid a

fine-tuning problem in the new physics sector to generate the barrier potential.
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The second bound in (74) is derived from (48) and (55). The above parameter range

corresponds to the cosmological relaxion window for the Higgs mass cuto↵ M , the barrier

amplitude ⇤b, and the relaxion decay constant f , expressed in terms of the acceptable

number of e-folding Ne. Notice that the Higgs mass cuto↵ is bounded above by O(10)

TeV if one requires a relatively small number of e-foldings smaller than O(104).

Since the relaxion gets its mass dominantly by the barrier potential as m� ⇠ ⇤2
b/f , the

above relaxion window leads to
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Cosmological relaxion windows

FIG. 1: Cosmological relaxion window in terms of the relaxion mass m
�

and the relaxion decay

constant f , classified also in terms of the acceptable e-folding number N
e

. The gray region with

⇤
b

> 1 TeV is theoretically disfavoured as it requires a fine-tuning in the underlying dynamics

to generate the barrier potential.

with µ4

0

< µ2

b

v2 and µ
b

. O(4⇡v) for v = hhi = 246 GeV. The new physics generating the

above barrier potential induces also the following relaxion-photon coupling

c
��

↵

4⇡f
�F

µ⌫

F̃ µ⌫ , (37)

where c
��

is generically of order unity.6 As µ
b

and f are constrained by the acceptable

number of e-foldings N
e

, one can examine the phenomenological consequences of those

6 Although there exist a specific type of models yielding |c�� | ⌧ 1, e.g. the model of [3], such models

should be regarded as a special case among the many possibilities which generically give c�� = O(1).

For instance, for the model of [3], one can consider di↵erent assignments of the global charges, which

are equally well motivated as they lead to the same barrier potential, but give c�� = O(1). Another

notable point is that the new physics sector generating the barrier potential typically involves some

mass parameters which may need an explanation for their origin. An attractive possibility is that those

mass parameters are connected to the relaxion decay constant f as in [18], for which c�� = O(1) in

most cases.
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1 TeV < f < MPl 
10-10 eV < mΦ < vEW

The smaller e-folding corresponds to the higher barrier.

• Λb > 1 TeV : theoretically disfavored  
(naturalness bound on the barrier height) 

•Ne : required number of e-folding for the 
relaxion dynamics with the Hubble friciton  

•Ne ~ 1024 :  lowest e-folding for the QCD barrier

Requiring NNP < Ne for a certain value of the acceptable e-folding number Ne, the
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f > ⇤SM (82)

The second bound in (78) is derived from (48) and (55). The above parameter range

corresponds to the cosmological relaxion window for the Higgs mass cuto↵ M , the barrier

amplitude ⇤b, and the relaxion decay constant f , expressed in terms of the acceptable

number of e-folding Ne. Notice that the Higgs mass cuto↵ is bounded above by O(10)

TeV if one requires a relatively small number of e-foldings smaller than O(104).
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Phenomenology of the Relaxion  
: Minimal couplings

•Relaxion-Higgs coupling 
 
 
 
 

•Relaxion-Photon coupling

couplings for a given range of Ne. At any rate, the barrier potential (64) provides the

relaxion mass and also a relaxion-Higgs mixing, which are estimated as
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Starting from (64) and (65), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]

s✓
X

f

mf

v
�  ̄f f + s✓

2m2
W

v
�W µ+W�

µ + s✓
m2

Z

v
�ZµZµ

+ s✓ chg
↵s

12⇡v
�Gaµ⌫Ga

µ⌫ + s✓ ch�
↵

4⇡v
�F µ⌫Fµ⌫ + c��

↵

4⇡f
�Fµ⌫F̃

µ⌫ ,

(72)

where s✓ = sin ✓�h,  f denote the SM fermions, and

chg =
X

f

Af (⌧f ),

ch� =
X

f,colors

2

3
Q2

fAf (⌧f )� 7

2
Av(⌧W ),

where ⌧i = m2
�/4m

2
i and

Av(⌧) =
1

7⌧ 2
[3(2⌧ � 1)f(⌧) + 3⌧ + 2⌧ 2],

Af (⌧) =
3

2⌧ 2
[(⌧ � 1)f(⌧) + ⌧ ],

f(⌧) =

8
<

:
(arcsin

p
⌧)2, ⌧ < 1

�1
4

h
ln
⇣

1+
p
1�⌧�1

1�
p
1�⌧�1

⌘
� i⇡

i2
. ⌧ > 1.

13

couplings for a given range of Ne. At any rate, the barrier potential (64) provides the

relaxion mass and also a relaxion-Higgs mixing, which are estimated as

⇤4
b(h) cos

✓
�

f
+ �b

◆
(66)

m� ⇠ ⇤2
b

f
(67)

✓�h ⇠ ⇤4
b

vf
sin

✓h�i
f

+ �b

◆
⇥ 1

m2
h �m2

�

⇠ m2
�

m2
h �m2

�

f

v

✓
1 +

fm�

v2

◆�1

(68)

m� ⇠ µbv

f
, (69)

✓�h ⇠ µ2
bv

f(m2
h �m2

�)
sin

✓
�0

f

◆
⇠ m2

�

m2
h �m2

�

f

v

✓
1 +

fm�

v2

◆�1

. (70)

m� ⇠ µbv

f
, ✓�h ⇠ µ2

bv

f(m2
h �m2

�)
sin

✓
�0

f

◆
⇠ m2

�

m2
h �m2

�

f

v

✓
1 +

fm�

v2

◆�1

(71)

Starting from (64) and (65), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]

s✓
X

f

mf

v
�  ̄f f + s✓

2m2
W

v
�W µ+W�

µ + s✓
m2

Z

v
�ZµZµ

+ s✓ chg
↵s

12⇡v
�Gaµ⌫Ga

µ⌫ + s✓ ch�
↵

4⇡v
�F µ⌫Fµ⌫ + c��

↵

4⇡f
�Fµ⌫F̃

µ⌫ ,

(72)

where s✓ = sin ✓�h,  f denote the SM fermions, and

chg =
X

f

Af (⌧f ),

ch� =
X

f,colors

2

3
Q2

fAf (⌧f )� 7

2
Av(⌧W ),

where ⌧i = m2
�/4m

2
i and

Av(⌧) =
1

7⌧ 2
[3(2⌧ � 1)f(⌧) + 3⌧ + 2⌧ 2],

Af (⌧) =
3

2⌧ 2
[(⌧ � 1)f(⌧) + ⌧ ],

f(⌧) =

8
<

:
(arcsin

p
⌧)2, ⌧ < 1

�1
4

h
ln
⇣

1+
p
1�⌧�1

1�
p
1�⌧�1

⌘
� i⇡

i2
. ⌧ > 1.

13

couplings for a given range of Ne. At any rate, the barrier potential (64) provides the

relaxion mass and also a relaxion-Higgs mixing, which are estimated as

⇤4
b(h) cos

✓
�

f
+ �b

◆
(66)

m� ⇠ ⇤2
b

f
(67)

✓�h ⇠ ⇤4
b

vf
sin

✓h�i
f

+ �b

◆
⇥ 1

m2
h �m2

�

⇠ m2
�

m2
h �m2

�

f

v

✓
1 +

fm�

v2

◆�1

(68)

m� ⇠ µbv

f
, (69)

✓�h ⇠ µ2
bv

f(m2
h �m2

�)
sin

✓
�0

f

◆
⇠ m2

�

m2
h �m2

�

f

v

✓
1 +

fm�

v2

◆�1

. (70)

m� ⇠ µbv

f
, ✓�h ⇠ µ2

bv

f(m2
h �m2

�)
sin

✓
�0

f

◆
⇠ m2

�

m2
h �m2

�

f

v

✓
1 +

fm�

v2

◆�1

(71)

Starting from (64) and (65), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]

s✓
X

f

mf

v
�  ̄f f + s✓

2m2
W

v
�W µ+W�

µ + s✓
m2

Z

v
�ZµZµ

+ s✓ chg
↵s

12⇡v
�Gaµ⌫Ga

µ⌫ + s✓ ch�
↵

4⇡v
�F µ⌫Fµ⌫ + c��

↵

4⇡f
�Fµ⌫F̃

µ⌫ ,

(72)

where s✓ = sin ✓�h,  f denote the SM fermions, and

chg =
X

f

Af (⌧f ),

ch� =
X

f,colors

2

3
Q2

fAf (⌧f )� 7

2
Av(⌧W ),

where ⌧i = m2
�/4m

2
i and

Av(⌧) =
1

7⌧ 2
[3(2⌧ � 1)f(⌧) + 3⌧ + 2⌧ 2],

Af (⌧) =
3

2⌧ 2
[(⌧ � 1)f(⌧) + ⌧ ],

f(⌧) =

8
<

:
(arcsin

p
⌧)2, ⌧ < 1

�1
4

h
ln
⇣

1+
p
1�⌧�1

1�
p
1�⌧�1

⌘
� i⇡

i2
. ⌧ > 1.

13

Λb ≡ Λb(h=v)

Flacke, Frugiuele, Fuchs, Gupta, Perez ‘16

The relaxion-Higgs mixing θΦh is determined in terms of mΦ and f.

The Higgs dependent barrier sector generally includes the electroweak charged fermions.  
→  relaxion-photon coupling through the anomaly

Relaxion effective couplings to SM

• For a given mΦ, the mixing angle is sizeable if f is large : large f region will be 
constrained by the Higgs mixing. 

• The relaxion-photon-photon coupling cΦγ constrains a small f region.

15/18

Relaxion effective	couplings

terms of the acceptable number of e-folding N
e

. Notice that the Higgs mass cuto↵ is

bounded above by O(10) TeV if one requires a relatively small number of e-foldings

smaller than O(104).
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In Fig. (1), we depict the cosmological relaxion window in terms of the relaxion mass

m
�
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e
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and the Higgs mass cuto↵ M > 1 TeV. The gray region with ⇤
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> 1 TeV is theoretically

disfavoured as it requires a fine-tuning in the new physics sector to generate the barrier

potential. In the next section, we will discuss a variety of observational constraints on

this parameter region for N
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< 1026, including those from cosmological and astrophysical

considerations.
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Note that here we are considering a relatively simple situation [1–3] that the relaxion

does not couple to the gluon anomaly operator GG̃, but couples to the electroweak gauge

boson anomalies through the new physics sector to generate V
b

, and also to the gluon

kinetic operator GG through the mixing with the Higgs boson.

As we will see, in most cases of our study, the relevant relaxion mass is in sub-GeV

region. We then need the low energy relaxion couplings at scales below the QCD scale.

Using the low energy realizations of the QCD operators that appear in (31) [32–34], we

find the following low energy relaxion couplings to the pions, nucleons, photons and light

leptons:
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We then apply the above relaxion e↵ective interactions to various low energy processes

as described below. The result is summarized in Fig. (2). Colored region in the fig-

ure is excluded by the constraints discussed here. The yellow region from cosmological
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FIG. 1: Cosmological relaxion window in terms of the relaxion mass m
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and the relaxion decay

constant f , classified also in terms of the acceptable e-folding number N
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. The gray region with
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> 1 TeV is theoretically disfavoured as it requires a fine-tuning in the underlying dynamics

to generate the barrier potential.
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Starting from (27) and (28), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]
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II. INFLATIONARY CONSTRAINTS ON RELAXION PARAMETERS

In this section, we discuss the generic constraints on the relaxion scenario if the relaxion
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Starting from (46) and (47), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]
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Note that here we are considering a relatively simple situation [1–3] that the relaxion

does not couple to the gluon anomaly operator GG̃, but couples to the electroweak gauge

boson anomalies through the new physics sector to generate V
b

, and also to the gluon

kinetic operator GG through the mixing with the Higgs boson.

As we will see, in most cases of our study, the relevant relaxion mass is in sub-GeV

region. We then need the low energy relaxion couplings at scales below the QCD scale.

Using the low energy realizations of the QCD operators that appear in (51) [32–34], we
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terms of the acceptable number of e-folding N
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. Notice that the Higgs mass cuto↵ is

bounded above by O(10) TeV if one requires a relatively small number of e-foldings
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In Fig. (1), we depict the cosmological relaxion window in terms of the relaxion mass

m
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and the relaxion decay constant f for the acceptable number of e-folding N
e

. 1026

and the Higgs mass cuto↵ M > 1 TeV. The gray region with ⇤
b

> 1 TeV is theoretically

disfavoured as it requires a fine-tuning in the new physics sector to generate the barrier

potential. In the next section, we will discuss a variety of observational constraints on

this parameter region for N
e

< 1026, including those from cosmological and astrophysical

considerations.

III. OBSERVATIONAL CONSTRAINTS

In this section, we investigate phenomenological constraints on the cosmological relax-

ion window summarised in (23)-(26). As argued in the previous section, one needs a new

physics to generate the barrier potential in order for N
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boson anomalies through the new physics sector to generate V
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Starting from (27) and (28), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]
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Starting from (27) and (28), one can derive the e↵ective couplings relevant for low
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If relaxion is a Pseudo Nambu-Goldstone Boson (PNGB), f
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must be interpreted as

another axion scale for a long periodic potential [4], and such di↵erent axion scales for

relaxion call for an explanation for their origin. A possible solution to this problem is
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II. INFLATIONARY CONSTRAINTS ON RELAXION PARAMETERS

In this section, we discuss the generic constraints on the relaxion scenario if the relaxion

is to be stabilized during the primoridal inflation due to the Hubble friction. First of

all, there is an upper bound on the inflationary Hubble scale in order for the classical

displacement of relaxion to be dominant over the de-Sitter quantum fluctuation:
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B. EDM

A simultaneous presence of the relaxion-Higgs mixing and the relaxion-photon coupling

�FF̃ violates the CP invariance, so can induce nonzero electric dipole moments (EDMs).

For instance, EDMs of light fermions arise from the diagram of Fig. (4), yielding [37, 38]
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Applying this to the electron EDM, we find
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The current experimental bound on the electron EDM is d
e

< 8.7⇥10�29 e ·cm [39]. This

implies that m
�

& 10/
p
c
��

GeV is excluded if the relaxion decay constant f is below

v2/m
�

⇠ 10
p
c
��

TeV. This constraint from the electron EDM is depicted in Fig. (2) under

the assumption that c
��

= 1. Our result suggests that the relaxion with a mass below 10

GeV can be probed further by future EDM experiments, particularly by the storage ring

EDM experiment which is claimed to improve the bound on the proton EDM down to

d
p

⇠ 10�29 e · cm [27] with a final goal d
p

⇠ 10�30 e · cm [40]. In the enlarged Fig. (3), we

depict also the parameter region yielding the proton EDM d
p

= 10�28, 10�29, 10�30 e · cm
for c

��

= 1. Here the proton EDM is estimated by applying the QCD sum rule with the

following relation [41]:

d
p

= 0.78 d
u

(µ⇤)� 0.20 d
d

(µ⇤), (56)

where the renormalization scale is taken to be µ⇤ = 1 GeV.8

C. Rare meson decay

For the relaxion with a mass below 5 GeV having a nonzero relaxion-Higgs mixing,

there are strong constraints coming from rare meson decays [43]. The strongest one turns

8 If we use the the Naive Dimensional Analysis [42] assuming that strange quark contribution is dominant,

the resultant proton EDM turns out to be larger by an order of magnitude.
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•The future EDM experiment like the proton storage ring experiment can probe the relaxion 
mass region below about 10 GeV.  

•For mΦ < 1 GeV, the relaxion couples to pions and nucleons through the relaxion-Higgs 
mixing.
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terms of the acceptable number of e-folding N
e

. Notice that the Higgs mass cuto↵ is

bounded above by O(10) TeV if one requires a relatively small number of e-foldings

smaller than O(104).

Since the relaxion gets its mass dominantly by the barrier potential as m
�

⇠ ⇤2

b

/f , the

above relaxion window leads to
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In Fig. (1), we depict the cosmological relaxion window in terms of the relaxion mass

m
�

and the relaxion decay constant f for the acceptable number of e-folding N
e

. 1026

and the Higgs mass cuto↵ M > 1 TeV. The gray region with ⇤
b

> 1 TeV is theoretically

disfavoured as it requires a fine-tuning in the new physics sector to generate the barrier

potential. In the next section, we will discuss a variety of observational constraints on

this parameter region for N
e

< 1026, including those from cosmological and astrophysical

considerations.

III. OBSERVATIONAL CONSTRAINTS

In this section, we investigate phenomenological constraints on the cosmological relax-

ion window summarised in (23)-(26). As argued in the previous section, one needs a new

physics to generate the barrier potential in order for N
e

< 1026, which generically results

in [1–3]
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, one can examine the phenomenological consequences of those couplings for a given
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Note that here we are considering a relatively simple situation [1–3] that the relaxion

does not couple to the gluon anomaly operator GG̃, but couples to the electroweak gauge

boson anomalies through the new physics sector to generate V
b

, and also to the gluon

kinetic operator GG through the mixing with the Higgs boson.

As we will see, in most cases of our study, the relevant relaxion mass is in sub-GeV

region. We then need the low energy relaxion couplings at scales below the QCD scale.

Using the low energy realizations of the QCD operators that appear in (31) [32–34], we

find the following low energy relaxion couplings to the pions, nucleons, photons and light

leptons:
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We then apply the above relaxion e↵ective interactions to various low energy processes

as described below. The result is summarized in Fig. (2). Colored region in the fig-

ure is excluded by the constraints discussed here. The yellow region from cosmological
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Starting from (27) and (28), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]
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In this section, we discuss the generic constraints on the relaxion scenario if the relaxion
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all, there is an upper bound on the inflationary Hubble scale in order for the classical
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Note that here we are considering a relatively simple situation [1–3] that the relaxion

does not couple to the gluon anomaly operator GG̃, but couples to the electroweak gauge

boson anomalies through the new physics sector to generate V
b

, and also to the gluon

kinetic operator GG through the mixing with the Higgs boson.

As we will see, in most cases of our study, the relevant relaxion mass is in sub-GeV

region. We then need the low energy relaxion couplings at scales below the QCD scale.

Using the low energy realizations of the QCD operators that appear in (31) [32–34], we

find the following low energy relaxion couplings to the pions, nucleons, photons and light
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We then apply the above relaxion e↵ective interactions to various low energy processes

as described below. The result is summarized in Fig. (2). Colored region in the fig-

ure is excluded by the constraints discussed here. The yellow region from cosmological
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Starting from (27) and (28), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]
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If relaxion is a Pseudo Nambu-Goldstone Boson (PNGB), f
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must be interpreted as

another axion scale for a long periodic potential [4], and such di↵erent axion scales for

relaxion call for an explanation for their origin. A possible solution to this problem is

suggested in [5, 6] using multiple axions.
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II. INFLATIONARY CONSTRAINTS ON RELAXION PARAMETERS

In this section, we discuss the generic constraints on the relaxion scenario if the relaxion

is to be stabilized during the primoridal inflation due to the Hubble friction. First of

all, there is an upper bound on the inflationary Hubble scale in order for the classical

displacement of relaxion to be dominant over the de-Sitter quantum fluctuation:

(��)
�N=1

' �̇

HI

⇠ V 0(�)

H2

I

> HI ! HI . (V 0(�))1/3 ⇠
✓
M4

f
e↵

◆
1/3

⇠
✓
⇤

br

f

◆
1/3

⇤
br

(16)

3

γ

γ, Z φ

e

hθφh

13

H⇤ < O(v) (100)

f & MPl

v

16⇡2⇤2
b

M
⇠ 1015GeV

✓
⇤b

102GeV

◆2✓1TeV

M

◆
(101)

g�� . v2 (102)

TR . 4⇡⇤b ⇠ 1TeV

✓
⇤b

102GeV

◆
(103)

HI & max
�
⇤2
b/f, M

2/MPl

�
(104)

Nnon�QCD < NI (105)

m� < 1GeV (106)



Phenomenological constraints on the relaxion windows

FIG. 2: Cosmological relaxion window with colored regions excluded by the observational con-

straints discussed in this paper. The yellow region from cosmology depends on the reheating

temperature T
R

and shrinks for smaller T
R

. Here we set c
��

= 1 and depict the results for

T
R

⇠ f and 100 GeV.

in [66], where the ZZ� coupling arises from the relaxion-Higgs mixing, and � subsequently

decays to the SM particles with the same branching ratios as the corresponding SM Higgs

boson of an equal mass.7 The LEP experiment provides an upper bound on the cross

section of the processes normalized to the value of the SM Higgs boson depending on

the Higgs-like particle’s mass (here, relaxion). This is translated to an upper bound on

sin2 ✓
�h

in terms of m
�

. As one can see from the relaxion-Higgs mixing (49), the upper

bound on the mixing angle gives an upper bound on f for a given m
�

.

The former process with an on-shell intermediate Z boson, which is analyzed by L3

[35], imposes the most stringent bound on the mixing angle for a relaxion mass below

about 30 GeV. For a larger mass up to 116 GeV, the four LEP collaborations ALEPH,

7 The relaxion-photon coupling c�� in (47) can change the branching ratios when the mixing angle ✓�� is

very small. Still, it turns out that the mixing angle is large enough to suppress the photon branching

ratio over the relevant mass region.
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Excluded by cΦγ (=1) 
(small f region for a given mΦ) 

Three distinctive viable windows 
i) mΦ ~ 0.2 - 10 GeV, f ~ few - 200 TeV 
ii) mΦ ~ few - 50 MeV, f ~ 106 - 109 GeV 
iii) mΦ < 100 eV, f > 107 GeV

Excluded by θΦh 

 

  

(large f region for a given mΦ)

couplings for a given range of Ne. At any rate, the barrier potential (64) provides the

relaxion mass and also a relaxion-Higgs mixing, which are estimated as
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Starting from (64) and (65), one can derive the e↵ective couplings relevant for low

energy relaxion phenomenology, which include [31]
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FIG. 1: Cosmological relaxion window in terms of the relaxion mass m� and the relaxion decay

constant f , classified also in terms of the acceptable e-folding number Ne. The gray region with

⇤b > 1 TeV is theoretically disfavoured as it requires a fine-tuning in the underlying dynamics

to generate the barrier potential.

with µ4
0 < µ2

bv
2 and µb . O(4⇡v) for v = hhi = 246 GeV. The new physics generating the

above barrier potential induces also the following relaxion-photon coupling

c��
↵

4⇡f
�Fµ⌫F̃

µ⌫ , (65)

where c�� is generically of order unity.6 As µb and f are constrained by the acceptable

number of e-foldings Ne, one can examine the phenomenological consequences of those

6 Although there exist a specific type of models yielding |c�� | ⌧ 1, e.g. the model of [3], such models

should be regarded as a special case among the many possibilities which generically give c�� = O(1).

For instance, for the model of [3], one can consider di↵erent assignments of the global charges, which

are equally well motivated as they lead to the same barrier potential, but give c�� = O(1). Another

notable point is that the new physics sector generating the barrier potential typically involves some

mass parameters which may need an explanation for their origin. An attractive possibility is that those

mass parameters are connected to the relaxion decay constant f as in [18], for which c�� = O(1) in

most cases.
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All of them include the small e-folding 
region below 104.
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FIG. 2: Cosmological relaxion window with colored regions excluded by the observational con-
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⇠ f and 100 GeV.

in [66], where the ZZ� coupling arises from the relaxion-Higgs mixing, and � subsequently

decays to the SM particles with the same branching ratios as the corresponding SM Higgs

boson of an equal mass.7 The LEP experiment provides an upper bound on the cross

section of the processes normalized to the value of the SM Higgs boson depending on

the Higgs-like particle’s mass (here, relaxion). This is translated to an upper bound on
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in terms of m
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. As one can see from the relaxion-Higgs mixing (49), the upper

bound on the mixing angle gives an upper bound on f for a given m
�

.

The former process with an on-shell intermediate Z boson, which is analyzed by L3

[35], imposes the most stringent bound on the mixing angle for a relaxion mass below

about 30 GeV. For a larger mass up to 116 GeV, the four LEP collaborations ALEPH,

7 The relaxion-photon coupling c�� in (47) can change the branching ratios when the mixing angle ✓�� is

very small. Still, it turns out that the mixing angle is large enough to suppress the photon branching

ratio over the relevant mass region.
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Excluded by cΦγ (=1)

Excluded by θΦh 

•LEP : e+e- → Z → ZΦ 
•Rare meson decay : B+ → K+Φ (Φ→μ+μ-) 

[mΦ  < 5 GeV]
•CHARM Beam dump : K→ π Φ (Φ→SM)
•SN1987A : Nucleon bremsstrahlung  
from ΦNN
•Cosmology (BBN, CMB, DR, DM, etc) 
: relaxion production from thermal 
equilibirium through the Higgs mixing  
; depends on TR  
•5th force : inverse square law

•SLAC 137 Beam dump 
•SN1987A : Primakoff process  
•He Burning stars : Primakoff process 
•Cosmology (BBN, CMB, DR, DM, etc) : 

relaxion production from the photon coupling 
; depends on TR



Enlarged picture for the first window

•EDM with cΦγ =1 
•Proton EDM estimated  
by the QCD sum rule 
 
 
            where 

•NDA with s quark : an order  
of magnitude larger 

•Storage ring experiment 
for proton EDM

B. EDM

A simultaneous presence of the relaxion-Higgs mixing and the relaxion-photon coupling

�FF̃ violates the CP invariance, so can induce nonzero electric dipole moments (EDMs).

For instance, EDMs of light fermions arise from the diagram of Fig. (4), yielding [37, 38]

d
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(4⇡)4
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Applying this to the electron EDM, we find

d
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⌘
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ln

✓
10GeV

m
�

◆✓
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�

v2

◆�1
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The current experimental bound on the electron EDM is d
e

< 8.7⇥10�29 e ·cm [39]. This

implies that m
�

& 10/
p
c
��

GeV is excluded if the relaxion decay constant f is below

v2/m
�

⇠ 10
p
c
��

TeV. This constraint from the electron EDM is depicted in Fig. (2) under

the assumption that c
��

= 1. Our result suggests that the relaxion with a mass below 10

GeV can be probed further by future EDM experiments, particularly by the storage ring

EDM experiment which is claimed to improve the bound on the proton EDM down to

d
p

⇠ 10�29 e · cm [27] with a final goal d
p

⇠ 10�30 e · cm [40]. In the enlarged Fig. (3), we

depict also the parameter region yielding the proton EDM d
p

= 10�28, 10�29, 10�30 e · cm
for c

��

= 1. Here the proton EDM is estimated by applying the QCD sum rule with the

following relation [41]:

d
p

= 0.78 d
u

(µ⇤)� 0.20 d
d

(µ⇤) (56)

where the renormalization scale is taken to be µ⇤ = 1 GeV 8

C. Rare meson decay

For the relaxion with a mass below 5 GeV having a nonzero relaxion-Higgs mixing,

there are strong constraints coming from rare meson decays [43]. The strongest one turns

8 If we use the the Naive Dimensional Analysis [42] assuming that strange quark contribution is dominant,

the resultant proton EDM turns out to be larger by an order of magnitude.
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FIG. 3: Enlarged picture for the first viable window with f . 200 TeV. The dashed blue lines

represent the proton EDM d
p

= 10�28, 10�29, 10�30 e · cm for c
��

= 1, respectively. The dotted

brown line denotes the branching fraction of the relaxion decay into 2 photons. The allowed

region is in reach of the projected SHiP experiment (m
�

. 5 GeV) and future electron/proton

EDM sensitivity.

DELPHI, L3, and OPAL provide a bound on the cross section of the latter process with

a final on-shell Z boson [36].

In Fig. (3), we see that the LEP constraints exclude a relaxion heavier than 30 GeV

within the relaxion window, while constraining the relaxion decay constant for a relaxion

mass between 5 GeV and 30 GeV. We remark that the LHC bound concerning the Higgs

decay to two relaxions h ! �� strongly constrains the relaxion-Higgs mixing angle beyond

the LEP for m
�

& 25 GeV [66]. However, this mass region is almost excluded already by

the LEP and electron EDM bounds within the relaxion window as one can find in Fig.

(3).
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• BR(Φ->γγ) 
• Φ->ππ, μμ 
• CERN SHiP



Conclusions

• The relaxion mechanism can explain the weak scale in a technically natural way by 
converting the weak scale hierarchy to the axion scale hierarchy, which can be 
addressed by the clockwork mechanism. 

• The hierarchy is also responsible for a large number of e-folding for the relaxion 
dynamics with the Hubble friction. 

• The cosmological relaxion window identifies the favored relaxion parameter space in 
terms of the necessary number of e-folding.  

• The model-independent low energy relaxion phenomenology can be studied by the 
relaxion-Higgs mixing and relaxion-photon coupling. 

• After imposing various phenomenological constraints, three distinctive windows remain 
viable, all of which can accommodate a relatively small number of e-folding below 104.  

• The first window (mΦ ~ 0.2 - 10 GeV, f ~ few - 200 TeV) can be probed by future EDM 
experiments and CERN SHiP. 


