CP violation with an unbroken CP transformation

Andreas Trautner

mainly based on JHEP 1702 (2017) 103 / arXiv:1612.08984,
w/ Michael Ratz.

PLANCK20th17

Warsaw
24.05.17

Motivation

- Standard Model flavor puzzle / CP violation in Nature.
- Origin of CP violation?
- CP violation established in quark sector, consistent with SM (CKM).
- open question:

CP violation in lepton sector ?

- open question:

Why $\bar{\theta}=\left(\theta+\arg \operatorname{det} y_{u} y_{d}\right)<10^{-10}$?
Why CPV only in FV processes?

\Rightarrow Flavor and CP are intertwined in SM.
This talk: A "flavor"-symmetry reason for $\bar{\theta}=0$ while $\delta_{\varnothing \varnothing} \neq 0$.
(...in a toy model)

Outline

CP violation from a symmetry principle

CP violation in the breaking of $\mathrm{SU}(\mathbf{3}) \rightarrow \mathrm{T}_{\mathbf{7}}$

Summary

Two types of groups (wimbut matemaniacan rioon)

List of representations: $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{k}, \boldsymbol{r}_{k}{ }^{*}, \ldots$

$$
\text { Out in general : } \quad \boldsymbol{r}_{i} \mapsto \boldsymbol{r}_{j} \quad \forall \text { irreps } i, j(1: 1)
$$

Criterion:
Is there an (outer) automorphism transformation that maps

$$
\boldsymbol{r}_{i} \mapsto \boldsymbol{r}_{i}{ }^{*} \quad \text { for all irreps } i ?
$$

No "type I"

Yes
\Rightarrow Group of "type II"

Why is this information important?

Physical CP transformation

In the Standard Model

$$
\mathrm{SU}(3) \otimes \mathrm{SU}(2) \otimes \mathrm{U}(1) \quad \text { and } \quad \mathrm{SO}(3,1)
$$

physical CP is described by a simultaneous outer automorphism transformation of all symmetries which maps

$$
\begin{aligned}
\boldsymbol{r}_{i} & \longleftrightarrow \boldsymbol{r}_{i}^{*}, \\
\left(\text { e.g. }(\mathbf{3}, \mathbf{2})_{1 / 6}^{\mathrm{L}}\right. & \left.\longleftrightarrow(\overline{\mathbf{3}}, \overline{\mathbf{2}})_{-1 / 6}^{\mathrm{R}}\right),
\end{aligned}
$$

for all representations of all symmetries.
Conservation of such a transformation warrants $\bar{\theta}, \delta_{\text {CP }}=0$.
Violation of such a transformation is implied by experiment, and necessary requirement for baryogenesis.

Do CP transformations exist for all symmetries?

Do CP transformations exist for all symmetries? General answer: No.

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

G	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	$\mathrm{~T}_{7}$	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$	\ldots
SG id	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$	

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

\boldsymbol{G}	$\mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}$	$\mathrm{~T}_{7}$	$\Delta(27)$	$\mathbb{Z}_{9} \rtimes \mathbb{Z}_{3}$	\ldots
sG id	$(20,3)$	$(21,1)$	$(27,3)$	$(27,4)$	

- These are inconsistent with the trafo $\boldsymbol{r}_{i} \mapsto \boldsymbol{r}_{i}^{*} \forall i$.
$\Rightarrow \mathrm{CP}$ transformation is inconsistent with a type I symmetry.
(assuming sufficient \# of irreps are in the model)
There are models in which CP is violated as a consequence of another symmetry.
[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]
The corresponding CPV phases are calculable and quantized (e.g. $\delta_{C \mathscr{F}}=2 \pi / 3, \ldots$) stemming from the necessarily complex Clebsch-Gordan coefficients of the "type I" group. This has been termed "explicit geometrical" CP violation.

An interesting observation

Observation:

Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

An interesting observation

Observation:

Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

Structure of outer automorphisms:

$$
\operatorname{Out}(\mathfrak{s u}(3)) \cong \mathbb{Z}_{2}
$$

An interesting observation

Observation:

Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

Structure of outer automorphisms:

An interesting observation

Observation:

Type I groups can arise as subgroups of type II groups.
For example: small finite subgroups of simple Lie groups.

$$
\mathrm{SU}(3) \supset \mathrm{T}_{7}
$$

Structure of outer automorphisms:

Note: $\operatorname{Out}(\mathfrak{s u}(3))$ is $\operatorname{Out}\left(\mathrm{T}_{7}\right)$ of the $\mathrm{T}_{7} \subset \mathrm{SU}(3)$ subgroup.

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?
Toy model: gauged $\mathrm{SU}(3)+$ complex scalar $\mathrm{SU}(3) \mathbf{1 5}$-plet ϕ. [Ratz, AT ${ }^{16]}$

$$
\begin{array}{rlr}
\mathscr{L} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}-V(\phi), & \\
V(\phi) & =-\mu^{2} \phi^{\dagger} \phi+\sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . & \text { with } \lambda_{i} \in \mathbb{R}
\end{array}
$$

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?
Toy model: gauged $\mathrm{SU}(3)+$ complex scalar $\mathrm{SU}(3) \mathbf{1 5}$-plet ϕ. [Ratz, AT ' 16]

$$
\begin{array}{rlr}
\mathscr{L} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}-V(\phi), & \\
V(\phi) & =-\mu^{2} \phi^{\dagger} \phi+\sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . & \text { with } \lambda_{i} \in \mathbb{R}
\end{array}
$$

Toy model overview

Facts:

- $\mathrm{SU}(3)$ is consistent with a physical CP transformation.
- The T_{7} subgroup of $\mathrm{SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$?
Toy model: gauged $\mathrm{SU}(3)+$ complex scalar $\mathrm{SU}(3) \mathbf{1 5}$-plet ϕ. [Ratz, AT ${ }^{16]}$

$$
\begin{array}{rlr}
\mathscr{L} & =\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-\frac{1}{4} G_{\mu \nu}^{a} G^{\mu \nu, a}-V(\phi), & \\
V(\phi) & =-\mu^{2} \phi^{\dagger} \phi+\sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . & \text { with } \lambda_{i} \in \mathbb{R}
\end{array}
$$

- VEV of the 15-plet $\langle\phi\rangle$ breaks $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$. [Lunn, '11], [Mere, Zwicky '11]
- $\operatorname{Out}(\mathfrak{s u}(3)) \cong \mathbb{Z}_{2} \rightarrow \operatorname{Out}\left(\mathrm{~T}_{7}\right) \cong \mathbb{Z}_{2}$; Out unbroken by VEV.

$$
\mathrm{SU}(3) \rtimes \mathbb{Z}_{2} \xrightarrow{\langle\phi\rangle} \mathrm{T}_{7} \rtimes \mathbb{Z}_{2} ;
$$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Name	$\mathrm{SU}(3)$	$\xrightarrow{\langle\phi\rangle}$	Name	T_{7}	mass
A_{μ}	$\mathbf{8}$		Z_{μ}	$\mathbf{1}_{\mathbf{1}}$	$m_{Z}^{2}=7 / 3 g^{2} v^{2}$
			W_{μ}	$\mathbf{3}$	$m_{W}^{2}=g^{2} v^{2}$
			$\operatorname{Re} \sigma_{0}$	$\mathbf{1}_{\mathbf{0}}$	$m_{\operatorname{Re} \sigma_{0}}^{2}=2 \mu^{2}$
			$\operatorname{Im} \sigma_{0}$	$\mathbf{1}_{\mathbf{0}}$	$m_{\operatorname{Im} \sigma_{0}}^{2}=0$
ϕ	$\mathbf{1 5}$	σ_{1}	$\mathbf{1}_{\mathbf{1}}$	$m_{\sigma_{1}}^{2}=-\mu^{2}+\sqrt{15} \lambda_{5} v^{2}$	
		τ_{1}	$\mathbf{3}$	$m_{\tau_{1}}^{2}=m_{\tau_{1}}^{2}\left(\mu, \lambda_{i}\right)$	
			τ_{2}	$\mathbf{3}$	$m_{\tau_{2}}^{2}=m_{\tau_{2}}^{2}\left(\mu, \lambda_{i}\right)$
			τ_{3}	$\mathbf{3}$	$m_{\tau_{3}}^{2}=m_{\tau_{3}}^{2}\left(\mu, \lambda_{i}\right)$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Name	SU(3)	$\xrightarrow{\langle\phi\rangle}$	Name	T_{7}	mass
A_{μ}	8	1	Z_{μ}	$\mathbf{1}_{1}$	$m_{Z}^{2}=7 / 3 g^{2} v^{2}$
			W_{μ}	3	$m_{W}^{2}=g^{2} v^{2}$
ϕ	15		$\operatorname{Re} \sigma_{0}$	10	$m_{\operatorname{Re} \sigma_{0}}^{2}=2 \mu^{2}$
		1	$\operatorname{Im} \sigma_{0}$	10	$m_{\operatorname{Im} \sigma_{0}}^{2}=0$
		,	σ_{1}	$\mathbf{1 1}_{1}$	$m_{\sigma_{1}}^{2}=-\mu^{2}+\sqrt{15} \lambda_{5} v^{2}$
		1	τ_{1}	3	$m_{\tau_{1}}^{2}=m_{\tau_{1}}^{2}\left(\mu, \lambda_{i}\right)$
		1	τ_{2}	3	$m_{\tau_{2}}^{2}=m_{\tau_{2}}^{2}\left(\mu, \lambda_{i}\right)$
		1	τ_{3}	3	$m_{\tau_{3}}^{2}=m_{\tau_{3}}^{2}\left(\mu, \lambda_{i}\right)$

The action is invariant under the \mathbb{Z}_{2} - Out transformation:

SU(3)	T_{7}
	। $W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x)$,
$A^{a}(x) \mapsto R^{a b} \mathcal{P}^{\nu} A^{b}(\mathcal{P} x)$	$\sigma_{0}(x) \mapsto \sigma_{0}(\mathcal{P} x)$
$A_{\mu}(x) \mapsto R_{\mu} A_{\nu}(\Im x)$	$\tau_{i}(x) \mapsto \tau_{i}^{*}(\mathcal{P} x)$,
$\phi_{i}(x) \mapsto U_{i j} \phi_{j}^{*}(\mathcal{P} x)$.	। $Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x)$,
	। $\sigma_{1}(x) \mapsto \sigma_{1}(\mathcal{P} x)$.
physical CP	physical CP x

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

- The VEV does not break the CP transformation, $U\langle\phi\rangle^{*}=\langle\phi\rangle$.
- However, at the level of T_{7}, the $\mathrm{SU}(3)-\mathrm{CP}$ transformation merges to $\operatorname{Out}\left(\mathrm{T}_{7}\right)$:

$$
\mathbb{Z}_{2} \text { - Out: } \quad \begin{aligned}
& { }^{\mathbf{1 5}} \rightarrow \mathbf{1}_{\mathbf{0}} \oplus \mathbf{1}_{\mathbf{1}} \oplus \overline{\mathbf{1}}_{\mathbf{1}} \oplus \mathbf{3} \oplus \mathbf{3} \oplus \overline{\mathbf{3}} \oplus \overline{\mathbf{3}} \\
& \\
& \\
& \frac{\downarrow}{\mathbf{1 5}} \rightarrow \mathbf{1}_{\mathbf{0}} \oplus \overline{\mathbf{1}}_{\mathbf{1}} \oplus \mathbf{1}_{\mathbf{1}} \oplus \overline{\mathbf{3}} \oplus \overline{\mathbf{3}} \oplus \mathbf{3} \oplus \mathbf{3}
\end{aligned}
$$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

- The VEV does not break the CP transformation, $U\langle\phi\rangle^{*}=\langle\phi\rangle$.
- However, at the level of T_{7}, the $\mathrm{SU}(3)-\mathrm{CP}$ transformation merges to $\operatorname{Out}\left(\mathrm{T}_{7}\right)$:

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

- The VEV does not break the CP transformation, $U\langle\phi\rangle^{*}=\langle\phi\rangle$.
- However, at the level of T_{7}, the $\mathrm{SU}(3)$-CP transformation merges to $\operatorname{Out}\left(\mathrm{T}_{7}\right)$:

\Rightarrow The \mathbb{Z}_{2}-Out is conserved at the level of T_{7}, but it is not interpreted as a physical CP trafo,

$$
\mathrm{SU}(3) \rtimes \mathbb{Z}_{2}^{(\mathrm{CP})} \xrightarrow{\langle\phi\rangle} \mathrm{T}_{7} \rtimes \mathbb{Z}_{2}^{\text {(बRX }}
$$

- There is no other possible allowed CP transformation at the level of T_{7} (type I).
- Imposing a transformation $\boldsymbol{r}_{\mathrm{T}_{7}, i} \leftrightarrow \boldsymbol{r}_{\mathrm{T}_{7}, i}{ }^{*}$ enforces decoupling, $g=\lambda_{i}=0$.

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Explicit crosscheck: compute decay asymmetry.

$$
\varepsilon_{\sigma_{1} \rightarrow W} W^{*}:=\frac{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}-\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}}{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}+\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}} .
$$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

Explicit crosscheck: compute decay asymmetry.

$$
\varepsilon_{\sigma_{1} \rightarrow W} W^{*}:=\frac{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}-\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}}{\left|\mathscr{M}\left(\sigma_{1} \rightarrow W W^{*}\right)\right|^{2}+\left|\mathscr{M}\left(\sigma_{1}^{*} \rightarrow W W^{*}\right)\right|^{2}} .
$$

Contribution to $\varepsilon_{\sigma_{1} \rightarrow W} W^{*}$ from interference terms, e.g.

corresponding to non-vanishing CP-odd basis invariants

$$
\begin{aligned}
& \mathcal{I}_{1}=\left[Y_{\sigma_{1} W W^{*}}^{\dagger}\right]_{k \ell}\left[Y_{\sigma_{1} \tau_{2} \tau_{2}^{*}}\right]_{i j}\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{i m k}\left[\left(Y_{\tau_{2}^{*} W W^{*}}\right)^{*}\right]_{j m \ell}, \\
& \mathcal{I}_{2}=\left[Y_{\sigma_{1} W W^{*}}^{\dagger}\right]_{k \ell}\left[Y_{\sigma_{1} \tau_{2} \tau_{2}^{*}}\right]_{i j}\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{i \ell m}\left[\left(Y_{\tau_{2}^{*} W W^{*}}\right)^{*}\right]_{j k m} .
\end{aligned}
$$

\checkmark Contribution to $\varepsilon_{\sigma_{1} \rightarrow W} W^{*}$ is proportional to $\operatorname{Im} \mathcal{I}_{1,2} \neq 0$.
\checkmark All CP odd phases are geometrical, $\mathcal{I}_{1}=\mathrm{e}^{2 \pi \mathrm{i} / 3} \mathcal{I}_{2}$.
$\checkmark \quad\left(\varepsilon_{\sigma_{1} \rightarrow W} W^{*}\right) \rightarrow 0$ for $v \rightarrow 0$, i.e. CP is restored in limit of vanishing VEV.

Natural protection of $\theta=0$

Topological vacuum term of the gauge group

$$
\mathscr{L}_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu, a}
$$

is forbidden by \mathbb{Z}_{2} - Out (the $\mathrm{SU}(3)$-CP transformation).
The unbroken Out

$$
\mathbb{Z}_{2} \text { - Out : } W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), \quad Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x),
$$

still enforces $\theta=0$ even though CP is violated for the physical T_{7} states.

Natural protection of $\theta=0$

Topological vacuum term of the gauge group

$$
\mathscr{L}_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu, a},
$$

is forbidden by \mathbb{Z}_{2} - Out (the $\mathrm{SU}(3)$-CP transformation).
The unbroken Out

$$
\mathbb{Z}_{2} \text { - Out : } W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), \quad Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x),
$$

still enforces $\theta=0$ even though CP is violated for the physical T_{7} states.
Physical scalars (T_{7} singlets and triplets):

$$
\begin{aligned}
\operatorname{Re} \sigma_{0} & =\frac{1}{\sqrt{2}}\left(\phi_{1}+\phi_{1}^{*}\right), \quad \operatorname{Im} \sigma_{0}=-\frac{\mathrm{i}}{\sqrt{2}}\left(\phi_{1}-\phi_{1}^{*}\right), \\
\sigma_{1} & =\phi_{2}
\end{aligned}
$$

$$
\left(\begin{array}{c}
\tau_{1} \\
\tau_{2} \\
\tau_{3}
\end{array}\right)=\left(\begin{array}{lll}
V_{11} & V_{12} & V_{13} \\
V_{21} & V_{22} & V_{23} \\
V_{31} & V_{32} & V_{33}
\end{array}\right)\left(\begin{array}{c}
T_{2} \\
\bar{T}_{3}^{*} \\
T_{1}
\end{array}\right) .
$$

Natural protection of $\theta=0$

Topological vacuum term of the gauge group

$$
\mathscr{L}_{\theta}=\theta \frac{g^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu, a}
$$

is forbidden by $\mathbb{Z}_{2}-$ Out (the $\mathrm{SU}(3)$-CP transformation).
The unbroken Out

$$
\mathbb{Z}_{2} \text { - Out : } W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), \quad Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x),
$$

still enforces $\theta=0$ even though CP is violated for the physical T_{7} states.
Possible application to strong CP problem?

- Starting point: CP conserving theory based on

$$
\left[G_{\mathrm{SM}} \times G_{\mathrm{F}}\right] \rtimes \mathrm{CP}
$$

- break $G_{\mathrm{F}} \rtimes \mathrm{CP} \longrightarrow$ Type I \rtimes Out.
\curvearrowright CP broken in flavor sector but not in strong interactions.
- Main problem: finding realistic model based on Type I group allowing for outer automorphism.

Summary

- There are certain (discrete) groups which are inconsistent with physical CP transformations.
- These groups allow for models with (explicit and/or spontaneous) CP violation with calculable (quantized) "geometrical" phases.
- Physical interpretation of one and the same transformation (namely the \mathbb{Z}_{2}-Out) changes depending on the symmetries of the ground state of a model.
- We have found an explicit toy model example, $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$, in which CP is spontaneously violated for the physical states of the theory (with geometrical phases) while an unbroken outer automorphism protects $\theta=0$.

Thank You!

Bibliography I

```
0
Branco, G., Gerard, J., and Grimus, W. (1984).
Geometrical T Violation.
Phys. Lett., B136:383.
Buchbinder, I. L., Gitman, D. M., and Shelepin, A. L. (2002).
Discrete symmetries as automorphisms of the proper Poincare group.
Int. J. Theor. Phys., 41:753-790, hep-th/0010035.
Chen, M.-C., Fallbacher, M., Mahanthappa, K. T., Ratz, M., and Trautner, A. (2014).
CP Violation from Finite Groups.
Nucl. Phys., B883:267-305, 1402.0507.
```



```
Fallbacher, M. and Trautner, A. (2015).
Symmetries of symmetries and geometrical CP violation.
Nucl. Phys., B894:136-160, 1502.01829.
Fonseca, R. M. (2012).
Calculating the renormalisation group equations of a SUSY model with Susyno.
Comput. Phys. Commun., 183:2298-2306, 1106.5016.
```



```
GAP (2012).
GAP - Groups, Algorithms, and Programming, Version 4.5.5.
The GAP Group.
Grimus, W. and Rebelo, M. (1997).
Automorphisms in gauge theories and the definition of CP and P .
Phys.Rept., 281:239-308, hep-ph/9506272.
```


Bibliography II

Haber, H. E. and Surujon, Z. (2012).
A Group-theoretic Condition for Spontaneous CP Violation.
Phys. Rev., D86:075007, 1201.1730.
Holthausen, M., Lindner, M., and Schmidt, M. A. (2013).
CP and Discrete Flavour Symmetries.
JHEP, 1304:122, 1211.6953.
Ivanov, I. P. and Silva, J. P. (2015).
A CP-conserving multi-Higgs model without real basis.
1512.09276.

Luhn, C. (2011).
Spontaneous breaking of $\mathrm{SU}(3)$ to finite family symmetries: a pedestrian's approach. JHEP, 1103:108, 1101.2417.

Merle, A. and Zwicky, R. (2012).
Explicit and spontaneous breaking of $\mathrm{SU}(3)$ into its finite subgroups. JHEP, 1202:128, 1110.4891.

Trautner, A. (2016).
CP and other Symmetries of Symmetries.
PhD thesis, Munich, Tech. U., Universe, 1608.05240.

Additional slides

"Physical" CP transformation

Recall: e.g. complex scalar field σ, with field operator

$$
\widehat{\boldsymbol{\sigma}}(x)=\int \widetilde{\mathrm{d} p}\left\{\widehat{\boldsymbol{a}}(\vec{p}) \mathrm{e}^{-\mathrm{i} p x}+\widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mathrm{e}^{\mathrm{i} p x}\right\} .
$$

Physical CP transformation of the complex scalar field

$$
\mathrm{CP}: \quad \sigma(x) \mapsto \mathrm{e}^{\mathrm{i} \varphi} \sigma^{*}(\mathcal{P} x)
$$

corresponds to

$$
\mathrm{CP}: \quad \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \mathrm{e}^{\mathrm{i} \varphi} \widehat{\boldsymbol{b}}(-\vec{p}) \quad \text { and } \quad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \mathrm{e}^{\mathrm{i} \varphi} \widehat{\boldsymbol{a}}^{\dagger}(-\vec{p}) .
$$

Note:

$$
\text { "matter": } \widehat{\boldsymbol{a}}^{(\dagger)} \quad \text { "anti-matter": } \hat{\boldsymbol{b}}^{(\dagger)} .
$$

Toy model details

Complex scalar ϕ in T_{7}-diagonal basis of $\mathrm{SU}(3)$: (in unitary gauge)
$\phi=\left(v+\phi_{1}, \frac{\phi_{2}}{\sqrt{2}}, \frac{\phi_{2}^{*}}{\sqrt{2}}, \phi_{4}, \phi_{5}, \phi_{6}, \frac{\phi_{7}}{\sqrt{2}}, \frac{\phi_{8}}{\sqrt{2}}, \frac{\phi_{9}}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_{7}^{*}}{\sqrt{2}}, \frac{\phi_{8}^{*}}{\sqrt{2}}, \frac{\phi_{9}^{*}}{\sqrt{2}}\right)$.
T_{7} representations of the components:

$$
\begin{array}{ll}
\phi_{1} \widehat{=} \mathbf{1}_{0}, & \phi_{2} \widehat{=} \mathbf{1}_{1}, \\
T_{1}:=\left(\phi_{4}, \phi_{5}, \phi_{6}\right) \widehat{=} \mathbf{3}, & T_{2}:=\left(\phi_{7}, \phi_{8}, \phi_{9}\right) \widehat{=} \mathbf{3} \\
\bar{T}_{3}:=\left(\phi_{10}, \phi_{11}, \phi_{12}\right) \widehat{=} \overline{\mathbf{3}} &
\end{array}
$$

The physical scalars are

$$
\begin{aligned}
\operatorname{Re} \sigma_{0} & =\frac{1}{\sqrt{2}}\left(\phi_{1}+\phi_{1}^{*}\right), \quad \operatorname{Im} \sigma_{0}=-\frac{\mathrm{i}}{\sqrt{2}}\left(\phi_{1}-\phi_{1}^{*}\right), \\
\sigma_{1} & =\phi_{2}, \\
& \left(\begin{array}{c}
\tau_{1} \\
\tau_{2} \\
\tau_{3}
\end{array}\right)=\left(\begin{array}{lll}
V_{11} & V_{12} & V_{13} \\
V_{21} & V_{22} & V_{23} \\
V_{31} & V_{32} & V_{33}
\end{array}\right)\left(\begin{array}{c}
T_{2} \\
T_{3}^{*} \\
T_{1}
\end{array}\right) .
\end{aligned}
$$

The physical vectors are

$$
\begin{aligned}
Z^{\mu} & =\frac{1}{\sqrt{2}}\left(A_{7}^{\mu}-\mathrm{i} A_{8}^{\mu}\right), & W_{1}^{\mu} & =\frac{1}{\sqrt{2}}\left(A_{4}^{\mu}-\mathrm{i} A_{1}^{\mu}\right), \\
W_{2}^{\mu} & =\frac{1}{\sqrt{2}}\left(A_{5}^{\mu}-\mathrm{i} A_{2}^{\mu}\right), & W_{3}^{\mu} & =\frac{\mathrm{i}}{\sqrt{2}}\left(A_{6}^{\mu}-\mathrm{i} A_{3}^{\mu}\right)
\end{aligned}
$$

Toy model details

The VEV in this basis is simply

$$
\langle\phi\rangle_{1}=v \quad \text { and } \quad\langle\phi\rangle_{i}=0 \quad \text { for } \quad i=2, \ldots, 15,
$$

where

$$
|v|=\mu \times 3 \sqrt{\frac{7}{2}}\left(-7 \sqrt{15} \lambda_{1}+14 \sqrt{15} \lambda_{2}+20 \sqrt{6} \lambda_{4}+13 \sqrt{15} \lambda_{5}\right)^{-1 / 2}
$$

The masses of the physical states are

$$
\begin{gathered}
m_{Z}^{2}=\frac{7}{3} g^{2} v^{2} \quad \text { and } \quad m_{W}^{2}=g^{2} v^{2} . \\
m_{\operatorname{Re} \sigma_{0}}^{2}=2 \mu^{2}, \quad m_{\operatorname{Im} \sigma_{0}}^{2}=0, \\
m_{\sigma_{1}}^{2}=-\mu^{2}+\sqrt{15} \lambda_{5} v^{2} .
\end{gathered}
$$

The massless mode is the goldstone boson of an additional $\mathrm{U}(1)$ symmetry of the potential. It can be avoided by either

- gauging the additional $\mathrm{U}(1)$,
- or breaking it softly by a cubic coupling of ϕ.

Toy model details

T_{7} invariant couplings ($\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}$)

$$
\begin{aligned}
& Y_{\sigma_{1} W W^{*}}=\frac{v g^{2}}{\sqrt{6}} \mathrm{e}^{-\pi \mathrm{i} / 6} \operatorname{diag}\left(1, \omega, \omega^{2}\right), \quad Y_{\sigma_{1} \tau_{2} \tau_{2}^{*}}=v y_{\sigma_{1} \tau_{2} \tau_{2}^{*}} \operatorname{diag}\left(1, \omega, \omega^{2}\right) \\
& {\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{121}=\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{232}=\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{313}=v g^{2} y_{\tau_{2}^{*} W W^{*}}} \\
& {\left[Y_{\tau_{2}^{*} W W^{*}}\right]_{i j k}=0 \quad \text { (else) }}
\end{aligned}
$$

Toy model details

$$
\begin{aligned}
& y_{\sigma_{1} \tau_{2} \tau_{2}^{*}}= \frac{1}{504 \sqrt{3}}\left\{V _ { 2 1 } ^ { 2 } \left[-14 \sqrt{10}(17+5 \sqrt{3} \mathrm{i}) \lambda_{1}+84 \sqrt{30}(\sqrt{3}-\mathrm{i}) \lambda_{2}\right.\right. \\
&\left.-240(1+\sqrt{3} \mathrm{i}) \lambda_{4}-\sqrt{10}(197-55 \sqrt{3} \mathrm{i}) \lambda_{5}\right] \\
&+8 V_{22}^{2}\left[28 \sqrt{10}(1-\sqrt{3} \mathrm{i}) \lambda_{1}-14 \sqrt{30} \mathrm{i} \lambda_{2}+112 \sqrt{3} \mathrm{i} \lambda_{3}\right. \\
&\left.-(30-26 \sqrt{3} \mathrm{i}) \lambda_{4}+\sqrt{10}(20-\sqrt{3} \mathrm{i}) \lambda_{5}\right] \\
&+8 V_{23}^{2}\left[28 \sqrt{10}(1+\sqrt{3} \mathrm{i}) \lambda_{1}-14 \sqrt{30} \mathrm{i} \lambda_{2}-168 \lambda_{3}\right. \\
&\left.+(6+65 \sqrt{3} \mathrm{i}) \lambda_{4}-4 \sqrt{10}(1-2 \sqrt{3} \mathrm{i}) \lambda_{5}\right] \\
&+8 V_{21} V_{22}\left[-35 \sqrt{10}(1-\sqrt{3} \mathrm{i}) \lambda_{1}+21 \sqrt{30}(\sqrt{3}+\mathrm{i}) \lambda_{2}\right. \\
&\left.-56(3+\sqrt{3} \mathrm{i}) \lambda_{3}+6(1+17 \sqrt{3} \mathrm{i}) \lambda_{4}-\sqrt{10}(67+19 \sqrt{3} \mathrm{i}) \lambda_{5}\right] \\
&+4 V_{21} V_{23}\left[-28 \sqrt{10}(2+\sqrt{3} \mathrm{i}) \lambda_{1}-42 \sqrt{30}(\sqrt{3}+\mathrm{i}) \lambda_{2}\right. \\
&\left.+30(11+3 \sqrt{3} \mathrm{i}) \lambda_{4}-\sqrt{10}(31+11 \sqrt{3} \mathrm{i}) \lambda_{5}\right] \\
&-8 V_{22} V_{23} {\left[14 \sqrt{10} \lambda_{1}-14 \sqrt{30} \mathrm{i} \lambda_{2}\right.} \\
&\left.\left.+10(3+5 \sqrt{3} \mathrm{i}) \lambda_{4}+\sqrt{10}(1-3 \sqrt{3} \mathrm{i}) \lambda_{5}\right]\right\}
\end{aligned}
$$

and

$$
y_{\tau_{2}^{*} W W^{*}}=-\frac{\sqrt{2}}{3}\left(2 V_{21}+V_{22}+2 V_{23}\right) .
$$

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM. \Rightarrow "Definition" of CP in words:

CP is a special outer automorphism transformation which maps all present symmetry representations (global, local, space-time) to their complex conjugate representations.

This definition is consistent with the definitions in [Buchbinder et al. '01] \& [Grimus, Rebelo '95]

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM.
\Rightarrow "Definition" of CP in words:
CP is a special outer automorphism transformation which maps all present symmetry representations (global, local, space-time) to their complex conjugate representations.

This definition is consistent with the definitions in [Buchbinder et al. '01] \& [Grimus, Rebelo '95]
Any such transformation:

- warrants physical CP conservation (if conserved),
\Rightarrow must be broken (by observation).
Note that a physical CP transformation
- does not have to be unique,
- does not have to be of order 2, e.g. [Grimus etal. '87], [Weinberg' '05], [lvanov, Silva' '15]
- is, in general, not guaranteed to exist for a given symmetry group. (It does exist for $G_{\text {SM }}$).

What is an outer automorphism?

Example: \mathbb{Z}_{3} symmetry, generated by $a^{3}=i d$.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a, a^{2}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

$\mathbb{Z}_{\mathbf{3}}$	id	a	a^{2}
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{1}^{\prime \prime}$	1	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

$u(a): a \mapsto a^{2} . \quad\left(\right.$ think: $\left.\mathrm{uau}^{-1}=\mathrm{a}^{2}\right)$

What is an outer automorphism?

Example: \mathbb{Z}_{3} symmetry, generated by ${ }^{3}=i d$.

- All elements of $\mathbb{Z}_{3}:\{i d, a \stackrel{\rightharpoonup}{2}\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

$\mathbb{Z}_{\mathbf{3}}$	id	$\longleftrightarrow a^{2}$	
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{C}^{\prime \prime}$	$\mathbf{1}$	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

$u(a): a \mapsto a^{2} . \quad\left(\right.$ think: $\left.\mathrm{uau}^{-1}=\mathrm{a}^{2}\right)$

What is an outer automorphism?

Example: \mathbb{Z}_{3} symmetry, generated by ${ }^{3}=i d$.

- All elements of $\mathbb{Z}_{3}:\{i d, a \stackrel{\rightharpoonup}{2}\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

$\mathbb{Z}_{\mathbf{3}}$	id	$\longleftrightarrow a^{2}$	
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{C}^{\prime \prime}$	$\mathbf{1}$	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

$$
u(\mathrm{a}): \mathrm{a} \mapsto \mathrm{a}^{2} . \quad\left(\text { think: } \mathrm{ua} \mathrm{u}^{-1}=\mathrm{a}^{2}\right)
$$

Abstract: Out is a reshuffling of symmetry elements. (Out :=Aut/Inn) In words: Out is a "symmetry of the symmetry".

What is an outer automorphism?

Example: \mathbb{Z}_{3} symmetry, generated by ${ }^{3}=$ id.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a \stackrel{\rightharpoonup}{a^{2}}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

$\mathbb{Z}_{\mathbf{3}}$	id	$\longleftrightarrow a^{2}$	
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{C}^{\prime \prime}$	1	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

$$
u(a): a \mapsto a^{2} . \quad\left(\text { think: } \mathrm{ua}^{-1}=\mathrm{a}^{2}\right)
$$

Abstract: Out is a reshuffling of symmetry elements. (Out :=Aut/Inn) In words: Out is a "symmetry of the symmetry".

Concrete: Out is a $1: 1$ mapping of representations $\boldsymbol{r} \mapsto \boldsymbol{r}^{\prime}$. Comes with a transformation matrix U, which is given by

$$
U \rho_{\boldsymbol{r}^{\prime}}(\mathrm{g}) U^{-1}=\rho_{\boldsymbol{r}}(u(\mathrm{~g})), \quad \forall \mathrm{g} \in G
$$

(consistency condition)
[Fallbacher, AT, '15] [Holthausen, Lindner, Schmidt, '13]

What is an outer automorphism?

Example: \mathbb{Z}_{3} symmetry, generated by ${ }^{3}=i d$.

- All elements of $\mathbb{Z}_{3}:\left\{i d, a \stackrel{\rightharpoonup}{a^{2}}\right\}$.
- Outer automorphism group ("Out") of \mathbb{Z}_{3} : generated by

$\mathbb{Z}_{\mathbf{3}}$	id	$\longleftrightarrow a^{2}$	
$\mathbf{1}$	1	1	1
$\mathbf{1}^{\prime}$	1	ω	ω^{2}
$\mathbf{C}^{\prime \prime}$	1	ω^{2}	ω
			$\left(\omega:=\mathrm{e}^{2 \pi \mathrm{i} / 3}\right)$

$$
u(a): a \mapsto a^{2} . \quad\left(\text { think: } u \mathrm{au}^{-1}=\mathrm{a}^{2}\right)
$$

Abstract: Out is a reshuffling of symmetry elements. (Out :=Aut/Inn)
In words: Out is a "symmetry of the symmetry".
Concrete: Out is a $1: 1$ mapping of representations $\boldsymbol{r} \mapsto \boldsymbol{r}^{\prime}$. Comes with a transformation matrix U, which is given by

$$
U \rho_{\boldsymbol{r}^{\prime}}(\mathrm{g}) U^{-1}=\rho_{\boldsymbol{r}}(u(\mathrm{~g})), \quad \forall \mathrm{g} \in G
$$

(consistency condition)
[Fallbacher, AT, '15] [Holthausen, Lindner, Schmidt, '13]

Outer automorphisms of groups

Outer automorphisms exist for continuous \& discrete groups.
There are easy ways to depict this:

Continuous groups:

Outer automorphisms of a simple Lie algebra are the symmetries of the corresponding Dynkin diagram.

	Lie Group	Out	Action on reps
$A_{n>1}$	$\mathrm{SU}(N)$	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
$D_{n=4}$	$\mathrm{SO}(8)$	S_{3}	$\boldsymbol{r}_{i} \rightarrow \boldsymbol{r}_{j}$
$D_{n>4}$	$\mathrm{SO}(2 N)$	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
E_{6}	E_{6}	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
all others		$/$	$/$

Outer automorphisms of groups

Discrete groups:

Outer automorphisms of a discrete group are symmetries of the character table (not 1:1).

T_{7}	$C_{1 a}$	${\stackrel{\cap}{C_{3 a}}}$	$\bigcap_{C_{3 b}}$	$\overbrace{C_{7 a}}^{\mathbb{Z}_{2}}$	
$\mathbf{1}_{0}$	1	1	1	1	1
$\bigcirc \mathbf{1}_{1}$	1	ω	ω^{2}	1	1
$\subset \overline{1}_{1}$	1	ω^{2}	ω	1	1
${ }_{4} 3_{1}$	3	0	0	η	η^{*}
$\bigcirc \overline{\mathbf{3}}_{1}$	3	0	0	η^{*}	η

	Group	Out	Action on reps
	\mathbb{Z}_{3}	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
The outer automorphisms group of any	$\mathrm{A}_{n \neq 6}$	\mathbb{Z}_{2}	$\boldsymbol{r} \rightarrow \boldsymbol{r}^{*}$
("small") discrete group can easily be	$\mathrm{S}_{n \neq 6}$	$/$	$/$
found with GAP	[GAP].	$\Delta(27)$	$\mathrm{GL}(2,3)$
	$\Delta(54)$	S_{4}	$\boldsymbol{r}_{i} \rightarrow \boldsymbol{r}_{j}$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

The conserved \mathbb{Z}_{2}-Out acts on the physical states as

$$
\begin{array}{rlrl}
& W_{\mu}(x) & \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), & Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x) \\
\mathbb{Z}_{2}-\text { Out }: & \sigma_{0}(x) & \mapsto \sigma_{0}(\mathcal{P} x), & \sigma_{1}(x) \mapsto \sigma_{1}(\mathcal{P} x) \\
& \tau_{i}(x) & \mapsto \tau_{i}^{*}(\mathcal{P} x)
\end{array}
$$

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

The conserved \mathbb{Z}_{2}-Out acts on the physical states as

$$
\begin{array}{rlrl}
W_{\mu}(x) & \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), & Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x) \\
\mathbb{Z}_{2}-\text { Out }: & \sigma_{0}(x) & \mapsto \sigma_{0}(\mathcal{P} x), & \sigma_{1}(x) \mapsto \sigma_{1}(\mathcal{P} x) \\
& \tau_{i}(x) & \mapsto \tau_{i}^{*}(\mathcal{P} x) . &
\end{array}
$$

This does not correspond to a physical CP transformation. Mode expansion

$$
\widehat{\boldsymbol{\sigma}}_{1}(x)=\int \widetilde{\mathrm{d} p}\left\{\widehat{\boldsymbol{a}}(\vec{p}) \mathrm{e}^{-\mathrm{i} p x}+\widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mathrm{e}^{\mathrm{i} p x}\right\}
$$

The \mathbb{Z}_{2}-Out transformation corresponds to a map

$$
\mathbb{Z}_{2}-\text { Out : } \quad \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \widehat{\boldsymbol{a}}(-\vec{p}) \quad \text { and } \quad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \widehat{\boldsymbol{b}}^{\dagger}(-\vec{p}),
$$

which does not correspond to a physical CP transformation.

CP violation in $\mathrm{SU}(3) \rightarrow \mathrm{T}_{7}$ toy model

The conserved \mathbb{Z}_{2}-Out acts on the physical states as

$$
\begin{aligned}
& W_{\mu}(x) & \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathcal{P} x), & Z_{\mu}(x) \mapsto-\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathcal{P} x) \\
\mathbb{Z}_{2}-\text { Out }: & \sigma_{0}(x) & \mapsto \sigma_{0}(\mathcal{P} x), & \sigma_{1}(x) \mapsto \sigma_{1}(\mathcal{P} x) \\
& \tau_{i}(x) & \mapsto \tau_{i}^{*}(\mathcal{P} x) &
\end{aligned}
$$

This does not correspond to a physical CP transformation. Mode expansion

$$
\widehat{\boldsymbol{\sigma}}_{1}(x)=\int \widetilde{\mathrm{d} p}\left\{\widehat{\boldsymbol{a}}(\vec{p}) \mathrm{e}^{-\mathrm{i} p x}+\widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mathrm{e}^{\mathrm{i} p x}\right\}
$$

The \mathbb{Z}_{2}-Out transformation corresponds to a map

$$
\mathbb{Z}_{2}-\text { Out : } \quad \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \widehat{\boldsymbol{a}}(-\vec{p}) \quad \text { and } \quad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \widehat{\boldsymbol{b}}^{\dagger}(-\vec{p}),
$$

which does not correspond to a physical CP transformation. The QFT CP transformation

$$
\mathrm{CP}: \quad \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \widehat{\boldsymbol{b}}(-\vec{p}) \quad \text { and } \quad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \widehat{\boldsymbol{a}}^{\dagger}(-\vec{p})
$$

is not a symmetry of the action (imposing it enforces decoupling, $g=\lambda_{i}=0$).

C, P, and CP transformations and spinor representations

CP as a special outer automorphism

The most general possible CP transformation for (SM) gauge and one generation of (chiral) fermion fields:

$$
\begin{aligned}
W_{\mu}^{a}(x) & \mapsto R^{a b} \mathcal{P}_{\mu}^{\nu} W_{\nu}^{b}(\mathcal{P} x), \\
\Psi_{\alpha}^{i}(x) & \mapsto \eta_{\mathrm{CP}} U^{i j} \mathcal{C}_{\alpha \beta} \Psi^{* j}{ }_{\beta}(\mathcal{P} x) .
\end{aligned}
$$

cf. e.g. [Grimus, Rebelo,'95]

CP as a special outer automorphism

The most general possible CP transformation for (SM) gauge and one generation of (chiral) fermion fields:

$$
\begin{aligned}
W_{\mu}^{a}(x) & \mapsto R^{a b} \mathcal{P}_{\mu}^{\nu} W_{\nu}^{b}(\mathcal{P} x), \\
\Psi_{\alpha}^{i}(x) & \mapsto \eta_{\mathrm{CP}} U^{i j} \mathcal{C}_{\alpha \beta} \Psi^{* j}(\mathcal{P} x) .
\end{aligned}
$$

This is a conserved symmetry of the kinetic terms iff

$$
\begin{align*}
R_{a a^{\prime}} R_{b b^{\prime}} f_{a^{\prime} b^{\prime} c} & =f_{a b c^{\prime}} R_{c^{\prime} c} \tag{i}\\
U\left(-T_{a}^{\mathrm{T}}\right) U^{-1} & =R_{a b} T_{b} \\
\mathcal{C}\left(-\gamma^{\mu \mathrm{T}}\right) \mathcal{C}^{-1} & =\gamma^{\mu} \tag{iii}
\end{align*}
$$

Note: These are precisely the consistency conditions for a mapping of $\boldsymbol{r} \mapsto \boldsymbol{r}^{*}$ for both, the gauge and space-time symmetries of a model.
\Rightarrow "Definition" of CP in words:
CP is a special outer automorphism transformation which maps all present symmetry representations (global, local, space-time) to their complex conjugates.
(This transformation does not have to be unique nor is it guaranteed to exist at all) (This is consistent with the transformations considered in [Buchbinder et al.'01] \& [Grimus, Rebelo,'95])

CP symmetries in settings with discrete G

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator FS_{u} (Backup slides)

Twisted Frobenius-Schur indicator

Criterion to decide: existence of a CP outer automorphism.
\curvearrowright can be probed by computing the

"twisted Frobenius-Schur indicator" $\mathrm{FS}_{\boldsymbol{u}}$

$$
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right):=\frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}(g u(g))
$$

$$
\mathrm{FS}_{u}\left(\boldsymbol{r}_{i}\right)= \begin{cases}+1 \text { or }-1 \quad \forall i, & \Rightarrow u \text { is good for CP } \\ \text { different from } \pm 1, & \Rightarrow u \text { is no good for CP. }\end{cases}
$$

In analogy to the Frobenius-Schur indicator
FS $\chi_{\chi}\left(\boldsymbol{r}_{i}\right)=+1,-1,0$ for real / pseudo-real / complex irrep.

