CP violation with an unbroken CP transformation

Andreas Trautner

mainly based on JHEP 1702 (2017) 103 / arXiv:1612.08984,

w/ Michael Ratz.

PLANCK20th17

Warsaw

24.05.17

Friedrich-Wilhelms-Universität Bonn

Andreas Trautner, bctp

Motivation

- Standard Model flavor puzzle / CP violation in Nature.
- Origin of CP violation?
 - CP violation established in quark sector, consistent with SM (CKM).
 - open question:
 CP violation in lepton sector ?
 - open question:

Why $\overline{\theta} = (\theta + \arg \det y_u y_d) < 10^{-10}$? Why CPV *only* in FV processes?

 \Rightarrow Flavor and CP are intertwined in SM.

This talk: A "flavor"-symmetry reason for $\overline{\theta} = 0$ while $\delta_{QP} \neq 0$. (...in a toy model)

Outline

CP violation from a symmetry principle

CP violation in the breaking of ${\rm SU}(3) \to {\rm T}_7$

Summary

Andreas Trautner, bctp

Two types of groups (without mathematical rigor)

List of representations: $r_1, r_2, \ldots, r_k, r_k^*, \ldots$

Out in general : $r_i \mapsto r_j \quad \forall \text{ irreps } i, j \ (1:1)$

Criterion:

Is there an (outer) automorphism transformation that maps

Physical CP transformation

In the Standard Model

 $\mathrm{SU}(3)\otimes \mathrm{SU}(2)\otimes \mathrm{U}(1) \qquad \text{and} \qquad \mathrm{SO}(3,1)\;,$

physical CP is described by a *simultaneous* outer automorphism transformation of all symmetries which maps

for all representations of all symmetries.

[Grimus, Rebelo '95] [Buchbinder et al. '01] [AT '16]

Conservation of such a transformation warrants $\overline{\theta}$, $\delta_{QP} = 0$.

Violation of such a transformation is implied by experiment, and necessary requirement for baryogenesis. [Sakharov '67]

Do CP transformations exist for all symmetries?

Andreas Trautner, bctp

Do CP transformations exist for all symmetries? General answer: No.

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

Do CP transformations exist for all symmetries? General answer: No.

For example: Discrete groups of type I:

• These are **inconsistent** with the trafo $r_i \mapsto r_i^* \forall i$.

⇒ CP transformation is inconsistent with a type I symmetry. (assuming sufficient # of irreps are in the model)

There are models in which CP is violated *as a consequence* of another symmetry.

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14]

The corresponding CPV phases are calculable and quantized (e.g. $\delta_{CP} = 2\pi/3, ...)$ stemming from the necessarily complex Clebsch-Gordan coefficients of the "type I" group. This has been termed "explicit geometrical" CP violation.

[Chen, Fallbacher, Mahanthappa, Ratz, AT '14] [Branco, '15], [de Medeiros Varzielas, '15]

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

 $\operatorname{Out}(\mathfrak{su}(3)) \cong \mathbb{Z}_2$

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

Observation:

Type I groups can arise as subgroups of type II groups.

For example: small finite subgroups of simple Lie groups.

 $SU(3) \supset T_7$

Structure of outer automorphisms:

Note: $Out(\mathfrak{su}(3))$ is $Out(T_7)$ of the $T_7 \subset SU(3)$ subgroup.

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu} \phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2} \phi^{\dagger} \phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2}\phi^{\dagger}\phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

calculation enabled by SUSYNO [Fonseca '11]

Facts:

- SU(3) is **consistent** with a physical CP transformation.
- The ${\rm T}_7$ subgroup of ${\rm SU}(3)$ is inconsistent with a physical CP transformation.

Question: How is CP violated in a breaking $SU(3) \rightarrow T_7$?

Toy model: gauged ${
m SU}(3)$ + complex scalar ${
m SU}(3)$ 15-plet ϕ . [Ratz, AT '16]

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} - V(\phi) ,$$

$$V(\phi) = -\mu^{2} \phi^{\dagger}\phi + \sum_{i=1}^{5} \lambda_{i} \mathcal{I}_{i}^{(4)}(\phi) . \qquad \text{with } \lambda_{i} \in \mathbb{R}$$

calculation enabled by SUSYNO [Fonseca '11]

- VEV of the 15-plet $\langle \phi \rangle$ breaks ${
 m SU}(3) o {
 m T}_7.$ [Luhn, '11], [Merle, Zwicky '11]
- $Out(\mathfrak{su}(3)) \cong \mathbb{Z}_2 \rightarrow Out(T_7) \cong \mathbb{Z}_2$; Out unbroken by VEV.

$$\operatorname{SU}(3) \rtimes \mathbb{Z}_2 \xrightarrow{\langle \phi \rangle} \operatorname{T}_7 \rtimes \mathbb{Z}_2;.$$

Andreas Trautner, bctp

$\mathsf{CP} \text{ violation in } \mathbf{SU}(3) \to \mathbf{T}_7 \text{ toy model}_{_{[\text{Ratz, AT '16}]}}$

Name	SU(3)	$\xrightarrow{\langle \phi \rangle}$ Name	T_7	mass
A_{μ}	8	Z_{μ}	1_1	$m_Z^2 = 7/3 g^2 v^2$
		$\bot = W_{\mu}$	3	$m_W^2 = g^2 v^2$
		$\operatorname{Re}\sigma_0$	$\mathbf{1_0}$	$m_{\operatorname{Re}\sigma_0}^2 = 2\mu^2$
	15	$\lim_{n \to \infty} \sigma_0$	$\mathbf{1_0}$	$m_{\mathrm{Im}\sigma_0}^2 = 0$
d		σ_1	1_1	$m_{\sigma_1}^2 = -\mu^2 + \sqrt{15}\lambda_5v^2$
φ		τ_1	3	$m_{\tau_1}^2 = m_{\tau_1}^2(\mu, \lambda_i)$
		au	3	$m_{\tau_2}^2 = m_{\tau_2}^2(\mu, \lambda_i)$
		$ au_3$	3	$m_{\tau_3}^2 = m_{\tau_3}^2(\mu, \lambda_i)$

[Ratz, AT '16]

Name	SU(3)	$\xrightarrow{\langle \phi \rangle}$ Name	T_7	mass
A_{μ}	8	Z_{μ}	1_1	$m_Z^2 = 7/3 g^2 v^2$
		$\bot = W_{\mu}$	3	$m_W^2 = g^2 v^2$
		$\operatorname{Re}\sigma_0$	$\mathbf{1_0}$	$m_{\mathrm{Re}\sigma_0}^2 = 2\mu^2$
	15	Im σ_0	$\mathbf{1_0}$	$m_{\mathrm{Im}\sigma_0}^2 = 0$
d		σ_1	$\mathbf{1_1}$	$m_{\sigma_1}^2 = -\mu^2 + \sqrt{15}\lambda_5v^2$
φ		τ_1	3	$m_{\tau_1}^2 = m_{\tau_1}^2(\mu, \lambda_i)$
		$ au_2$	3	$m_{\tau_2}^2 = m_{\tau_2}^2(\mu, \lambda_i)$
		$ au_3$	3	$m_{\tau_3}^2 = m_{\tau_3}^2(\mu, \lambda_i)$

The action is invariant under the \mathbb{Z}_2 – Out transformation:

SU(3)	T_7
	$W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathfrak{P}x) ,$
$A^{a}(x) \mapsto B^{ab} \oplus \nu A^{b}(\oplus x)$	$\sigma_0(x) \mapsto \sigma_0(\mathfrak{P} x) ,$
$A_{\mu}(x) \rightarrow \mathcal{H} J_{\mu} A_{\nu}(Jx) ,$	$ \tau_i(x) \ \mapsto \ \tau_i^*(\mathfrak{P} x) \ ,$
$\varphi_i(x) \mapsto U_{ij} \varphi_j(\mathcal{F} x)$.	$Z_{\mu}(x) \mapsto -\mathfrak{P}_{\mu}^{\ u} Z_{ u}(\mathfrak{P} x) ,$
	$\sigma_1(x) \mapsto \sigma_1(\mathfrak{P} x)$.
physical CP 🗸	physical CP 🗡

Andreas Trautner, bctp

- The VEV does not break the CP transformation, U(φ)^{*} = ⟨φ⟩.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

- The VEV does **not** break the CP transformation, $U\langle \phi \rangle^* = \langle \phi \rangle$.
- However, at the level of T_7 , the SU(3)-CP transformation merges to $Out(T_7)$:

 $\Rightarrow~$ The $\mathbb{Z}_2\text{-}Out$ is conserved at the level of $\mathrm{T}_7,$ but it is not interpreted as a physical CP trafo,

$$\mathrm{SU}(3) \rtimes \mathbb{Z}_2^{(\mathrm{CP})} \xrightarrow{\langle \phi \rangle} \mathrm{T}_7 \rtimes \mathbb{Z}_2^{(\mathrm{CP})}$$

- There is no other possible allowed CP transformation at the level of T₇ (type I).
- Imposing a transformation $\mathbf{r}_{T_7,i} \leftrightarrow \mathbf{r}_{T_7,i}^*$ enforces decoupling, $g = \lambda_i = 0$.

$\begin{array}{c} \mathsf{CP} \text{ violation in } \mathrm{SU}(3) \to \mathrm{T}_7 \text{ toy model} \\ {}_{\mathsf{Explicit crosscheck: compute decay asymmetry.} \end{array}$

$$\varepsilon_{\sigma_1 \to W W^*} := \frac{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 - \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 + \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}.$$

Explicit crosscheck: compute decay asymmetry.

$$\varepsilon_{\sigma_1 \to W W^*} := \frac{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 - \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}{\left|\mathscr{M}(\sigma_1 \to W W^*)\right|^2 + \left|\mathscr{M}(\sigma_1^* \to W W^*)\right|^2}.$$

Contribution to $\varepsilon_{\sigma_1 \to W W^*}$ from interference terms, e.g.

corresponding to non-vanishing CP-odd basis invariants

$$\begin{split} \mathcal{I}_1 \;&=\; \left[Y_{\sigma_1 W W^*}^{\dagger}\right]_{k\ell} \, \left[Y_{\sigma_1 \tau_2 \tau_2^*}\right]_{ij} \, \left[Y_{\tau_2^* W W^*}\right]_{imk} \, \left[\left(Y_{\tau_2^* W W^*}\right)^*\right]_{jm\ell} \;, \\ \mathcal{I}_2 \;&=\; \left[Y_{\sigma_1 W W^*}^{\dagger}\right]_{k\ell} \, \left[Y_{\sigma_1 \tau_2 \tau_2^*}\right]_{ij} \, \left[Y_{\tau_2^* W W^*}\right]_{i\ell m} \, \left[\left(Y_{\tau_2^* W W^*}\right)^*\right]_{jkm} \;. \end{split}$$

- ✓ Contribution to $\varepsilon_{\sigma_1 \to W W^*}$ is proportional to Im $\mathcal{I}_{1,2} \neq 0$.
- ✓ All CP odd phases are geometrical, $I_1 = e^{2 \pi i/3} I_2$.
- ✓ $(\varepsilon_{\sigma_1 \to W W^*}) \to 0$ for $v \to 0$, i.e. CP is restored in limit of vanishing VEV.

Andreas Trautner, bctp

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

$$\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \ \mapsto \ \mathfrak{P}_{\mu}^{\ \nu} W_{\nu}^*(\mathfrak{P} x) \ , \quad Z_{\mu}(x) \ \mapsto \ - \mathfrak{P}_{\mu}^{\ \nu} Z_{\nu}(\mathfrak{P} x) \ ,$$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states.

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by \mathbb{Z}_2 – Out (the SU(3)-CP transformation).

The unbroken Out

$$\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \mapsto \mathbb{P}_{\mu}^{\nu} W_{\nu}^*(\mathbb{P}x) , \quad Z_{\mu}(x) \mapsto -\mathbb{P}_{\mu}^{\nu} Z_{\nu}(\mathbb{P}x) ,$$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states. Physical scalars (T_7 singlets and triplets):

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} (\phi_{1} + \phi_{1}^{*}) , \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathrm{i}}{\sqrt{2}} (\phi_{1} - \phi_{1}^{*}) ,$$

$$\sigma_{1} = \phi_{2} ,$$

$$\begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} T_{2} \\ \overline{T}_{3}^{*} \\ T_{1} \end{pmatrix} .$$

Andreas Trautner, bctp

Natural protection of $\theta = 0$

Topological vacuum term of the gauge group

$$\mathscr{L}_{\theta} = \theta \, \frac{g^2}{32\pi^2} \, G^a_{\mu\nu} \, \widetilde{G}^{\mu\nu,a} \; ,$$

is forbidden by $\mathbb{Z}_2 - \text{Out}$ (the SU(3)-CP transformation).

The unbroken Out

 $\mathbb{Z}_2 - \operatorname{Out} : W_{\mu}(x) \mapsto \mathbb{P}_{\mu}^{\nu} W_{\nu}^*(\mathbb{P}x) , \quad Z_{\mu}(x) \mapsto -\mathbb{P}_{\mu}^{\nu} Z_{\nu}(\mathbb{P}x) ,$

still enforces $\theta = 0$ even though CP is violated for the physical T_7 states.

Possible application to strong CP problem?

Starting point: CP conserving theory based on

 $[G_{\rm SM} \times G_{\rm F}] \rtimes {\rm CP}$.

- break $G_{\rm F} \rtimes {\rm CP} \longrightarrow {\rm Type \, I} \rtimes {\rm Out.}$
- - Main problem: finding realistic model based on Type I group allowing for outer automorphism.

Summary

- There are certain (discrete) groups which are inconsistent with physical CP transformations.
- These groups allow for models with (explicit and/or spontaneous) CP violation with calculable (quantized) "geometrical" phases.
- Physical interpretation of one and the same transformation (namely the Z₂-Out) changes depending on the symmetries of the ground state of a model.
- We have found an explicit toy model example, SU(3) → T₇, in which CP is spontaneously violated for the physical states of the theory (with geometrical phases) while an unbroken outer automorphism protects θ = 0.

Thank You!

Bibliography I

Branco, G., Gerard, J., and Grimus, W. (1984).

Geometrical T Violation. Phys. Lett., B136:383.

Buchbinder, I. L., Gitman, D. M., and Shelepin, A. L. (2002).

Discrete symmetries as automorphisms of the proper Poincare group. *Int. J. Theor. Phys.*, 41:753–790, hep-th/0010035.

Chen, M.-C., Fallbacher, M., Mahanthappa, K. T., Ratz, M., and Trautner, A. (2014). CP Violation from Finite Groups. *Nucl. Phys.*, B883:267–305, 1402.0507.

Fallbacher, M. and Trautner, A. (2015).

Symmetries of symmetries and geometrical CP violation. *Nucl. Phys.*, B894:136–160, 1502.01829.

Fonseca, R. M. (2012).

Calculating the renormalisation group equations of a SUSY model with Susyno. *Comput. Phys. Commun.*, 183:2298–2306, 1106.5016.

GAP (2012).

GAP – Groups, Algorithms, and Programming, Version 4.5.5. The GAP Group.

Grimus, W. and Rebelo, M. (1997).

Automorphisms in gauge theories and the definition of CP and P. *Phys. Rept.*, 281:239–308, hep-ph/9506272.

Bibliography II

Haber, H. E. and Surujon, Z. (2012).

A Group-theoretic Condition for Spontaneous CP Violation. *Phys. Rev.*, D86:075007, 1201.1730.

Holthausen, M., Lindner, M., and Schmidt, M. A. (2013).

CP and Discrete Flavour Symmetries. JHEP, 1304:122, 1211.6953.

Ivanov, I. P. and Silva, J. P. (2015).

A CP-conserving multi-Higgs model without real basis. 1512.09276.

Luhn, C. (2011).

Spontaneous breaking of SU(3) to finite family symmetries: a pedestrian's approach. *JHEP*, 1103:108, 1101.2417.

Merle, A. and Zwicky, R. (2012).

Explicit and spontaneous breaking of SU(3) into its finite subgroups. *JHEP*, 1202:128, 1110.4891.

Trautner, A. (2016).

CP and other Symmetries of Symmetries. PhD thesis, Munich, Tech. U., Universe, 1608.05240.

Additional slides

"Physical" CP transformation

Recall: e.g. complex scalar field σ , with field operator

$$\widehat{\boldsymbol{\sigma}}(x) = \int \widetilde{\mathrm{d}} p \left\{ \widehat{\boldsymbol{a}}(\vec{p}) \,\mathrm{e}^{-\mathrm{i}\,p\,x} + \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \,\mathrm{e}^{\mathrm{i}\,p\,x} \right\}$$

Physical CP transformation of the complex scalar field

$$CP : \sigma(x) \mapsto e^{i\varphi} \sigma^*(\mathfrak{P}x),$$

corresponds to

$$\operatorname{CP} : \widehat{\boldsymbol{a}}(\vec{p}) \mapsto \operatorname{e}^{\operatorname{i}\varphi} \widehat{\boldsymbol{b}}(-\vec{p}) \quad \text{and} \quad \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \mapsto \operatorname{e}^{\operatorname{i}\varphi} \widehat{\boldsymbol{a}}^{\dagger}(-\vec{p}) \,.$$

"matter":
$$\widehat{a}^{(\dagger)}$$
 "anti-matter": $\widehat{b}^{(\dagger)}$.

Toy model details Complex scalar ϕ in T_7 -diagonal basis of SU(3): (in unitary gauge)

$$\phi = \left(v + \phi_1, \frac{\phi_2}{\sqrt{2}}, \frac{\phi_2^*}{\sqrt{2}}, \phi_4, \phi_5, \phi_6, \frac{\phi_7}{\sqrt{2}}, \frac{\phi_8}{\sqrt{2}}, \frac{\phi_9}{\sqrt{2}}, \phi_{10}, \phi_{11}, \phi_{12}, \frac{\phi_7^*}{\sqrt{2}}, \frac{\phi_8^*}{\sqrt{2}}, \frac{\phi_9^*}{\sqrt{2}}\right)$$

 T_7 representations of the components:

The physical scalars are

$$\operatorname{Re} \sigma_{0} = \frac{1}{\sqrt{2}} (\phi_{1} + \phi_{1}^{*}) , \qquad \operatorname{Im} \sigma_{0} = -\frac{\mathrm{i}}{\sqrt{2}} (\phi_{1} - \phi_{1}^{*}) ,$$

$$\sigma_{1} = \phi_{2} ,$$

$$\begin{pmatrix} \tau_{1} \\ \tau_{2} \\ \tau_{3} \end{pmatrix} = \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} T_{2} \\ \overline{T}_{3} \\ T_{1} \end{pmatrix} .$$

The physical vectors are

$$\begin{split} Z^{\mu} &=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{7} - \mathrm{i} \, A^{\mu}_{8} \right) \;, \qquad \qquad W^{\mu}_{1} \;=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{4} - \mathrm{i} \, A^{\mu}_{1} \right) \;, \\ W^{\mu}_{2} \;=\; \frac{1}{\sqrt{2}} \left(A^{\mu}_{5} - \mathrm{i} \, A^{\mu}_{2} \right) \;, \qquad \qquad W^{\mu}_{3} \;=\; \frac{\mathrm{i}}{\sqrt{2}} \left(A^{\mu}_{6} - \mathrm{i} \, A^{\mu}_{3} \right) \;. \end{split}$$

Andreas Trautner, bctp

Toy model details

The VEV in this basis is simply

$$\langle \phi \rangle_1 = v$$
 and $\langle \phi \rangle_i = 0$ for $i = 2, \dots, 15$,

where

$$|v| = \mu \times 3\sqrt{\frac{7}{2}} \left(-7\sqrt{15}\,\lambda_1 + 14\sqrt{15}\,\lambda_2 + 20\sqrt{6}\,\lambda_4 + 13\sqrt{15}\,\lambda_5\right)^{-1/2} \,.$$

The masses of the physical states are

$$m_Z^2 \;=\; rac{7}{3}\,g^2\,v^2 \;\; ext{ and }\;\; m_W^2 \;=\; g^2\,v^2$$

$$\begin{split} m_{\mathrm{Re}\,\sigma_0}^2 \;&=\; 2\,\mu^2 \;, \qquad m_{\mathrm{Im}\,\sigma_0}^2 \;=\; 0 \;, \\ m_{\sigma_1}^2 \;&=\; -\,\mu^2 + \sqrt{15}\,\lambda_5\,v^2 \;. \end{split}$$

The massless mode is the goldstone boson of an additional ${\rm U}(1)$ symmetry of the potential. It can be avoided by either

- gauging the additional U(1),
- or breaking it softly by a cubic coupling of ϕ .

Andreas Trautner, bctp

Toy model details

 T_7 invariant couplings ($\omega := e^{2\pi i/3}$)

$$Y_{\sigma_1 W W^*} \;=\; \frac{v\,g^2}{\sqrt{6}}\,\mathrm{e}^{-\pi\,\mathrm{i}/6}\,\mathrm{diag}(1,\,\omega,\,\omega^2)\;,\quad Y_{\sigma_1\tau_2\tau_2^*}\;=\; v\,y_{\sigma_1\tau_2\tau_2^*}\;\mathrm{diag}(1,\,\omega,\,\omega^2)\;,$$

$$\begin{split} \left[Y_{\tau_2^*WW^*}\right]_{121} &= \left[Y_{\tau_2^*WW^*}\right]_{232} &= \left[Y_{\tau_2^*WW^*}\right]_{313} &= v \, g^2 \, y_{\tau_2^*WW^*} \;, \\ \left[Y_{\tau_2^*WW^*}\right]_{ijk} &= 0 \qquad \text{(else)} \;. \end{split}$$

Toy model details

$$\begin{split} y_{\sigma_{1}\tau_{2}\tau_{2}^{*}} &= \frac{1}{504\sqrt{3}} \left\{ V_{21}^{21} \left[-14\sqrt{10} \left(17 + 5\sqrt{3} i \right) \lambda_{1} + 84\sqrt{30} \left(\sqrt{3} - i \right) \lambda_{2} \right. \right. \\ &\quad - 240 \left(1 + \sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(197 - 55\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 8V_{22}^{22} \left[28\sqrt{10} \left(1 - \sqrt{3} i \right) \lambda_{1} - 14\sqrt{30} i \lambda_{2} + 112\sqrt{3} i \lambda_{3} \right. \\ &\quad - \left(30 - 26\sqrt{3} i \right) \lambda_{4} + \sqrt{10} \left(20 - \sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 8V_{23}^{23} \left[28\sqrt{10} \left(1 + \sqrt{3} i \right) \lambda_{1} - 14\sqrt{30} i \lambda_{2} - 168\lambda_{3} \right. \\ &\quad + \left(6 + 65\sqrt{3} i \right) \lambda_{4} - 4\sqrt{10} \left(1 - 2\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 8V_{21}V_{22} \left[-35\sqrt{10} \left(1 - \sqrt{3} i \right) \lambda_{1} + 21\sqrt{30} \left(\sqrt{3} + i \right) \lambda_{2} \right. \\ &\quad - 56 \left(3 + \sqrt{3} i \right) \lambda_{3} + 6 \left(1 + 17\sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(67 + 19\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad + 4V_{21}V_{23} \left[-28\sqrt{10} \left(2 + \sqrt{3} i \right) \lambda_{1} - 42\sqrt{30} \left(\sqrt{3} + i \right) \lambda_{2} \right. \\ &\quad + 30 \left(11 + 3\sqrt{3} i \right) \lambda_{4} - \sqrt{10} \left(31 + 11\sqrt{3} i \right) \lambda_{5} \right] \\ &\quad - 8V_{22}V_{23} \left[14\sqrt{10}\lambda_{1} - 14\sqrt{30} i \lambda_{2} \right. \\ &\quad + 10 \left(3 + 5\sqrt{3} i \right) \lambda_{4} + \sqrt{10} \left(1 - 3\sqrt{3} i \right) \lambda_{5} \right] \Big\} \end{split}$$

and

$$y_{\tau_2^*WW^*} = -\frac{\sqrt{2}}{3} \left(2 V_{21} + V_{22} + 2 V_{23} \right) \; .$$

Andreas Trautner, bctp

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM.

 \Rightarrow "Definition" of CP in words:

CP is **a** special outer automorphism transformation which maps *all present* symmetry representations (global, local, space-time) to their complex conjugate representations.

This definition is consistent with the definitions in [Buchbinder et al. '01] & [Grimus, Rebelo '95]

[AT '16]

Physical CP transformation

We extrapolate from the SM to possible symmetries in BSM.

 \Rightarrow "Definition" of CP in words:

CP is **a** special outer automorphism transformation which maps *all present* symmetry representations (global, local, space-time) to their complex conjugate representations.

This definition is consistent with the definitions in [Buchbinder et al. '01] & [Grimus, Rebelo '95]

Any such transformation:

- warrants physical CP conservation (if conserved),
- \Rightarrow must be broken (by observation).

Note that a physical CP transformation

- does not have to be unique,
- does not have to be of order 2, e.g. [Grimus et al. '87], [Weinberg '05], [Ivanov, Silva '15]
- is, in general, not guaranteed to exist for a given symmetry group. (It *does* exist for $G_{\rm SM}$).

[AT '16]

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, a²}.
- Outer automorphism group ("Out") of ℤ₃: generated by

 $u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.\quad \left(\mathsf{think:}\,\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2\right)$

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\leftrightarrow}_{7}a^2$ }.
- Outer automorphism group ("Out") of ℤ₃: generated by

 $u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$ (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a $\stackrel{\leftrightarrow}{,}a^2$ }.
- Outer automorphism group ("Out") of Z₃: generated by

 $u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$ (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Abstract: Out is a reshuffling of symmetry elements. (Out := Aut/Inn) In words: Out is a "symmetry of the symmetry".

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\leftrightarrow}_{a}a^2$ }.
- Outer automorphism group ("Out") of ℤ₃: generated by

 $u(\mathsf{a}):\mathsf{a}\mapsto\mathsf{a}^2.$ (think: $\mathsf{u}\,\mathsf{a}\,\mathsf{u}^{-1}\,=\,\mathsf{a}^2$)

Abstract: Out is a reshuffling of symmetry elements. (Out := Aut/Inn) In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{\boldsymbol{r'}}(\mathbf{g})U^{-1} = \rho_{\boldsymbol{r}}(u(\mathbf{g})) , \qquad \forall \mathbf{g} \in G .$$

(consistency condition)

[Fallbacher, AT, '15] [Holthausen, Lindner, Schmidt, '13]

- $\rho_{r}(g)$: representation matrix for group element $g \in G$

 $u:g\mapsto u(g):$ outer automorphism

Example: \mathbb{Z}_3 symmetry, generated by $a^3 = id$.

- All elements of \mathbb{Z}_3 : {id, a, $a^{\leftrightarrow}_{a}a^2$ }.
- Outer automorphism group ("Out") of Z₃: generated by

 $u(a): a \mapsto a^2$. (think: $u a u^{-1} = a^2$)

Abstract: Out is a reshuffling of symmetry elements. (Out := Aut/Inn) In words: Out is a "symmetry of the symmetry".

Concrete: Out is a 1:1 mapping of representations $r \mapsto r'$. Comes with a transformation matrix U, which is given by

$$U\rho_{\boldsymbol{r'}}(\mathbf{g})U^{-1} = \rho_{\boldsymbol{r}}(u(\mathbf{g})) , \qquad \forall \mathbf{g} \in G .$$

Outer automorphisms of groups

Outer automorphisms exist for continuous & discrete groups. There are easy ways to depict this:

Continuous groups:

Outer automorphisms of a simple Lie algebra are the symmetries of the corresponding Dynkin diagram.

Outer automorphisms of groups Discrete groups:

Outer automorphisms of a discrete group are symmetries of the character table (not 1:1).

					\mathbb{Z}_2	
			()	() ()	4	\searrow
	T_7	C_{1a}	C_{3a}	C_{3b}	C_{7a}	C_{7b}
	1_0	1	1	1	1	1
C	1_1	1	ω	ω^2	1	1
C	$\overline{1}_1$	1	ω^2	ω	1	1
~	3 1	3	0	0	η	η^*
5	$\overline{3}_1$	3	0	0	η^*	η

The outer automorphisms group of any ("small") discrete group can easily be found with GAP [GAP].

Group	Out	Action on reps
\mathbb{Z}_3	\mathbb{Z}_2	$r~ ightarrow~r^{*}$
$A_{n\neq 6}$	\mathbb{Z}_2	$r~ ightarrow~r^{*}$
$S_{n\neq 6}$	/	/
$\Delta(27)$	$\operatorname{GL}(2,3)$	$m{r}_i ~ ightarrow~m{r}_j$
$\Delta(54)$	S_4	$oldsymbol{r}_i ~ ightarrow~oldsymbol{r}_j$

The conserved \mathbb{Z}_2 -Out acts on the physical states as

$$\begin{array}{cccc} W_{\mu}(x) \ \mapsto \ \mathcal{P}_{\mu}^{\ \nu} W_{\nu}^{*}(\mathfrak{P}x) \ , & Z_{\mu}(x) \ \mapsto \ - \ \mathcal{P}_{\mu}^{\ \nu} Z_{\nu}(\mathfrak{P}x) \\ \mathbb{Z}_{2} - \operatorname{Out} \ : & \sigma_{0}(x) \ \mapsto \ \sigma_{0}(\mathfrak{P}x) \ , & \sigma_{1}(x) \ \mapsto \ \sigma_{1}(\mathfrak{P}x) \ , \\ & \tau_{i}(x) \ \mapsto \ \tau_{i}^{*}(\mathfrak{P}x) \ . & \end{array}$$

The conserved \mathbb{Z}_2 -Out acts on the physical states as

$$\begin{aligned} & W_{\mu}(x) \mapsto \mathcal{P}_{\mu}^{\nu} W_{\nu}^{*}(\mathfrak{P}x) , & Z_{\mu}(x) \mapsto -\mathcal{P}_{\mu}^{\nu} Z_{\nu}(\mathfrak{P}x) \\ \mathbb{Z}_{2} - \mathrm{Out} &: & \sigma_{0}(x) \mapsto \sigma_{0}(\mathfrak{P}x) , \\ & & \tau_{i}(x) \mapsto \tau_{i}^{*}(\mathfrak{P}x) . \end{aligned}$$

This does not correspond to a physical CP transformation. Mode expansion

$$\widehat{\boldsymbol{\sigma}}_1(x) = \int \widetilde{\mathrm{d}}\widetilde{p} \left\{ \widehat{\boldsymbol{a}}(\vec{p}) \,\mathrm{e}^{-\mathrm{i}\,p\,x} + \widehat{\boldsymbol{b}}^{\dagger}(\vec{p}) \,\mathrm{e}^{\mathrm{i}\,p\,x} \right\} \,.$$

The \mathbb{Z}_2 -Out transformation corresponds to a map

$$\mathbb{Z}_2 - \operatorname{Out} : \widehat{a}(\vec{p}) \mapsto \widehat{a}(-\vec{p}) \quad \text{and} \quad \widehat{b}^{\dagger}(\vec{p}) \mapsto \widehat{b}^{\dagger}(-\vec{p}) ,$$

which does not correspond to a physical CP transformation.

Andreas Trautner, bctp

The conserved \mathbb{Z}_2 -Out acts on the physical states as

$$\begin{aligned} & W_{\mu}(x) \ \mapsto \ \mathfrak{P}_{\mu}^{\ \nu} W_{\nu}^{*}(\mathfrak{P}x) \ , \qquad & Z_{\mu}(x) \ \mapsto \ - \ \mathfrak{P}_{\mu}^{\ \nu} Z_{\nu}(\mathfrak{P}x) \ , \\ & \mathbb{Z}_{2} - \operatorname{Out} \ : \qquad & \sigma_{0}(x) \ \mapsto \ \sigma_{0}(\mathfrak{P}x) \ , \\ & & \tau_{i}(x) \ \mapsto \ \tau_{i}^{*}(\mathfrak{P}x) \ . \end{aligned}$$

This does not correspond to a physical CP transformation. Mode expansion

$$\widehat{\boldsymbol{\sigma}}_1(x) = \int \widetilde{\mathrm{d}}\widetilde{p} \left\{ \widehat{\boldsymbol{a}}(\vec{p}) \,\mathrm{e}^{-\mathrm{i}\,p\,x} + \widehat{\boldsymbol{b}}^\dagger(\vec{p}) \,\mathrm{e}^{\mathrm{i}\,p\,x} \right\} \,.$$

The \mathbb{Z}_2 -Out transformation corresponds to a map

$$\mathbb{Z}_2 - \operatorname{Out} : \widehat{a}(\vec{p}) \mapsto \widehat{a}(-\vec{p}) \quad \text{and} \quad \widehat{b}^{\dagger}(\vec{p}) \mapsto \widehat{b}^{\dagger}(-\vec{p}) ,$$

which does not correspond to a physical CP transformation. The QFT CP transformation

$$CP : \widehat{a}(\vec{p}) \mapsto \widehat{b}(-\vec{p}) \text{ and } \widehat{b}^{\dagger}(\vec{p}) \mapsto \widehat{a}^{\dagger}(-\vec{p}),$$

is not a symmetry of the action (imposing it enforces decoupling, $g = \lambda_i = 0$).

Andreas Trautner, bctp

C, P, and CP transformations and spinor representations

CP as a special outer automorphism

The most general possible CP transformation for (SM) gauge and *one generation* of (chiral) fermion fields:

$$\begin{split} W^a_\mu(x) \ \mapsto \ R^{ab} \ \mathcal{P}^{\,\nu}_\mu \ W^b_\nu(\mathcal{P} x) \ , \\ \Psi^i_\alpha(x) \ \mapsto \ \eta_{\rm CP} \ U^{ij} \ \mathcal{C}_{\alpha\beta} \ \Psi^{*j}_{\ \beta}(\mathcal{P} x) \ . \end{split}$$

cf. e.g. [Grimus, Rebelo,'95]

CP as a special outer automorphism

The most general possible CP transformation for (SM) gauge and *one generation* of (chiral) fermion fields:

$$\begin{split} W^a_\mu(x) \; \mapsto \; R^{ab} \, \mathcal{P}^{\,\nu}_\mu \, W^b_\nu(\mathcal{P} x) \; , \\ \Psi^i_\alpha(x) \; \mapsto \; \eta_{\mathsf{CP}} \, U^{ij} \, \mathcal{C}_{\alpha\beta} \, \Psi^{*j}_{\ \beta}(\mathcal{P} x) \; . \end{split}$$

cf. e.g. [Grimus, Rebelo,'95] $[T_a, T_b] = \mathrm{i} f_{abc} \, T_c$

This is a conserved symmetry of the kinetic terms iff

(i) : $R_{aa'} R_{bb'} f_{a'b'c} = f_{abc'} R_{c'c}$,

(ii) :
$$U(-T_a^{\mathrm{T}}) U^{-1} = R_{ab} T_b ,$$

(iii) :
$$\mathcal{C}\left(-\gamma^{\mu \mathrm{T}}\right)\mathcal{C}^{-1} = \gamma^{\mu} .$$

Note: These are precisely the **consistency conditions** for a mapping of $r \mapsto r^*$ for *both*, the gauge and space-time symmetries of a model.

 \Rightarrow "Definition" of CP in words:

CP is **a** special outer automorphism transformation which maps *all present* symmetry representations (global, local, space-time) to their complex conjugates.

(This transformation does not have to be unique nor is it guaranteed to exist at all) (This is consistent with the transformations considered in [Buchbinder et al:01] & [Grimus, Rebelo;95])

Andreas Trautner, bctp

CP symmetries in settings with discrete G

(For details see [Chen, Fallbacher, Mahanthappa, Ratz, AT, '14])

Mathematical tool to decide: Twisted Frobenius-Schur indicator FS_u (Backup slides)

Twisted Frobenius–Schur indicator

Criterion to decide: existence of a CP outer automorphism. \curvearrowright can be probed by computing the

"twisted Frobenius–Schur indicator" FS_u

$$\operatorname{FS}_{u}(\boldsymbol{r}_{i}) := \frac{1}{|G|} \sum_{g \in G} \chi_{\boldsymbol{r}_{i}}(g \, u(g))$$

$$(\chi_{\boldsymbol{r}_{i}}(g))$$

[Chen, Fallbacher, Mahanthappa, Ratz, AT, 2014]

: Character)

$$FS_u(\boldsymbol{r}_i) = \begin{cases} +1 \text{ or } -1 \quad \forall i, \Rightarrow u \text{ is good for CP,} \\ \text{different from } \pm 1, \Rightarrow u \text{ is no good for CP.} \end{cases}$$

In analogy to the Frobenius–Schur indicator $\mathrm{FS}_{\bigvee}(\pmb{r}_i)=+1,-1,0 \text{ for real / pseudo-real / complex irrep.}$

Andreas Trautner, bctp