New results on CP-violation in multi-Higgs models

Igor Ivanov

CFTP, Instituto Superior Técnico, Lisbon

Scalars-2015, Warsaw, December 3-7, 2015

based on: G. C. Branco, I.P.I., arXiv:1511.02764 and a work in progress.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

CP-conservation and the real basis

Workshop on Multi-Higgs Models

6-9 September 2016

Lisbon - Portugal

This Workshop brings together those interested in the theory and phenomenology of Multi-Higgs models. The program is designed to include talks given by some of the leading experts in the field, and also ample time for discussions and collaboration between researchers. A particular emphasis will be placed on identifying those features of the models which are testable at the LHC.

For registration and/or to propose a talk, send an email to:

2hdmwork@cftp.tecnico.ulisboa.pt

Web Page : http://cftp.tecnico.ulisboa.pt/~2hdmwork/

Igor Ivanov (CFTP, IST)

Sar

2 CP-conservation and the real basis

SQC

э

CPV from the scalar sector

CP-violation from the scalar sector of multi-Higgs-doublet models:

- explicit: the scalar lagrangain does not possess any CP (or gCP) symmetry,
- spontaneous: the lagrangain possesses a set of gCP symmetries, but none of them leaves vevs invariant.
- A very brief history:
 - T.D.Lee, 1973: 2HDM with spontaneous breaking of CP; but NFC is incompatible with explicit and with spontaneous CPV;
 - Weinberg, 1976: 3HDM with NFC and with explicit CPV; Branco, 1980: same with spontaneous CPV; Branco, Gerard, Grimus, 1984: 3HDM with geometric CPV.
 - early review: Branco, Buras, Gerard, 1985; Branco, Lavoura, Silva, "CPV", 1999.

SQC

Generalized CP symmetries

A reminder: the CP transformation is not uniquely defined *a priori* [e.g. Feinberg, Weinberg, 1959]. In NHDM with *N* scalar doublets,

$$\phi_i \xrightarrow{CP} X_{ij} \phi_j^*$$

with any $X \in U(N)$ leaves the kinetic term invariant and can play the role of the (general) CP transformation.

- If no gCP symmetry with any X_{ij} exists, the model is explicitly CP-violating;
- If V is invariant under a gCP with any X_{ij}, the model is explicitly CP-conserving;
 - If none of the gCP symmetries of V leaves vevs invariant → spontaneous CPV;
 - If $X_{ij}\langle 0|\phi_j|0\rangle^* = \langle 0|\phi_i|0\rangle$ for some gCP symmetry \rightarrow no CPV from the scalar sector.

SQA

CP-violation vs. family symmetries

Igor Ivanov (CFTP, IST)

SQC

э

Family symmetries vs. CPV

Imposing a family symmetry on the Higgs doublets has consequences for CPV.

- \mathbb{Z}_2 in 2HDM \rightarrow neither explicit nor spontaneous CPV;
- $\mathbb{Z}_2 \times \mathbb{Z}_2$ (NFC) in 3HDM \rightarrow both explicit or spontaneous CPV possible;
- $\Delta(27)$ 3HDM, Branco, Gerard, Grimus, 1985 \rightarrow both explicit or spontaneous CPV possible;
- A_4, S_4 3HDM \rightarrow neither explicit nor spontaneous CPV.
- Ivanov, Nishi, 2014: all discrete groups *G* in 3HDM, in all their vev alignments, follow this "neither/both" pattern.

Conjecture: CPV comes in pairs

Family symmetry group G is compatible with spontaneous CPV if and only if it is compatible with explicit CPV in the (neutral) Higgs sector.

- 4 同 2 4 日 2 4 日 2 4

SQC

Family symmetries vs. CPV

Imposing a family symmetry on the Higgs doublets has consequences for CPV.

- \mathbb{Z}_2 in 2HDM \rightarrow neither explicit nor spontaneous CPV;
- $\mathbb{Z}_2 \times \mathbb{Z}_2$ (NFC) in 3HDM \rightarrow both explicit or spontaneous CPV possible;
- $\Delta(27)$ 3HDM, Branco, Gerard, Grimus, 1985 \rightarrow both explicit or spontaneous CPV possible;
- A_4, S_4 3HDM \rightarrow neither explicit nor spontaneous CPV.
- Ivanov, Nishi, 2014: all discrete groups *G* in 3HDM, in all their vev alignments, follow this "neither/both" pattern.

Conjecture: CPV comes in pairs

Family symmetry group G is compatible with spontaneous CPV if and only if it is compatible with explicit CPV in the (neutral) Higgs sector.

・ロト ・同ト ・ヨト ・ヨト

SQC

\mathbb{Z}_4 3HDM

Consider 3HDM with $G = \mathbb{Z}_4$ symmetry generated by $a_4 = \text{diag}(i, -i, 1)$. Then, $V = V_0 + V_1$, where the phase-sensitive part is

$$V_1(\mathbb{Z}_4) = \lambda_1(\phi_1^{\dagger}\phi_2)^2 + \lambda_2(\phi_1^{\dagger}\phi_3)(\phi_2^{\dagger}\phi_3) + h.c.$$

- rephasing freedom \rightarrow make $\lambda_{1,2}$ real \rightarrow explicitly CP-conserving;
- extremization condition gives $\langle \phi_i^0 \rangle = v_i e^{i\xi_i}/\sqrt{2}$, i = 1, 2, 3. If all $v_i \neq 0 \rightarrow$ phases are rigid, such as

$$(v_1e^{i\pi/4}, v_2e^{-i\pi/4}, v_3),$$

and there remains a gCP symmetry.

• if $v_1 = 0$, then $(0, v_2 e^{\xi_2}, v_3)$ with arbitrary ξ_2 is OK, but it is a saddle point \rightarrow spontaneous CPV is absent.

SQA

We proved the conjecture for any rephasing symmetry group G and any number of doublets, G. C. Branco, I.P.I., arXiv:1511.02764.

An outline of the proof (bears some similarity with the spurion-based technique of Haber, Surujon, 2012):

- V₁ contains k terms built of N doublets. Rephase doublets by α_j. The *i*-th term picks up phase change d_{ij}α_j. The k × N matrix d_{ij} plays the key role.
- The rephasing symmetry of the model is given by solutions of $d_{ij}\alpha_j = 2\pi n_i$, which are efficiently found with the Smith normal form technique [lvanov, Keus, Vdovin, 2012].
- At quasiclassical values of fields $\phi_j \rightarrow v_j e^{i\xi_j}/\sqrt{2}$, the potential is

$$V_1 = \frac{1}{2} \sum_{i=1}^k A_i \cos(\mathbf{d}_{ij}\xi_j + \psi_i), \quad A_i = |\lambda_i| \prod_{j=1}^N v_j^{|\mathbf{d}_{ij}|}, \quad \psi_i = \arg \lambda_i.$$

Sar

We proved the conjecture for any rephasing symmetry group G and any number of doublets, G. C. Branco, I.P.I., arXiv:1511.02764.

An outline of the proof (bears some similarity with the spurion-based technique of Haber, Surujon, 2012):

- V₁ contains k terms built of N doublets. Rephase doublets by α_j. The *i*-th term picks up phase change d_{ij}α_j. The k × N matrix d_{ij} plays the key role.
- The rephasing symmetry of the model is given by solutions of $d_{ij}\alpha_j = 2\pi n_i$, which are efficiently found with the Smith normal form technique [Ivanov, Keus, Vdovin, 2012].
- At quasiclassical values of fields $\phi_j
 ightarrow v_j e^{i\xi_j}/\sqrt{2}$, the potential is

$$V_1 = \frac{1}{2} \sum_{i=1}^k A_i \cos(\mathbf{d}_{ij}\xi_j + \psi_i), \quad A_i = |\lambda_i| \prod_{j=1}^N v_j^{|\mathbf{d}_{ij}|}, \quad \psi_i = \arg \lambda_i.$$

Igor Ivanov (CFTP, IST)

SQC

۵

CP-conserving case: k = N - 1, rank d = N - 1.

• Enough rephasing freedom to set all $\psi_i = 0 \rightarrow \text{explicit CPC}$.

$$0 = \frac{\partial V}{\partial \xi_j} = \sum_i A_i s_i d_{ij} \quad \forall j \quad \Rightarrow \quad A_i s_i = 0 \quad \forall i = 1, \ldots, k,$$

where $s_i \equiv \sin(d_{ii}\xi_i)$.

• if all $v_i \neq 0$, then $s_i = 0$ which implies

$$d_{ij}\xi_j = -d_{ij}\xi_j \quad \Rightarrow \quad \xi_j = -\xi_j + \alpha_j \,,$$

where α_i is a symmetry of the model \rightarrow gCP symmetry present.

• if some $v_i = 0$, the proof is more elaborate, but the conclusion is the same: there is no spontaneous CPV.

SQC

CP-violating case: k = N, rank d = N - 1.

- Not enough rephasing freedom to set all $\psi_i = 0 \rightarrow \text{explicit CPV}$.
- For CP-conserving case, the same system

$$0 = \sum_{i=1}^{N} A_i s_i d_{ij} \quad \forall j = 1, \dots, N$$

now allows for a non-zero solution: not all $A_i s_i = 0$.

• This solution cannot have any residual rephasing gCP \rightarrow spontaneous CPV.

Sac

CPV from charged Higgs sector

There is one peculiar situation in which the non-zero solution exists, in the algebraic sense, but cannot be realized via vev alignment.

Consider 4HDM with symmetry group $\mathbb{Z}_4\times\mathbb{Z}_2.$

$$V_{1} = \lambda_{5}(\phi_{1}^{\dagger}\phi_{2})^{2} + \lambda_{5}'(\phi_{3}^{\dagger}\phi_{4})^{2} + \lambda_{6}(\phi_{1}^{\dagger}\phi_{3})(\phi_{2}^{\dagger}\phi_{4}) + \lambda_{6}'(\phi_{1}^{\dagger}\phi_{4})(\phi_{2}^{\dagger}\phi_{3}) + h.c.$$

invariant under $a_2 = \operatorname{diag}(1, -1, 1, -1)$ and $a_4 = \operatorname{diag}(1, 1, i, -i)$.

$$d = \left(\begin{array}{rrrrr} -2 & 2 & 0 & 0 \\ 0 & 0 & -2 & 2 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \end{array}\right)$$

The model is explicitly CPV: cannot change the phase between λ_6 and λ'_6 .

CPV from charged Higgs sector

However, there is no room for spontaneous CPV in this model!

The non-zero solution of $\sum_{i=1}^{N} A_i s_i d_{ij} = 0$ is $A_i s_i = (0, 0, 1, -1)$, which implies $\lambda_6 = -\lambda'_6$. For generic λ 's, this solution cannot be realized via vevs.

One can rewrite the model as

$$\begin{split} V_1 &= \lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \lambda_5' (\phi_3^{\dagger} \phi_4)^2 + \lambda_6 (\phi_1^{\dagger} \phi_3) (\phi_2^{\dagger} \phi_4) \\ &+ \tilde{\lambda}_6 \left[(\phi_1^{\dagger} \phi_3) (\phi_2^{\dagger} \phi_4) - (\phi_1^{\dagger} \phi_4) (\phi_2^{\dagger} \phi_3) \right] + h.c. \end{split}$$

with real λ_5 , λ'_5 , λ_6 , and complex $\tilde{\lambda}_6$.

Charged-Higgs-induced CPV

The complex parameter disappears in conditions for vevs; it enters the model only via the charged Higgs sector.

To avoid this exotic situation, we added "neutral" to the conjecture.

Igor Ivanov (CFTP, IST)

• • = • • = •

SQA

12/20

Beyond rephasing

I also hope to settle the issue for non-abelian G's (rephasing and permutations). Example: 3HDM with A_4 and $\Delta(27)$ look similarly,

$$\begin{aligned} A_4 : & \lambda \left[(\phi_1^{\dagger} \phi_2)^2 + (\phi_2^{\dagger} \phi_3)^2 + (\phi_3^{\dagger} \phi_1)^2 \right] + h.c. \\ \Delta(27) : & \lambda \left[(\phi_1^{\dagger} \phi_2)(\phi_1^{\dagger} \phi_3) + (\phi_2^{\dagger} \phi_3)(\phi_2^{\dagger} \phi_1) + (\phi_3^{\dagger} \phi_1)(\phi_3^{\dagger} \phi_2) \right] + h.c. \end{aligned}$$

but A_4 3HDM is CPC, while $\Delta(27)$ 3HDM is CPV. The difference is in matrices d_{ij} :

$$d(A_4) = \begin{pmatrix} -2 & 2 & 0 \\ 0 & -2 & 2 \\ 2 & 0 & -2 \end{pmatrix}, \quad d(\Delta(54)) = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

For A_4 , -d = d up to permutations, while for $\Delta(27)$, $-d \neq d$.

Beyond rephasing

I also hope to settle the issue for non-abelian G's (rephasing and permutations). Example: 3HDM with A_4 and $\Delta(27)$ look similarly,

$$\begin{aligned} A_4 : & \lambda \left[(\phi_1^{\dagger} \phi_2)^2 + (\phi_2^{\dagger} \phi_3)^2 + (\phi_3^{\dagger} \phi_1)^2 \right] + h.c. \\ \Delta(27) : & \lambda \left[(\phi_1^{\dagger} \phi_2)(\phi_1^{\dagger} \phi_3) + (\phi_2^{\dagger} \phi_3)(\phi_2^{\dagger} \phi_1) + (\phi_3^{\dagger} \phi_1)(\phi_3^{\dagger} \phi_2) \right] + h.c. \end{aligned}$$

but A_4 3HDM is CPC, while $\Delta(27)$ 3HDM is CPV. The difference is in matrices d_{ij} :

$$d(A_4) = \begin{pmatrix} -2 & 2 & 0 \\ 0 & -2 & 2 \\ 2 & 0 & -2 \end{pmatrix}, \quad d(\Delta(54)) = \begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$

For A_4 , -d = d up to permutations, while for $\Delta(27)$, $-d \neq d$.

うへで 12/20

Explicit CP-conservation and the existence of a real basis

Igor Ivanov (CFTP, IST)

News on CPV in multi-Higgs models

Warsaw, December 4-7, 2015

クへで 12/20

CP conserving Higgs sector \Leftrightarrow existence of a real basis. Formalized in the most accurate form in Gunion, Haber, 2005:

The final general when CP is scalar potential is explicitly CP violating or CP conserving. The answer to this question is governed by a simple theorem:

Theorem 1.—The Higgs potential is explicitly *CP* conserving if and only if a basis exists in which all Higgs potential parameters are real. Otherwise, *CP* is explicitly violated.

Although Theorem 1 is well known and often stated in the literature, its proof is usually given under the assumption that a convenient basis has been chosen in which the

will show a counterexample to this theorem.

I assume that the claim in Gunion, Haber, 2005 was that this theorem is valid for any number of doublets. If not — my apologies!

Sar

Sac

13/20

CP conserving Higgs sector \Leftrightarrow existence of a real basis. Formalized in the most accurate form in Gunion, Haber, 2005:

The final general when CP is scalar potential is explicitly CP violating or CP conserving. The answer to this question is governed by a simple theorem:

Theorem 1.—The Higgs potential is explicitly *CP* conserving if and only if a basis exists in which all Higgs potential parameters are real. Otherwise, *CP* is explicitly violated.

Although Theorem 1 is well known and often stated in the literature, its proof is usually given under the assumption that a convenient basis has been chosen in which the

I will show a counterexample to this theorem.

I assume that the claim in Gunion, Haber, 2005 was that this theorem is valid for any number of doublets. If not — my apologies!

Consider 3HDM with the following potential $V = V_0 + V_1$ (notation: $i \equiv \phi_i$):

$$\begin{split} &V_0 = -m_{11}^2(1^{\dagger}1) - m_{22}^2(2^{\dagger}2 + 3^{\dagger}3) + \lambda_1(1^{\dagger}1)^2 + \lambda_2 \left[(2^{\dagger}2)^2 + (3^{\dagger}3)^2 \right] \\ &+ \lambda_3(1^{\dagger}1)(2^{\dagger}2 + 3^{\dagger}3) + \lambda_3'(2^{\dagger}2)(3^{\dagger}3) + \lambda_4 \left[(1^{\dagger}2)(2^{\dagger}1) + (1^{\dagger}3)(3^{\dagger}1) \right] + \lambda_4'(2^{\dagger}3)(3^{\dagger}2) \,, \end{split}$$

with all parameters real, and

$$V_1 = \lambda_5(3^{\dagger}1)(2^{\dagger}1) + \frac{\lambda_6}{2} \left[(2^{\dagger}1)^2 - (3^{\dagger}1)^2 \right] + \frac{\lambda_8}{2} (2^{\dagger}3)^2 + \frac{\lambda_9}{2} (2^{\dagger}3) \left[(2^{\dagger}2) - (3^{\dagger}3) \right] + h.c.$$

with real $\lambda_{5,6}$ and complex $\lambda_{8,9}$. It is invariant under order-4 gCP:

$$J: \phi_i \mapsto X_{ij} \phi_j^*, \quad X = \left(egin{array}{ccc} -1 & 0 & 0 \ 0 & 0 & i \ 0 & -i & 0 \end{array}
ight) \,.$$

Its square, $J^2 = \text{diag}(1, -1, -1)$, and $J^4 = \mathbb{I}$. This model has no other symmetries [Ivanov, Keus, Vdovin, 2012].

Igor Ivanov (CFTP, IST)

SQA

14/20

3

There exists no basis change, $\phi_i \mapsto U_{ii}\phi_i$, which could make all coefficients real.

Proof.

Suppose it exists. In the new basis, the potential has the usual CP-symmetry of order 2. But this model does not have any order-2 gCP. Contradiction.

Sar

There exists no basis change, $\phi_i \mapsto U_{ij}\phi_j$, which could make all coefficients real.

Proof.

Suppose it exists. In the new basis, the potential has the usual CP-symmetry of order 2. But this model does *not* have any order-2 gCP. Contradiction.

NB: In 2HDM, one can impose CP2-symmetry (gCP of order 4) [Ferreira, Haber, Silva, 2009]. But the resulting potential has additional symmetries, including the usual order-2 gCP [Maniatis, von Manteuffel, Nachtmann, 2008]. In this case, there are no additional symmetries, therefore, the real basis does not exist.

Technically, the loophole in the proof of Gunion, Haber, 2005 is the assumption that $T^2 = \mathbb{I}$, with references to Feinberg, Weinberg, 1959 and Carruthers, 1968. But in those papers, X_{ij} was assumed to be diagonal, which automatically leads to order-2 gCP. In general, X_{ij} can be block-diagonal with 2 × 2 blocks [Ecker, Grimus, Neufeld, 1987].

Sac

There exists no basis change, $\phi_i \mapsto U_{ij}\phi_j$, which could make all coefficients real.

Proof.

Suppose it exists. In the new basis, the potential has the usual CP-symmetry of order 2. But this model does *not* have any order-2 gCP. Contradiction.

NB: In 2HDM, one can impose CP2-symmetry (gCP of order 4) [Ferreira, Haber, Silva, 2009]. But the resulting potential has additional symmetries, including the usual order-2 gCP [Maniatis, von Manteuffel, Nachtmann, 2008]. In this case, there are no additional symmetries, therefore, the real basis does not exist.

Technically, the loophole in the proof of Gunion, Haber, 2005 is the assumption that $\mathcal{T}^2 = \mathbb{I}$, with references to Feinberg, Weinberg, 1959 and Carruthers, 1968. But in those papers, X_{ij} was assumed to be diagonal, which automatically leads to order-2 gCP. In general, X_{ij} can be block-diagonal with 2 × 2 blocks [Ecker, Grimus, Neufeld, 1987].

Sac

・ロト ・ 一下・ ・ ヨト ・ ヨト

Some phenomenology of the model

The model is similar to the usual Inert Doublet Model (IDM) but with elaborate interaction pattern within the inert sector.

$$V_{1} = \underbrace{\lambda_{5}(3^{\dagger}1)(2^{\dagger}1) + \frac{\lambda_{6}}{2} \left[(2^{\dagger}1)^{2} - (3^{\dagger}1)^{2} \right]}_{\text{similar to } \lambda_{5}(\phi_{2}^{\dagger}\phi_{1})^{2}} + \underbrace{\lambda_{8}(2^{\dagger}3)^{2} + \lambda_{9}(2^{\dagger}3) \left[(2^{\dagger}2) - (3^{\dagger}3) \right]}_{\text{new}} + h.c.$$

- Extending J to the entire lagrangian: $\phi_{2,3}$ decouple from fermions, the J-symmetric minimum is (v, 0, 0), inert scalars protected from decay to SM fields.
- The scalar spectrum is exactly IDM-like: a pair of degenerate H^{\pm} , and two pairs of degenerate neutrals.

クへで 16/20

Some phenomenology of the model

Possible to diagonalize the mass matrix staying within complex neutral fields with a non-holomorphic map $(\phi_2^0, \phi_3^0) \mapsto (\Phi, \varphi)$:

$$\left(egin{array}{cc} \Phi \ arphi \end{array}
ight) = \left(egin{array}{cc} c_\gamma & s_\gamma \ -s_\gamma & c_\gamma \end{array}
ight) rac{1}{\sqrt{2}} \left(egin{array}{cc} \phi_2^0 + \phi_3^{0*} \ \phi_3^0 - \phi_2^{0*} \end{array}
ight) \,.$$

with $\tan 2\gamma = -\lambda_6/\lambda_5$. Complex fields \varPhi and φ are eigenstates of mass,

$$M^2, m^2 = -m_{22}^2 + \frac{v^2}{2} \left(\lambda_3 + \lambda_4 \pm \sqrt{\lambda_5^2 + \lambda_6^2} \right) ,$$

and are also eigenstates of J with charges q = +1:

$$J: \quad \Phi \mapsto i\Phi, \quad \varphi \mapsto i\varphi.$$

Igor Ivanov (CFTP, IST)

Half-CP-oddness

The real complex fields \varPhi, φ have weird *CP*-properties:

 $J: \quad \varPhi \mapsto i\varPhi \,, \quad \varphi \mapsto i\varphi \,.$

They are neither *CP*-even nor *CP*-odd but are half-*CP*-odd.

NB: J, which was antiunitary in the ϕ_i doublet space, becomes unitary in $(\varPhi,\,\varphi)\text{-space!}$

Conserved quantum number: not \mathbb{Z}_2 -parity but the charge q defined modulo 4.

Sac

Some phenomenology of the model

The map from $(\phi_2^0,\,\phi_3^0)$ to $(\varPhi,\,\varphi)$ conserves the norm implying

$$|\partial_{\mu}\phi_2^0|^2 + |\partial_{\mu}\phi_3^0|^2 = |\partial_{\mu}\Phi|^2 + |\partial_{\mu}\varphi|^2 \,,$$

while the interaction potential contains only combinations

 $\varphi^*\varphi\,,\quad \varphi^4\,,\quad (\varphi^*)^4\,,\quad \varphi^2(\varphi^*)^2\,,\quad \text{where }\varphi\text{ stands for }\Phi\text{ or }\varphi,$

all of which conserve q. Transitions $\varphi^* \to \varphi \varphi \varphi$, $\varphi \varphi \to \varphi^* \varphi^*$, or loop-induced $\varphi \leftrightarrow \Phi$ as possible, while $\varphi \to \varphi^*$ are forbidden by q conservation.

Instead of ZHA vertex in CP-conserving 2HDM, with H and A of opposite CP-parities, we have $Z\Phi\varphi$ vertex, with two scalars of the same CP-properties:

instead of
$$(+1) \cdot (-1) = -1$$
 we have $i \cdot i = -1$.

19/20

Sac

20/20

Conclusions

Generation of CP-violation from the scalar sector of multi-Higgs models still has room for surprises.

- We conjectured that the intimate relation between Higgs family symmetry groups and the two forms of CPV, known for decades and so far observed in all cases, is a general phenomenon. We proved this conjecture for rephasing symmetry groups.
- We remarked on a peculiar form of explicit CPV which has no spontaneous CPV counterpart → deserves further study.
- We found a counterexample to the general claim that the explicit CPV requires existence of a real basis. This counterexample is based on a order-4 gCP in 3HDM without any other symmetry; no such example existed in 2HDM.
- This model resembles the IDM with a more elaborate inert sector and with inert scalars displaying "half-*CP*-oddness".

Igor Ivanov (CFTP, IST)

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >