## FLAVOUR CHANGING YUKAWA COUPLING IN TWO HIGGS DOUBLET MODELS

Francisco J. Botella

IFIC (U.Valencia-CSIC)

December 2015

F.J.B. (IFIC (U.Valencia-CSIC)) FCYC in

-CYC in 2HDM at SCALARS 2015

December 2015 1 / 37

#### FLAVOUR CHANGING YUKAWA COUPLING IN TWO HIGGS DOUBLET MODELS

- Introduction
- 2HDM
- The BGL models in the quark and lepton sectors
- The Yukawa Couplings in BGL models
- A first summary
- Constraints from the Higgs sector
- Rare top decays
- Flavour Changing Higgs decays to quarks
- Rare Higgs decays to leptons and correlation with rare decays to quarks
- Incorporating leptonic constraint
- Conclusions
- Back

- Work done with: G.C. Branco, M. Nebot and M.Rebelo arXiv:1508.05101, Phys.Lett. B722 (2013) 76-82, JHEP 1110 (2011) 037 and Phys.Lett. B687 (2010) 194-200. And also (with L. Pedro, A. Carmona) JHEP 1407 (2014) 078
- Study the Higgs like particle properties: Yukawa Couplings including Flavour Changing Yukawa Coupling (FCYC)
- A natural scenario is Two Higgs Doublet Model (2HDM) type III.
- To avoid too large FCNC and/or too many parameters use the Minimal Flavour Violating (MFV) avenue in the most broad sense: The so called BGL models (Branco, Grimus, Lavoura)
- Present the Flavour Changing phenomenology of BGL 2HDM in the 125 GeV Higgs sector

### 2HDM I

• The Yukawa sector of the 2HDM

$$L_{Y} = -\overline{Q}_{L} \left( \Gamma_{1} \Phi_{1} + \Gamma_{2} \Phi_{2} \right) d_{R} - \overline{Q}_{L} \left( \Delta_{1} \widetilde{\Phi}_{1} + \Delta_{2} \widetilde{\Phi}_{2} \right) u_{R} + .h.c.$$
  
+  $\overline{L}_{L} \left( \Pi_{1} \Phi_{1} + \Pi_{2} \Phi_{2} \right) I_{R} - \overline{L}_{L} \left( \Sigma_{1} \widetilde{\Phi}_{1} + \Sigma_{2} \widetilde{\Phi}_{2} \right) v_{R} + .h.c.$ 

• The Higgs basis 
$$\langle H_1 \rangle^T = \begin{pmatrix} 0 & v/\sqrt{2} \end{pmatrix}$$
,  $\langle H_2 \rangle^T = \begin{pmatrix} 0 & 0 \end{pmatrix}$ ,  $v^2 = v_1^2 + v_2^2$ ,  $\tan \beta \equiv t_\beta = v_2/v_1$ 

$$\begin{pmatrix} \Phi_{1} \\ \Phi_{2} \end{pmatrix} = \begin{pmatrix} \frac{v_{1}}{v} & \frac{v_{2}}{v} \\ \frac{v_{2}}{v} & -\frac{v_{1}}{v} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \end{pmatrix}$$
$$H_{1} = \begin{pmatrix} G^{+} \\ \left(v + H^{0} + iG^{0}\right)/\sqrt{2} \end{pmatrix} \quad ; \quad H_{2} = \begin{pmatrix} H^{+} \\ \left(R^{0} + iA\right)/\sqrt{2} \end{pmatrix}$$

•  $G^{\pm}$  and  $G^{0}$  longitudinal degrees of freedom of  $W^{\pm}$  and  $Z^{0}$ .

3

## 2HDM II

- $H^{\pm}$  new charged Higgs bosons.
- A new CP odd scalar (we will have CP invariant Higgs potential).
- $H^0$  and  $R^0$  CP even scalars. If they do not mix,  $H^0$  the SM Higgs.
- The components of  $H_1$  and  $H_2$  in the quark mass basis interact with

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}H^{+}}{v}\bar{u}\left(VN_{d}\gamma_{R} - N_{u}^{\dagger}V\gamma_{L}\right)d + h.c.$$
  
$$-\frac{H^{0}}{v}\left(\bar{u}D_{u}u + \bar{d}D_{d}d\right) - \frac{R^{0}}{v}\left[\bar{u}(N_{u}\gamma_{R} + N_{u}^{\dagger}\gamma_{L})u + \bar{d}(N_{d}\gamma_{R} + N_{d}^{\dagger}\gamma_{L})d\right]$$
  
$$+i\frac{A}{v}\left[\bar{u}(N_{u}\gamma_{R} - N_{u}^{\dagger}\gamma_{L})u - \bar{d}(N_{d}\gamma_{R} - N_{d}^{\dagger}\gamma_{L})d\right]$$

- Where V is the CKM matrix.  $D_u$  and  $D_d$  the diagonal mass matrices.  $N_u$  and  $N_d$  are in general the "dangerous" Flavour Changing couplings that appear with  $R^0$  and A.
- Instead in the leptonic sector there are  $D_I$ ,  $D_{\nu}$ ,  $N_I^0$ ,  $N_{\nu}^0$  and the *PMNS* matrix  $U^{\dagger}$ .
- It is remarkable and trivial- that the couplings that appear with the new neutral Higgs  $R^0$  and  $A: N_u, N_d$  etc also appear in the charged Higgs  $H^{\pm}$  couplings.

## The BGL models in the quark and lepton sectors I

- The BGL models (after Branco, Grimus and Lavoura) are 2HDM with Flavour Symmetries in such a way that they implement the "general" idea of Minimal Flavour Violation (MFV) in a renormalizable model. In general the symmetry has to be implemented both in the quark and lepton sectors. The different types of symmetries we can impose give rise to different models
- In the quark sector we have **three up type models**  $(u_1 = u, u_2 = c, u_3 = t)$  defined by the following symmetries and with the corresponding couplings

$$\begin{array}{l} Q_{L_{k}} \rightarrow e^{i\tau} Q_{L_{k}} \\ u_{R_{k}} \rightarrow e^{i2\tau} u_{R_{k}} \\ \Phi_{2} \rightarrow e^{i\tau} \Phi_{2} \end{array} \left\{ \begin{array}{l} (N_{d})_{ij} = \left[ t_{\beta} \delta_{ij} - \left( t_{\beta} + t_{\beta}^{-1} \right) V_{ki}^{*} V_{kj} \right] m_{dj} \\ (N_{u})_{ij} = \left[ t_{\beta} - \left( t_{\beta} + t_{\beta}^{-1} \right) \delta_{ik} \right] \delta_{ij} m_{u_{j}} \end{array} \right.$$

They have FCYC in the down sector  $N_d$ .

### The BGL models in the quark and lepton sectors II

• And three down type models  $(d_1 = d, d_2 = s, d_3 = b)$ 

$$\begin{array}{l} Q_{L_k} \to e^{i\tau} Q_{L_k} \\ d_{R_k} \to e^{i2\tau} d_{R_k} \\ \Phi_2 \to e^{i\tau} \Phi_2 \end{array} \left\{ \begin{array}{l} (N_d)_{ij} = \left[ t_\beta - \left( t_\beta + t_\beta^{-1} \right) \delta_{ik} \right] \delta_{ij} m_{dj} \\ (N_u)_{ij} = \left[ t_\beta \delta_{ij} - \left( t_\beta + t_\beta^{-1} \right) V_{ik} V_{jk}^* \right] m_{u_j} \end{array} \right.$$

They have FCYC in the up sector  $N_u$ .

In the lepton sector we have three neutrino type models (ν<sub>1</sub>, ν<sub>2</sub>, ν<sub>3</sub>) defined by the following symmetries and with the corresponding couplings

$$\begin{array}{c} L_{L_k} \to e^{i\tau} L_{L_k} \\ \nu_{R_k} \to e^{i2\tau} \nu_{R_k} \\ \Phi_2 \to e^{i\tau} \Phi_2 \end{array} \left\{ \begin{array}{c} (N_l)_{ij} = \left[ t_\beta \delta_{ij} - \left( t_\beta + t_\beta^{-1} \right) U_{ik} U_{jk}^* \right] m_{lj} \\ (N_\nu)_{ij} = \left[ t_\beta - \left( t_\beta + t_\beta^{-1} \right) \delta_{ik} \right] \delta_{ij} m_{\nu_j} \end{array} \right.$$

With FCYC in the charged lepton sector.

• And three charged lepton type models ( $l_1 = e$ ,  $l_2 = \mu$ ,  $l_3 = au$ )

$$\begin{array}{c} L_{L_{k}} \rightarrow e^{i\tau}L_{L_{k}} \\ I_{R_{k}} \rightarrow e^{i2\tau}I_{R_{k}} \\ \Phi_{2} \rightarrow e^{i\tau}\Phi_{2} \end{array} \begin{cases} (N_{l})_{ij} = \left[t_{\beta} - \left(t_{\beta} + t_{\beta}^{-1}\right)\delta_{ik}\right]\delta_{ij}m_{lj} \\ (N_{\nu})_{ij} = \left[t_{\beta}\delta_{ij} - \left(t_{\beta} + t_{\beta}^{-1}\right)U_{ki}^{*}U_{kj}\right]m_{\nu_{j}} \end{cases}$$

 A general BGL model is defined both in the quark and in the leptonic sector. There are 36 different models grouped by having FCYC either in the up or down sector and either in the charged lepton or the neutrino sectors.

## The BGL models in the quark and lepton sectors IV

• All BGL models are invariant under  $\Phi_2 \rightarrow e^{i\tau} \Phi_2$ . Therefore the Higgs potential should be the CP conserving

$$\mathcal{V} = \mu_1 \Phi_1^{\dagger} \Phi_1 + \mu_2 \Phi_2^{\dagger} \Phi_2 - m_{12} \left( \Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1 \right) \\ + 2\lambda_3 \left( \Phi_1^{\dagger} \Phi_1 \right) \left( \Phi_2^{\dagger} \Phi_2 \right) + 2\lambda_4 \left( \Phi_1^{\dagger} \Phi_2 \right) \left( \Phi_2^{\dagger} \Phi_1 \right) \\ + \lambda_1 \left( \Phi_1^{\dagger} \Phi_1 \right)^2 + \lambda_2 \left( \Phi_2^{\dagger} \Phi_2 \right)^2$$

where a soft breaking term has been introduced to avoid a Goldstone boson.

## The BGL models in the quark and lepton sectors ${\sf V}$

• By expanding the neutral scalar components around their vacuum expectation values  $\Phi_i^0 = \frac{1}{\sqrt{2}} (v_i + \rho_i + i\eta_i)$  we can connect the real mass neutral eigenstates with the neutral fields in the Higgs basis:

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$$
$$\begin{pmatrix} H^0 \\ R^0 \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$$

The relevant angle is  $(\beta - \alpha) : c_{\beta\alpha} = \cos(\beta - \alpha)$ ,  $s_{\beta\alpha} = \sin(\beta - \alpha)$ 

$$\left(\begin{array}{c}H^{0}\\R^{0}\end{array}\right) = \left(\begin{array}{cc}c_{\beta\alpha} & s_{\beta\alpha}\\-s_{\beta\alpha} & c_{\beta\alpha}\end{array}\right) \left(\begin{array}{c}H\\h\end{array}\right)$$

### The Yukawa Couplings in BGL models I

• The Yukawa couplings of the 125 GeV scalar is for all type of fermions *f* 

$$L_{h\overline{f}f} = -\overline{f_L}Y^{(f)}f_Rh + h.c$$
  
$$Y^{(f)} = \frac{1}{v} \left[s_{\beta\alpha}D_f + c_{\beta\alpha}N_f\right]$$

 In the k-up type model uk we have FCYC in the down sector controlled by

$$Y_{ij}^{\left(d
ight)}\left[u_{k}
ight]=-c_{etalpha}\left(t_{eta}+t_{eta}^{-1}
ight)V_{ki}^{*}V_{kj}rac{m_{d_{j}}}{v}$$
 ;  $i
eq j$ 

 In the k-down type model dk we have FCYC in the up sector controlled by

$$Y_{ij}^{(u)}\left[d_{k}
ight]=-c_{etalpha}\left(t_{eta}+t_{eta}^{-1}
ight)V_{ik}V_{jk}^{*}rac{m_{u_{j}}}{v}\;;\;\;i
eq j$$

FCYC in 2HDM at SCALARS 2015

• In the neutrino type model  $\nu_k$  we have FCYC in the charged lepton sector controlled by

$$Y_{ij}^{(l)}\left[ {{
u }_k} 
ight] = - {c_{eta lpha }}\left( {{t_eta + t_eta ^{ - 1} }} 
ight) U_{ik} U_{jk}^* rac{{m_{l_j }}}{v} \hspace{0.2cm} ; \hspace{0.2cm} i 
eq j$$

• For the diagonal coupling to the top in model  $q_i$  we have

| MODEL | COUPLING to top in units of $\left(\frac{m_t}{v}\right)$                                                                                          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| И, С  | $(s_{etalpha}-c_{etalpha}t_{eta})$                                                                                                                |
| t     | $\left( s_{etalpha} + c_{etalpha} t_eta^{-1}  ight)$                                                                                              |
| di    | $\left  \left  s_{etalpha} - c_{etalpha} \left[ \left( 1 - \left  V_{ti}  ight ^2  ight) t_eta - \left  V_{ti}  ight ^2 t_eta^{-1}  ight]  ight.$ |

## The Yukawa Couplings in BGL models III

• For the diagonal coupling to the bottom in model  $q_i$  we have

| MODEL          | COUPLING to bottom in units of $\left(\frac{m_b}{v}\right)$                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| d, s           | $\left( s_{etalpha} - c_{etalpha} t_eta  ight)$                                                                                                   |
| b              | $\left( s_{etalpha} + c_{etalpha} t_eta^{-1}  ight)$                                                                                              |
| u <sub>i</sub> | $\left[ \left. s_{etalpha} - c_{etalpha} \left[ \left( 1 - \left  V_{ib}  ight ^2  ight) t_eta - \left  V_{ib}  ight ^2 t_eta^{-1}  ight]  ight.$ |

• For the diagonal coupling to the tau in models  $I_i$  or  $v_i$  we have

| MODEL   | COUPLING to tau in units of $\left(rac{m_{	au}}{v} ight)$                                                                                                     |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| е, µ    | $\left( s_{etalpha} - c_{etalpha} t_eta  ight)$                                                                                                                |  |  |  |
| τ       | $-\left(s_{etalpha}+c_{etalpha}t_{eta}^{-1} ight)$                                                                                                             |  |  |  |
| $\nu_i$ | $\left[ \left. s_{etalpha} - c_{etalpha} \left[ \left( 1 - \left  U_{	au i}  ight ^2  ight) t_eta - \left  U_{	au i}  ight ^2 t_eta^{-1}  ight]  ight]  ight.$ |  |  |  |

## A first summary

- All FCYC effects are proportional to  $c_{etalpha}\left(t_{eta}+t_{eta}^{-1}
  ight)$
- We can have at tree level:  $t \rightarrow hu$ , hc with down type models.
- We can have at tree level:  $h \to \mu \overline{\tau}$ ,  $e \overline{\tau}$ ,  $e \overline{\mu}$  in neutrino type models
- We can have at tree level  $h \rightarrow d\overline{b}, s\overline{b}$  in up type model.
- In general we will have modified diagonal couplings in all models.
- But all these new couplings are controlled by the free parameters  $\alpha$  and  $\beta$  and the well-known CKM V and PMNS U matrices.
- Of course before making prediction we have to impose the constraint on  $\alpha$  and  $\beta$ 
  - From non FCYC: Higgs couplings to  $\gamma\gamma$ , WW, ZZ,  $b\overline{b}$ ,  $\tau\overline{\tau}$ ,  $t\overline{t}$ . Note that both production and decay are modified according to previous tables.
  - From low-energy flavour physics: rather involved since H and A are also present together with h; requires specific study (additional parameters) [Botella, Branco, Carmona, Nebot, Pedro & Rebelo, JHEP(2014)]

• We impose the signal strengths  $\mu_i^X$  in different decay channels X, where *i* labels the different combinations of production mechanism:

$$\mu_{i}^{X} = \frac{\sigma \left(pp \to h\right)^{i}}{\sigma \left(pp \to h\right)_{SM}^{i}} \frac{Br \left(h \to X\right)}{Br \left(h \to X\right)_{SM}}$$

• We use for  $m_h = 125 GeV$  and  $\sqrt{s} = 8 TeV$  and  $\sigma (pp \rightarrow h)^i_{SM}$  in pb.

| Prod chan <i>i</i>                   | ggF   | VBF   | Wh     | Zh     | tTh    | bbh    |
|--------------------------------------|-------|-------|--------|--------|--------|--------|
| $\sigma (pp \rightarrow h)^{i}_{SM}$ | 19.27 | 1.578 | 0.7046 | 0.4153 | 0.1293 | 0.2035 |

| Decay chan X               | bb    | $WW^*$ | ZZ*    | $	au\overline{	au}$ | $\gamma\gamma$ | gg     |
|----------------------------|-------|--------|--------|---------------------|----------------|--------|
| $Br(h \rightarrow X)_{SM}$ | 0.578 | 0.216  | 0.0267 | 0.0637              | 0.0023         | 0.0856 |

and the data from ATLAS and CMS

- We also impose constraints from CMS and ATLAS on  $h 
  ightarrow \mu au$  and t 
  ightarrow hq
- The result for a few models are

#### Constraints from the Higgs sector III



F.J.B. (IFIC (U.Valencia-CSIC))

FCYC in 2HDM at SCALARS 2015

• In the down type models -  $d_k$  type model - there are tree level top decays like  $t \rightarrow uh, ch$ 

$$Br^{\left(d_{k}
ight)}\left(t
ightarrow qh
ight)=0.131rac{\left|V_{tk}V_{qk}
ight|^{2}}{\left|V_{tb}
ight|^{2}}\left|c_{etalpha}\left(t_{eta}+t_{eta}^{-1}
ight)
ight|^{2}$$

• CMS and ATLAS bound imply for models *b* and *s*:  $|V_{tb}V_{cb}|^2 \sim |V_{ts}V_{cs}|^2 \sim \lambda^4$ 

$$\left|c_{\beta\alpha}\left(t_{\beta}+t_{\beta}^{-1}\right)\right|\lesssim4.9$$

• For all models of the type down-charged lepton  $(d_k, I_m)$  we have:

#### Rare top decays II



F.J.B. (IFIC (U.Valencia-CSIC))

э

• Naive constraints from the Higgs tree level contributions to  $D^0 - \overline{D}^0$ are included in the figures. But remember that in these models there are also contributions from H and A. It turns out that neglecting low quark masses in each meson - i.e.  $m_d/m_s$  in  $K^0 - \overline{K}^0$  - the total contribution is proportional to

$$\left(rac{c_{etalpha}^2}{m_h^2}+rac{s_{etalpha}^2}{m_H^2}-rac{1}{m_A^2}
ight)$$

Oblique corrections accommodates better with important cancellations. Therefore these models present important "characteristic" cancellations invalidating the direct use of the naive bounds coming from the tree level Higgs exchange contribution alone.  In up type models - u<sub>k</sub> type models - there are tree level h decays like h → sb, bs, db, bd, etc...

$${\mathcal B} r^{(u_k)}\left(h 
ightarrow q \overline{b} + b \overline{q}
ight) = 0.578 rac{\Gamma^{SM}\left(h
ight)}{\Gamma\left(h
ight)} \left|V_{kq}V_{kb}
ight|^2 \left|c_{etalpha}\left(t_eta + t_eta^{-1}
ight)
ight|^2$$

- For the c and t models:  $|V_{cs}V_{cb}|^2 \sim |V_{ts}V_{tb}|^2 \sim \lambda^4$  the channel  $h \rightarrow sb$  can reach values for the branching ratio of order  $10^{-1}$  for values of  $|c_{\beta\alpha}(t_{\beta} + t_{\beta}^{-1})| \sim 5 10$  in charged lepton models.
- For all models of the type up-charged lepton  $(d_k, I_m)$  we have:

#### Flavour Changing Higgs decays to quarks II



F.J.B. (IFIC (U.Valencia-CSIC))

December 2015 2

• As before naive bounds from  $K^0 - \overline{K}^0$ ,  $B_d^0 - \overline{B}_d^0$  and  $B_s^0 - \overline{B}_s^0$  mixing are displayed in the figure. They correspond, in the *u* and *c* (*t*) models to  $\left|c_{\beta\alpha}\left(t_{\beta} + t_{\beta}^{-1}\right)\right| \lesssim 0.43 \ (0.60)$ 

## Rare Higgs decays to leptons and correlation with rare decays to quarks I

• In neutrino type models -  $\nu_k$  type models - we have the interesting processes  $h \rightarrow \mu^{\pm} \tau^{\mp}$ ,  $e^{\pm} \tau^{\mp}$ ,  $e^{\pm} \mu^{\mp}$ 

$$Br^{(\nu_{k})}\left(h \to \mu\tau\right) = 0.0637 \frac{\Gamma^{SM}\left(h\right)}{\Gamma\left(h\right)} \left|U_{\mu k}U_{\tau k}\right|^{2} \left|c_{\beta\alpha}\left(t_{\beta} + t_{\beta}^{-1}\right)\right|^{2}$$

• For the  $\nu_3$  in order to get a  $h \to \mu \tau$  branching ratio of order  $10^{-2}$  -Br  $(h \to \mu \tau) = \begin{pmatrix} 0.84 & +0.39 \\ & -0.37 \end{pmatrix}$ % - we need a value of  $\left| c_{\beta \alpha} \left( t_{\beta} + t_{\beta}^{-1} \right) \right| \sim 1$ 

## Rare Higgs decays to leptons and correlation with rare decays to quarks II

 If we consider model of type down-neutrino (d<sub>k</sub>, ν<sub>l</sub>) we will have correlations among t → hc and h → μτ controlled by

$$Br^{(d_k)}\left(t \to qh\right) = 2.06 \left| \frac{V_{tk} V_{qk}}{V_{tb} U_{\mu l} U_{\tau l}} \right|^2 \frac{\Gamma^{SM}\left(h\right)}{\Gamma\left(h\right)} Br^{(\nu_k)}\left(h \to \mu\tau\right)$$

## Rare Higgs decays to leptons and correlation with rare decays to quarks III



F.J.B. (IFIC (U.Valencia-CSIC))

## Rare Higgs decays to leptons and correlation with rare decays to quarks IV

note that the constraint on  $h \rightarrow \mu \tau$  has reduced the range of variation of  $Br^{(d_k)}(t \rightarrow ch)$  respect to charged lepton models.

# Rare Higgs decays to leptons and correlation with rare decays to quarks V

 In the case of (u<sub>k</sub>, v<sub>l</sub>) models we get correlations among rare leptonic and hadronic Higgs decays



F.J.B. (IFIC (U.Valencia-CSIC))

FCYC in 2HDM at SCALARS 2015

#### Incorporating leptonic constraint

- $\mu \to e\gamma$  constrains very severely the coupling  $h \to \mu e$  via the two-loop Barr-Zee diagrams. In BGL models  $\mu \to e\gamma$  will translate into an important constraint on  $c_{\beta\alpha} \left( t_{\beta} + t_{\beta}^{-1} \right)$ . However not only the Higgs *h* can be exchanged but also *H* and *A* will enter with the known tendency to produce destructive interference between the different contribution as in neutral meson mixing-.
- The results of our analysis are shown in the following figures:



## Conclusions

- We have analyzed 2HDM with tree level FCYC, controlled and suppressed by  $V_{CKM}$  and/or light quark masses (or  $U_{PMNS}$  in the leptonic sector).
- There are 36 different BGL models, enforced by different symmetries, and having either FCYC in the up or in the down sector (similar in the leptonic sector)
- Given a model, the free parameters in the Yukawa coupling are  $\tan\beta$  and  $\cos\left(\beta-\alpha\right)$  .
- BGL 2HDM lead to New Physics effects interesting at LHC and /or at a Linear Collider:  $t \rightarrow qh, h \rightarrow l\overline{\tau}, h \rightarrow q\overline{b}$
- We have used all the constraints related to Higgs production and its subsequent Higgs decay.
- Low energy flavour constraints have been discussed, but important cancellations operate both in meson mixing and in  $\mu \to e\gamma$  among others.

#### Back I

۲



F.J.B. (IFIC (U.Valencia-CSIC))

December 2015 31 / 37

э

イロト イ団ト イヨト イヨト

#### Back II

۲



December 2015 32 / 3

э

イロト イ団ト イヨト イヨト

#### Back III

۲



December 2015 33 / 37

-

・ロト ・ 日 ト ・ 田 ト ・

#### Back IV

۲



э

イロト イヨト イヨト イヨト

$$B_{r} (\mu \to e\gamma)_{2l} = \frac{3}{8} \left(\frac{\alpha}{\pi}\right)^{3} \left(t_{\beta} + t_{\beta}^{-1}\right)^{2} \left|U_{ej}U_{\mu j}^{*}\right|^{2} |A|^{2}$$
$$A = c_{\beta\alpha}s_{\beta\alpha} \left[\Sigma (m_{h}) - \Sigma (m_{H})\right] + \frac{8K_{t}}{3} \left[c_{\beta\alpha}^{2}f(z_{h}) + s_{\beta\alpha}^{2}f(z_{H}) - g(z_{A})\right]$$
where  $z_{X} = m_{t}^{2}/m_{X}^{2}$ 

FCYC in 2HDM at SCALARS 2015

э.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト



2

イロト イヨト イヨト イヨト

With

$$egin{aligned} & \left(t_eta+t_eta^{-1}
ight)=rac{1}{c_eta s_eta} \ & \left(t_eta+t_eta^{-1}
ight)=rac{1}{c_eta s_eta} \ & \left|s_{2lpha}\left(\lambda_2 t_eta-\lambda_1 t_eta^{-1}
ight)+2\lambda_{34}c_{2lpha}
ight| \ & \left|c_{eta-lpha}\left(t_eta+t_eta^{-1}
ight)
ight|\lesssim ext{ a few} \end{aligned}$$

F.J.B. (IFIC (U.Valencia-CSIC)) FCYC

FCYC in 2HDM at SCALARS 2015

\* ロ > \* 個 > \* 注 > \* 注 >

2