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Symmetries in 3HDM

The NHDM potential

V = Yab(φ†aφb) + Zab,cd(φ†aφb)(φ†cφd)

may be invariant under global symmetries:

family symmetries: φa → Uabφb, with U ∈ U(N),

GCP symmetries: φi
CP−−→ Xijφ

∗
j , with X ∈ U(N).

Each symmetry group G and its breaking by vevs Gv ⊆ G lead to a characteristic
phenomenology (scalars, DM candidates, fermion masses, mixing, sources of
CPV, etc).
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Symmetries in 3HDM

2HDM explored in detail; 3HDM gaining more attention.

Classification of symmetries in 3HDM:

all abelian symmetries: [Ferreira, Silva, 1012.2874; Ivanov, Keus, Vdovin,
1112.1660]

non-abelian discrete symmetries: [Ivanov, Vdovin, 1206.7108, 1210.6553]

listing all non-abelian continuous symmetries is straightforward

mass-degenerate Higgses from A4 or S4 3HDM [Degee, Ivanov, Keus,
1211.4989]

symmetry breaking patterns G → Gv : [Ivanov, Nishi, 1410.6139]

various options of CP symmetries and their interplay with G [classical works]

higher order CP symmetry CP4: [Ivanov, Keus, Vdovin, 1112.1660; Ivanov,
Silva, 1512.09276].
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Basis invariants

With N Higgs doublets, there is large freedom of basis changes.

A symmetry can be evident in one basis and hidden in another → challenge!

One needs basis-invariant criteria for various phenomena in NHDM.

Usual recipe [Botella, Silva, 1995]: construct basis invariants Jk and link them to
the feature you want to study.

It was applied, in particular, to the explicit CP-conservation in 2HDM [Davidson,
Haber, 2005; Gunion, Haber, 2005; Branco, Rebelo, Silva-Marcos, 2005]:

Im(Z (1)
ac Z

(1)
eb Zbe,cdYda) = 0 , Im(YabYcdZba,df Z

(1)
fc ) = 0 ,

Im(Zab,cdZ
(1)
bf Z

(1)
dh Zfa,jkZkj,mnZnm,hc) = 0 ,

Im(Zac,bdZce,dgZeh,fqYgaYhbYqf ) = 0 , where Z (1)
ac ≡ Zab,bc .
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Bilinear space formalism

Alternative road: geometric constructions in the bilinear space [Nachtmann et al,
2004–2007; Ivanov, 2006–2007; Nishi, 2006–2008].

V depends on bilinears φ†aφb. Organize them into combinations:

r0 = φ†aφa ≡ φ
†
1φ1 + φ†2φ2 , ri = φ†aσ

i
abφb ≡

 2Re(φ†1φ2)

2Im(φ†1φ2)

(φ†1φ1)− (φ†2φ2)

 ,

which satisfy r0 ≥ 0 and r2
0 − r2

i ≥ 0.

Basis change: an SO(3) rotation; CP-transformation: a mirror reflection.

The general 2HDM Higgs potential is a quadratic form in (r0, ri ):

V = −M0r0 −Mi ri + Λ0r
2
0 + Li r0ri + Λij ri rj .
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Bilinear space formalism

2HDM scalar sector = M0, Λ0, 3-vectors Mi and Li , and 3× 3 matrix Λij .

Λ ij L i Mi

e(1)

e(2)

e(3)

Orientation of Mi and Li with respect to eigenvectors of Λij ⇒ symmetries.

Basis-independent conditions in terms of basis-covariant objects!
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Linking the two approaches

basis-invariants ⇔ basis-invariant features of basis-covariant objects.

But it may be extremely challenging to explicitly establish the link!

Explicit CP2 conservation in 3HDM:

invariants: attempted at in [Varzielas et al, 1603.06942; 1706.07606],

bilinears: solved in [Nishi, hep-ph/0605153].

Explicit CP4 conservation in 3HDM:

invariants: none,

bilinears: solved in [Ivanov, Nishi, Silva, Trautner, 1810.13396],

(for a related question see [Haber, Ogreid, Osland, Rebelo, 1808.08629]).
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Bilinears for 3HDM

Bilinear approach for 3HDM:

r0 =
1√
3
φ†aφa , ri = φ†a(t i )abφb , i = 1, . . . , 8 ,

where ti = λi/2 are SU(3) generators satisfying

[ti , tj ] = ifijktk , {ti , tj} =
1

3
δij13 + dijktk .

The potential takes the same form

V = −M0r0 −Mi ri + Λ00r
2
0 + Li r0ri + Λij ri rj ,

with vectors Mi , Li ∈ R8 and an 8× 8 matrix Λij .

Basis changes → SO(8) rotations. However, SU(3) ⊂ SO(8) ⇒ matrix Λij is not
in general diagonalizable by a basis change!
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Constructions in the adjoint space

Suppose vectors ai , bi ∈ R8. One can define new products:

Fi ≡ 2fijkajbk , Di ≡
√

3dijkajbk .

One can also define non-linear action ai 7→
√

3dijkajak .

Applied to the eigenvectors of Λij , these products help detect
basis-invariant structures in Λij ⇒ detecting symmetries in 3HDM.

I will show below two examples:

basis-invariant recognition of explicit CP2 conservation in 3HDM.

basis-invariant recognition of explicit CP4 conservation in 3HDM.

But the method is general and can be developed for all symmetries in 3HDM.
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Explicit CP2 conservation

CP2: there exists a basis in which it takes the standard form: φa → φ∗a .

In the bilinear space, the standard CP is the following reflection:

vectors from V+ = (r3, r8, r1, r4, r6) stay unchanged,

vectors from V− = (r2, r5, r7) flip signs.

3HDM potential is explicitly CP2-invariant if there exists a basis in which

vectors Mi , Li ∈ V+,

Λij has the block-diagonal form: Λij =

(
3×3

0

0
5×5

)

with arbitrary blocks:
3×3

in V− and
5×5

in V+.
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Explicit CP2 conservation

Detecting
3×3

in (r2, r5, r7):

There exist three mutually orthogonal eigenvectors of Λij denoted e, e′, e′′,
which are closed under f -product: fijkeje

′
k ∝ e′′i , etc.

Compute I = 2|fijkeie′j e′′k |. There exist only two options:

I = 1: there exists a basis in which (e, e′, e′′) = (r2, r5, r7);

I = 2: there exists a basis in which (e, e′, e′′) = (r1, r2, r3).

Together with the condition that M, L are orthogonal to e, e′, e′′, the value I = 1
leads to the explicit CP2 conservation [Nishi, hep-ph/0605153].
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Explicit CP4 conservation

CP4 leads in a certain basis in the bilinear space to

r8 → r8 , (r1, r2, r3)→ −(r1, r2, r3)

r4 → r6 , r6 → −r4 , r5 → −r7 , r7 → r5 .

3HDM potential is explicitly CP4-invariant if there exists a basis in which

all possible vectors Mi , Li , (Λn)ijLj , Ki ≡ dijkΛjk , . . . are all parallel to r8
(complete alignment),

the matrix Λij is

Λij =

 3×3
0 0

0
4×4

0

0 0 Λ88


with an arbitrary 3× 3 block in the subspace (r1, r2, r3) and a specific
pattern in the 4× 4 block.
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Detecting r8

Consider ai ∈ R8. If
√

3dijkajak is parallel to ai , we say that ai is
self-aligned.

ai is self-aligned ⇔ there is a basis in which ai is along r8.

Thus, if there exists an eigenvector of Λij which is self-aligned, it can

be rotated along direction r8. We denote it as e
(8)
i .
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Detecting block in (r1, r2, r3)

The defining feature of CP4 3HDM is complete alignment and the block-diagonal
structure

Λij =

 3×3
0 0

0
4×4

0

0 0 Λ88


That is, three eigenvectors of Λij belong to the (r1, r2, r3) subspace.

Vectors in (r1, r2, r3) can be recognized in the basis-invariant way:

ai ∈ (r1, r2, r3) ⇔ fijkaje
(8)
k = 0 .

That is, ai is f -orthogonal to e
(8)
i .
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Necessary and sufficient conditions for CP4 in 3HDM

A basis-invariant algorithm for recognizing the presence of CP4 in 3HDM.

Write down Mi , Li , Λij . Calculate eigenvectors of Λij .

The model possesses an explicit CP4 if and only if

there exists a self-aligned eigenvector: dijke
(8)
j e

(8)
k is parallel to e

(8)
i ;

there exist three eigenvectors e, e′, e′′ which are f -orthogonal to e
(8)
i .

Mi , Li , Ki = dijkΛjk , and K
(2)
i = dijk(Λ2)jk are aligned with e

(8)
i .

See more details in [Ivanov, Nishi, Silva, Trautner, 1810.13396].
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Conclusions

Work to do

All 3HDMs with symmetries

can be detected in this way!
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