Recognizing symmetries in 3HDM in a basis-invariant way

Igor Ivanov

CFTP, Instituto Superior Técnico, Universidade de Lisboa

Harmonia V, Warsaw, 6-8 December, 2018

based on: I. P. Ivanov, C. Nishi, J. P. Silva, A. Trautner, arXiv:1810.13396 and work in progress

・ロト ・四ト ・モト・・モト

DQC

2 Explicit CP conservation in 3HDM

- Explicit CP2
- Explicit CP4

Symmetries in 3HDM

The NHDM potential

$$V = Y_{ab}(\phi_a^{\dagger}\phi_b) + Z_{ab,cd}(\phi_a^{\dagger}\phi_b)(\phi_c^{\dagger}\phi_d)$$

may be invariant under global symmetries:

- family symmetries: $\phi_a \rightarrow U_{ab}\phi_b$, with $U \in U(N)$,
- GCP symmetries: $\phi_i \xrightarrow{CP} X_{ij}\phi_j^*$, with $X \in U(N)$.

Each symmetry group G and its breaking by vevs $G_v \subseteq G$ lead to a characteristic phenomenology (scalars, DM candidates, fermion masses, mixing, sources of CPV, etc).

Symmetries in 3HDM

2HDM explored in detail; 3HDM gaining more attention.

Classification of symmetries in 3HDM:

- all abelian symmetries: [Ferreira, Silva, 1012.2874; Ivanov, Keus, Vdovin, 1112.1660]
- non-abelian discrete symmetries: [Ivanov, Vdovin, 1206.7108, 1210.6553]
- listing all non-abelian continuous symmetries is straightforward
- mass-degenerate Higgses from A₄ or S₄ 3HDM [Degee, Ivanov, Keus, 1211.4989]
- symmetry breaking patterns $G \rightarrow G_{v}$: [Ivanov, Nishi, 1410.6139]
- various options of CP symmetries and their interplay with G [classical works]
- higher order *CP* symmetry CP4: [Ivanov, Keus, Vdovin, 1112.1660; Ivanov, Silva, 1512.09276].

Basis invariants

With N Higgs doublets, there is large freedom of basis changes.

A symmetry can be evident in one basis and hidden in another \rightarrow challenge!

One needs basis-invariant criteria for various phenomena in NHDM.

Usual recipe [Botella, Silva, 1995]: construct basis invariants J_k and link them to the feature you want to study.

It was applied, in particular, to the explicit *CP*-conservation in 2HDM [Davidson, Haber, 2005; Gunion, Haber, 2005; Branco, Rebelo, Silva-Marcos, 2005]:

$$\begin{split} &\operatorname{Im}(Z_{ac}^{(1)}Z_{eb}^{(1)}Z_{be,cd}Y_{da}) = 0, \qquad \operatorname{Im}(Y_{ab}Y_{cd}Z_{ba,df}Z_{fc}^{(1)}) = 0, \\ &\operatorname{Im}(Z_{ab,cd}Z_{bf}^{(1)}Z_{dh}^{(1)}Z_{fa,jk}Z_{kj,mn}Z_{nm,hc}) = 0, \\ &\operatorname{Im}(Z_{ac,bd}Z_{ce,dg}Z_{eh,fq}Y_{ga}Y_{hb}Y_{qf}) = 0, \quad \text{where} \quad Z_{ac}^{(1)} \equiv Z_{ab,bc}. \end{split}$$

< ∃ > 3

SQC

Bilinear space formalism

Alternative road: geometric constructions in the bilinear space [Nachtmann et al, 2004–2007; Ivanov, 2006–2007; Nishi, 2006–2008].

V depends on bilinears $\phi_a^{\dagger}\phi_b$. Organize them into combinations:

$$\mathbf{r}_{0} = \phi_{a}^{\dagger} \phi_{a} \equiv \phi_{1}^{\dagger} \phi_{1} + \phi_{2}^{\dagger} \phi_{2} , \quad \mathbf{r}_{i} = \phi_{a}^{\dagger} \sigma_{ab}^{i} \phi_{b} \equiv \begin{pmatrix} 2 \operatorname{Re}(\phi_{1}^{\dagger} \phi_{2}) \\ 2 \operatorname{Im}(\phi_{1}^{\dagger} \phi_{2}) \\ (\phi_{1}^{\dagger} \phi_{1}) - (\phi_{2}^{\dagger} \phi_{2}) \end{pmatrix} ,$$

which satisfy $r_0 \ge 0$ and $r_0^2 - r_i^2 \ge 0$.

Basis change: an SO(3) rotation; *CP*-transformation: a mirror reflection. The general 2HDM Higgs potential is a quadratic form in (r_0, r_i) :

$$V = -M_0 r_0 - M_i r_i + \Lambda_0 r_0^2 + L_i r_0 r_i + \Lambda_{ij} r_i r_j \,.$$

Sar

Bilinear space formalism

2HDM scalar sector = M_0 , Λ_0 , 3-vectors M_i and L_i , and 3 × 3 matrix Λ_{ij} .

Orientation of M_i and L_i with respect to eigenvectors of $\Lambda_{ij} \Rightarrow$ symmetries.

Basis-independent conditions in terms of basis-covariant objects!

Linking the two approaches

basis-invariants \Leftrightarrow basis-invariant features of basis-covariant objects.

But it may be extremely challenging to explicitly establish the link!

Explicit CP2 conservation in 3HDM:

- invariants: attempted at in [Varzielas et al, 1603.06942; 1706.07606],
- bilinears: solved in [Nishi, hep-ph/0605153].

Explicit CP4 conservation in 3HDM:

- invariants: none,
- bilinears: solved in [Ivanov, Nishi, Silva, Trautner, 1810.13396],
- (for a related question see [Haber, Ogreid, Osland, Rebelo, 1808.08629]).

Bilinears for 3HDM

Bilinear approach for 3HDM:

$$r_0 = \frac{1}{\sqrt{3}} \phi_a^{\dagger} \phi_a, \quad r_i = \phi_a^{\dagger}(t^i)_{ab} \phi_b, \quad i = 1, \dots, 8,$$

where $t_i = \lambda_i/2$ are SU(3) generators satisfying

$$[t_i, t_j] = i f_{ijk} t_k, \quad \{t_i, t_j\} = \frac{1}{3} \delta_{ij} \mathbf{1}_3 + d_{ijk} t_k.$$

The potential takes the same form

$$V = -M_0 r_0 - M_i r_i + \Lambda_{00} r_0^2 + L_i r_0 r_i + \Lambda_{ij} r_i r_j ,$$

with vectors $M_i, L_i \in \mathbb{R}^8$ and an 8 × 8 matrix Λ_{ij} .

Basis changes $\rightarrow SO(8)$ rotations. However, $SU(3) \subset SO(8) \Rightarrow \text{matrix } \Lambda_{ij}$ is not in general diagonalizable by a basis change!

Constructions in the adjoint space

Suppose vectors $a_i, b_i \in \mathbb{R}^8$. One can define new products:

$$F_i \equiv 2f_{ijk}a_jb_k$$
, $D_i \equiv \sqrt{3}d_{ijk}a_jb_k$.

One can also define non-linear action $a_i \mapsto \sqrt{3} d_{ijk} a_j a_k$.

Applied to the eigenvectors of Λ_{ij} , these products help detect basis-invariant structures in $\Lambda_{ij} \Rightarrow$ detecting symmetries in 3HDM.

I will show below two examples:

- basis-invariant recognition of explicit CP2 conservation in 3HDM.
- basis-invariant recognition of explicit CP4 conservation in 3HDM.

But the method is general and can be developed for all symmetries in 3HDM.

Sar

Explicit CP2 conservation

CP2: there exists a basis in which it takes the standard form: $\phi_a \rightarrow \phi_a^*$. In the bilinear space, the standard *CP* is the following reflection:

- vectors from $V_+ = (r_3, r_8, r_1, r_4, r_6)$ stay unchanged,
- vectors from $V_{-} = (r_2, r_5, r_7)$ flip signs.

3HDM potential is explicitly CP2-invariant if there exists a basis in which

- vectors $M_i, L_i \in V_+$,
- Λ_{ij} has the block-diagonal form: $\Lambda_{ij} = \begin{pmatrix} \Box_{3\times 3} & 0 \\ 0 & \Box_{5\times 5} \end{pmatrix}$ with arbitrary blocks: $\Box_{3\times 3}$ in V_{-} and $\Box_{5\times 5}$ in V_{+} .

Explicit CP2 conservation

Detecting $\Box_{3\times 3}$ in (r_2, r_5, r_7) :

- There exist three mutually orthogonal eigenvectors of Λ_{ij} denoted e, e', e'', which are closed under *f*-product: $f_{ijk}e_je'_k \propto e''_i$, etc.
- Compute $\mathcal{I} = 2|f_{ijk}e_ie'_ie''_k|$. There exist only two options:
 - $\mathcal{I} = 1$: there exists a basis in which $(e, e', e'') = (r_2, r_5, r_7)$;
 - $\mathcal{I} = 2$: there exists a basis in which $(e, e', e'') = (r_1, r_2, r_3)$.

Together with the condition that M, L are orthogonal to e, e', e'', the value $\mathcal{I} = 1$ leads to the explicit CP2 conservation [Nishi, hep-ph/0605153].

Explicit CP4 conservation

CP4 leads in a certain basis in the bilinear space to

$$r_8 \to r_8$$
, $(r_1, r_2, r_3) \to -(r_1, r_2, r_3)$
 $r_4 \to r_6$, $r_6 \to -r_4$, $r_5 \to -r_7$, $r_7 \to r_5$

3HDM potential is explicitly CP4-invariant if there exists a basis in which

- all possible vectors M_i , L_i , $(\Lambda^n)_{ij}L_j$, $K_i \equiv d_{ijk}\Lambda_{jk}$,... are all parallel to r_8 (complete alignment),
- the matrix Λ_{ij} is

$$\Lambda_{ij} = \begin{pmatrix} \Box_{3\times3} & 0 & 0 \\ 0 & \Box_{4\times4} & 0 \\ 0 & 0 & \Lambda_{88} \end{pmatrix}$$

with an arbitrary 3×3 block in the subspace (r_1, r_2, r_3) and a specific pattern in the 4×4 block.

Detecting r_8

- Consider $a_i \in \mathbb{R}^8$. If $\sqrt{3}d_{ijk}a_ja_k$ is parallel to a_i , we say that a_i is self-aligned.
- a_i is self-aligned \Leftrightarrow there is a basis in which a_i is along r_8 .
- Thus, if there exists an eigenvector of Λ_{ij} which is self-aligned, it can be rotated along direction r_8 . We denote it as $e_i^{(8)}$.

Detecting block in (r_1, r_2, r_3)

The defining feature of CP4 3HDM is complete alignment and the block-diagonal structure

$$\Lambda_{ij} = \begin{pmatrix} \Box_{3\times3} & 0 & 0 \\ 0 & \Box_{4\times4} & 0 \\ 0 & 0 & \Lambda_{88} \end{pmatrix}$$

That is, three eigenvectors of Λ_{ij} belong to the (r_1, r_2, r_3) subspace.

Vectors in (r_1, r_2, r_3) can be recognized in the basis-invariant way:

$$\mathbf{a}_i \in (r_1, r_2, r_3) \quad \Leftrightarrow \quad f_{ijk} \mathbf{a}_j \mathbf{e}_k^{(8)} = 0.$$

That is, a_i is *f*-orthogonal to $e_i^{(8)}$.

Necessary and sufficient conditions for CP4 in 3HDM

A basis-invariant algorithm for recognizing the presence of CP4 in 3HDM. Write down M_i , L_i , Λ_{ij} . Calculate eigenvectors of Λ_{ij} . The model possesses an explicit CP4 if and only if

- there exists a self-aligned eigenvector: $d_{ijk}e_i^{(8)}e_k^{(8)}$ is parallel to $e_i^{(8)}$;
- there exist three eigenvectors e, e', e'' which are f-orthogonal to $e_i^{(8)}$.
- M_i , L_i , $K_i = d_{ijk}\Lambda_{jk}$, and $K_i^{(2)} = d_{ijk}(\Lambda^2)_{jk}$ are aligned with $e_i^{(8)}$.

See more details in [Ivanov, Nishi, Silva, Trautner, 1810.13396].

Conclusions

Work to do

All 3HDMs with symmetries

can be detected in this way!

< 行

Э