EFFECTIVE FIELD THEORY FOR MAGNETIC COMPACTIFICATIONS

Based on :
W. Buchmuller, M.Dierigl,E.D \& J. Schweizer, arXiv:1611.03798 [hep-th]

may 24, 2017
Planck 2017, Varsovie

Outline

1) Higher-dimensional completions of the Standard Model
2) Magnetic compactifications
3) Effective field theory
4) Quantum corrections, Wilson lines as goldstone bosons
5) Conclusions
6) Higher-dimensional embeddings of the Standard Model

Extra dims. address:

- Unification of all forces
- Holographic solutions to the hierarchy problem
- New ways to break SUSY
- New models of inflation
- Sometimes higher-dim. symmetries protect quantuñ corrections in a way invisible from 4d.

Ex: Internal comp. of a gauge field protected by gauge symmetry (gauge-Higgs unification)

$$
\delta m_{0}^{2} \sim(\operatorname{loop}) \times \frac{1}{R^{2}} \quad \text { (Antoniadis,Benakli,Quiros,2001 } \ldots \text {) }
$$

- Compactification scale $M_{c}=R^{-1} \quad$ usually defines the GUT/unification scale.
- Scale of supersymmetry breaking $\quad M_{S U S Y}$ usually much smaller.

2) Magnetic compactifications

(also talks H. Abe, W. Buchmuller)
Consider a 6-dim. theory : $x_{0} x_{1} x_{2} x_{3} x_{5} x_{6}$
An internal magnetic field $\quad F_{56}=B=f$

- break SUSY, due to the magnetic moment coupling

$$
H=-\mu \mathbf{B}=-\frac{q}{m} \mathbf{S B}
$$

- Charged states: turns KK states k_{1}, k_{2} into Landau levels n, mass

$$
\delta M^{2}=(2 n+1)|q B|+2 q B \Sigma_{56}
$$

where Σ_{45} is the internal helicity of particles.

- Uncharged states : standard KK masses
- An internal magnetic field is quantized
$\int_{T^{2}} F=2 \pi N \Longrightarrow f=\frac{N}{2 \pi R_{1} R_{2}} \sim M_{\text {GUT }}^{2} ; \mathrm{N}=$ integer
-Each Landau level is N times degenerate.
- Precisely N chiral fermion zero modes (index theorem).

Magnetized models : Bachas (1995)...Cremades, Ibanez, Marchesano, Abe etal, Buchmuller et al....

- Starting with a SUSY 6d theory, usually said that the effect of the magnetic field is to add a D-term FayetIliopoulos (FI) term in 4d

$$
D=f \quad \rightarrow \quad V=\frac{1}{2} D^{2}=\frac{1}{2} f^{2} \sim M_{\mathrm{GUT}}^{4}
$$

Widely studied in string theory :

T-dual
Internal magnetic fields

intersecting branes

Elegant geometrical intepretations :

- chiral fermions live at the intersection of branes
- Number of generations: intersection numbers
- Yukawa couplings : governed by areas

Among the most succesful quasi-realistic Standard Model realizations in String Theory

E. Dudas - E. Polytechnique

Why be interested in field theory approach to magnetic compactifications? Several reasons:

- If broken SUSY, most of quantum corrections not calculable in string theory
- Subtlety: there is no mass gap in the spectrum : soft masses given by the FI term of the same order $(1 / R)$ as the masses of Landau levels
one needs an effective theory for the whole tower. Truncation to «zero modes » inconsistent.

3) Effective field theory

- Abelian 6d SUSY theory compactified on a torus.
$\mathrm{N}=2$ SUSY in 4d before the magnetic flux;
4d multiplets: vector (V, ϕ) charged hyper (Q, \tilde{Q})
-6d effective action in superfields: (Marcus,Sagnotti,Siegel ; Arkani-Hamed,Gregoire,Wacker)

$$
\begin{gathered}
S_{6}=\int d^{6} x\left\{\frac{1}{4} \int d^{2} \theta W^{\alpha} W_{\alpha}+\text { h.c. }+\int d^{4} \theta(\partial V \bar{\partial} V+\phi \bar{\phi}+\sqrt{2} V(\bar{\partial} \phi+\partial \bar{\phi}))\right. \\
\left.+\int d^{2} \theta \tilde{Q}(\partial+\sqrt{2} g q \phi) Q+\text { h.c. }+\int d^{4} \theta\left(\bar{Q} e^{2 g q V} Q+\overline{\tilde{Q}} e^{-2 g q V} \tilde{Q}\right)\right\} \\
\partial=\partial_{5}-i \partial_{6},\left.\quad \phi\right|_{\theta=\bar{\theta}=0}=\frac{1}{\sqrt{2}}\left(A_{6}+i A_{5}\right)
\end{gathered}
$$

ϕ are internal components of gauge fields = Wilson lines

Mode expansions with flux:

$$
\begin{aligned}
& \left.\phi_{0}\right|_{\theta=\bar{\theta}=0}=\frac{f}{2 \sqrt{2}}\left(x_{5}-i x_{6}\right)+\varphi, \quad \varphi=\frac{1}{\sqrt{2}}\left(a_{6}+i a_{5}\right) \\
& \mathcal{Q}\left(x_{M}\right)=\sum_{n, j} \mathcal{Q}_{n, j}\left(x_{\mu}\right) \psi_{n, j}\left(x_{m}\right)=\sum_{n, j} \mathcal{Q}_{n, j}\left(x_{\mu}\right) \frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n} \psi_{0, j}\left(x_{m}\right), \\
& \overline{\mathcal{Q}}\left(x_{M}\right)=\sum_{n, j} \overline{\mathcal{Q}}_{n, j}\left(x_{\mu}\right) \bar{\psi}_{n, j}\left(x_{m}\right)=\sum_{n, j} \overline{\mathcal{Q}}_{n, j}\left(x_{\mu}\right) \frac{1}{\sqrt{n!}}(a)^{n} \bar{\psi}_{0, j}\left(x_{m}\right) . \\
& \text { where (harmonic oscillator } \quad a=\sqrt{\frac{1}{-2 q g f}}\left(i D_{5}-D_{6}\right) \\
& \text { algebra) } \quad a^{\dagger}=\sqrt{\frac{1}{-2 q g f}}\left(i D_{5}+D_{6}\right)
\end{aligned}
$$

The final 4d effective action for Landau levels is

Fl term

$$
\begin{aligned}
& S_{4}^{*}=\int d^{4} x {\left[\int d^{4} \theta\left(\bar{\varphi} \varphi+\sum_{n, j}\left(\bar{Q}_{n, j} e^{2 g q V_{0}} Q_{n, j}+\overline{\tilde{Q}}_{n, j} e^{-2 q g V_{0}} \tilde{Q}_{n, j}\right)+2 f V_{0}\right)\right.} \\
&+ \int d^{2} \theta\left(\frac{1}{4} \mathcal{W}_{0}^{\alpha} \mathcal{W}_{\alpha, 0}\right. \\
&\left.\left.+\sum_{n, j}\left(-i \sqrt{-2 q g f(n+1)} \tilde{Q}_{n+1, j} Q_{n, j}+\sqrt{2} q g \tilde{Q}_{n, j} \varphi Q_{n, j}\right)\right)+ \text { h.c. }\right] \\
& \quad \text { Coupled mass terms }
\end{aligned}
$$

- SUSY broken like in the FI model, with an infinite number of fields. Truncation to a finite number inconsistent.

We also worked out the non-abelian case: $\operatorname{SU(2)}$ gauge group in 6 d with $\mathrm{N}=2$ vector multiplet, flux in the generator T_{3}.

In this case, there is always a tachyon (recombination mode) $\Phi_{+, 0}$ which can restore SUSY by taking a vev (tachyon condensation)

Nielsen-Olesen instability
The flux give mass to the $W^{ \pm}$gauge bosons and breaks $S U(2) \rightarrow U(1)$

- There is an induced Fayet-Iliopoulos term for the $U(1)$
- In the true vacuum $U(1)$ will also be broken
- Interesting subtleties with the Stueckelberg mechanism for Landau levels
$\Phi_{n, j}=-\sqrt{\frac{n+1}{2 n+3}} \bar{\phi}_{-, n, j}+\sqrt{\frac{n+2}{2 n+3}} \phi_{+, n+2, j}$ are absorbed by $A_{+, n+1, j}^{\mu}$
$\Phi_{+, 1, j}$ absorbed by $A_{+, 0, j}^{\mu}$

4) Quantum corrections, Wilson lines as goldstone bosons

Interested in Higgs = internal component of the gauge field. Without magnetic flux, 6d gauge symmetry could protect only partially its mass

Figure 3: Bosonic contributions to the Wilson line mass with flux.

Each contribution quadratically divergent:

 sum over the whole charged tower of Landau levels is however exactly zero !$$
\begin{aligned}
\delta m_{b}^{2}=2 q^{2} g^{2}|N| \sum_{n} & \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{2}{k^{2}+\alpha\left(n+\frac{1}{2}\right)}\right. \\
& \left.-\frac{2 \alpha(n+1)}{\left(k^{2}+\alpha\left(n+\frac{3}{2}\right)\right)\left(k^{2}+\alpha\left(n+\frac{1}{2}\right)\right)}\right)
\end{aligned}
$$

can be written in the form

$$
\begin{aligned}
m_{b}^{2} & =-4 q^{2} g^{2}|N| \sum_{n} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{n}{k^{2}+\alpha\left(n+\frac{1}{2}\right)}-\frac{n+1}{k^{2}+\alpha\left(n+\frac{3}{2}\right)}\right) \\
& =-\frac{q^{2} g^{2}}{4 \pi^{2}}|N| \sum_{n} \int_{0}^{\infty} d t \frac{1}{t^{2}}\left(n e^{-\alpha\left(n+\frac{1}{2}\right) t}-(n+1) e^{-\alpha\left(n+\frac{3}{2}\right) t}\right) \\
& =-\frac{q^{2} g^{2}}{4 \pi^{2}}|N| \int_{0}^{\infty} d t \frac{1}{t^{2}}\left(\frac{e^{\frac{1}{2} \alpha t}}{\left(e^{\alpha t}-1\right)^{2}}-\frac{e^{\frac{1}{2} \alpha t}}{\left(e^{\alpha t}-1\right)^{2}}\right)=0
\end{aligned}
$$

Careful recent discussion of regularization: D. Ghilencea, H.M.Lee

The same is true for the fermionic contribution

Reminder: without the flux, scalar and fermion loops give separately
$\delta m_{0}^{2} \sim($ loop $) \times \frac{1}{R^{2}}$
We checked also that the quartic coupling is zero.
Is there's a symmetry reason?
E. Dudas - E. Polytechnique

Action of charged matter fields invariant under translations

$$
\begin{gathered}
S_{6}=\int d^{6} x\left(-D_{M} \bar{Q} D^{M} Q\right), \quad D_{M} Q=\left(\partial_{M}+i q g A_{M}\right) Q \\
\delta Q=\epsilon^{m} \partial_{m} Q, \quad \delta A_{n}=\epsilon^{m} \partial_{m} A_{n}
\end{gathered}
$$

Symmetries for constant Wilson line background

$$
\delta Q=\epsilon^{m} \partial_{m} Q, \quad \delta a_{n}=0
$$

Flux background breaks the symmetries spontaneously
$D_{m} Q=\left(\partial_{m}+i q g\left(a_{m}+\frac{f}{2} \epsilon_{m n} x_{n}\right)\right) Q, \quad\left\langle A_{m}\right\rangle=\frac{f}{2} \epsilon_{m n} x_{n}$

Translational symmetries now non-linearly realized

 with Wilson lines as Goldstone bosons$$
\delta Q=\epsilon^{m} \partial_{m} Q, \quad \delta a_{n}=\epsilon^{m} \frac{f}{2} \epsilon_{n m}
$$

- Need realistic examples with pseudo-Goldstone bosons

$$
\delta m_{0}^{2} \ll \frac{1}{R^{2}}
$$

maybe from gravitational or higher-loop corrections.

Conclusions, Perspectives

- Magnetized compactifications generate chirality and can break supersymmetry such that

$$
M_{S U S Y} \sim M_{G U T} \sim R^{-1}
$$

- Magnetic fields can break spontaneously symmetries invisible from 4d \Longrightarrow (pseudo) Goldstones from higher-dim. symmetries.
Hope for a higher-dim. protection of scalar masses.
- Various applications possible: hierarchy problem, moduli stabilization, inflation, string and field theory orbifold GUT's.

Backup slides

Effective action non-abelian flux

$$
\begin{align*}
& S_{4}^{*}=\int d^{4} x\{ \int d^{2} \theta\left(\frac{1}{4} W_{3}^{\alpha} W_{\alpha, 3}+\frac{1}{2} \sum_{n, j} W_{+, n, j}^{\alpha} W_{\alpha,-, n, j}\right)+\text { h.c. } \\
&+ \int d^{4} \theta\left[\bar{\varphi}_{3} \varphi_{3}+2 f V_{3}+\sum_{n, j}\left(\bar{\phi}_{+, n, j} e^{g V_{3}} \phi_{+, n, j}+\bar{\phi}_{-, n, j} e^{-g V_{3}} \phi_{-, n, j}\right)\right. \\
&+\sum_{n, j}\left((2 n+1)(-g f) V_{-, n, j} V_{+, n, j}+i \sqrt{2 n(-g f)} g \varphi_{3} V_{-, n-1, j} V_{+, n, j}\right. \\
&\left.-i \sqrt{2(n+1)(-g f)} g \bar{\varphi}_{3} V_{-, n+1, j} V_{+, n, j}+g^{2} \bar{\varphi}_{3} \varphi_{3} V_{-, n, j} V_{+, n, j}\right) \\
&+\sum_{n, j}\left((1 - \frac { g } { \sqrt { 2 } } V _ { 3 }) \left(-i \sqrt{2(n+1)(-g f)} V_{-, n+1, j} \bar{\phi}_{-, n, j}\right.\right. \tag{4.8}\\
&\left.\quad+i \sqrt{2 n(-g f)} \phi_{-, n-1, j} V_{+, n, j}+g \varphi_{3} V_{-, n, j} \bar{\phi}_{-, n, j}+g \bar{\varphi}_{3} \phi_{-, n, j} V_{+, n, j}\right) \\
& \quad+\left(1+\frac{g}{\sqrt{2}} V_{3}\right)\left(i \sqrt{2(n+1)(-g f)} \bar{\phi}_{+, n+1, j} V_{+, n, j}\right. \\
&\left.\left.\quad-i \sqrt{2 n(-g f)} V_{-, n-1, j} \phi_{+, n, j}-g \varphi_{3} \bar{\phi}_{+, n, j} V_{+, n, j}-g \bar{\varphi}_{3} V_{-, n, j} \phi_{+, n, j}\right)\right) \\
&\left.+\sum_{I} \frac{g^{2}}{2} C_{I}\left(V_{+, n, j} \phi_{-, \tilde{n}, \tilde{j}}-V_{-, \tilde{n}, \tilde{j}} \phi_{+,, n, j}\right)\left(V_{-, \tilde{m}, \tilde{l}} \bar{\phi}_{-, m, l}-V_{+, m, l} \bar{\phi}_{+, \tilde{m}, \tilde{l}}\right)\right]
\end{align*}
$$

with $I=\{n, j, \tilde{n}, \tilde{\jmath}, m, l, \tilde{m}, \tilde{l}\}$ and

$$
\begin{equation*}
C_{I}=\int_{T^{2}} d^{2} x\left(\psi_{n, j} \bar{\psi}_{\tilde{n}, \tilde{\jmath}} \psi_{m, l} \bar{\psi}_{\tilde{m}, \tilde{l}}\right) \tag{4.9}
\end{equation*}
$$

