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1)    Higher-dimensional embeddings  
       of the Standard Model 
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Extra dims.  address: 
 
- Unification of all forces  
-  Holographic solutions to the hierarchy problem  
-  New ways to break SUSY 
-  New models of inflation 
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- Sometimes higher-dim. symmetries protect quantum 
corrections in a way invisible from 4d.  
 
Ex: Internal comp.  of a gauge field  protected by  
gauge symmetry (gauge-Higgs unification) 
 
                                                  (Antoniadis,Benakli,Quiros,2001…) �m2

0 ⇠ (loop)⇥ 1
R2

•  Compactification scale                         usually 
defines the GUT/unification scale. 

•  Scale of supersymmetry breaking                 
usually much smaller. 

Mc = R�1

MSUSY



2)   Magnetic compactifications 
                 (also talks H. Abe, W. Buchmuller)     

  Consider a 6-dim. theory : 
An internal magnetic field                           
- break SUSY, due to the magnetic moment coupling      

- Charged states: turns KK states            into Landau 
levels      , mass 

 
where           is the internal helicity of particles.   
- Uncharged states : standard KK masses  
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H = �µB = � q
mSB
k1, k2

n

⌃45

x0x1x2x3x5x6

F56 = B = f

�M2 = (2n+ 1)|qB|+ 2qB⌃56



• An internal magnetic field is quantized 
                                                
                                                                                     ; N = integer 
 
• Each Landau level is N times degenerate.  

• Precisely N chiral fermion zero modes (index theorem). 
 
Magnetized models  : Bachas (1995)….Cremades, Ibanez,Marchesano, Abe et al, 
                                                                     Buchmuller et al.… 

• Starting with a SUSY 6d theory, usually said that the 
effect of the magnetic field is to add a D-term Fayet-
Iliopoulos (FI) term in 4d  
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D = f ! V = 1
2D

2 = 1
2f

2 ⇠ M4
GUT

R
T 2 F = 2⇡N f = N

2⇡R1R2
⇠ M2

GUT



7 Multiplicity equal to the total number of times the

branes intersect in the compact space

D(a)°D(b) : I(ab) =
3Y

i=1
I(ab)
i =

3Y

i=1
(m(a)

i n(b)
i ° n(a)

i m(b)
i ) .

Widely studied in string theory  : 
 
Internal magnetic fields                     intersecting branes 
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T-dual 

Elegant geometrical intepretations : 
- chiral fermions live at the intersection of branes 
- Number of generations:  intersection numbers 
- Yukawa couplings : governed by areas  



”Standard Model” quiver
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Among the most succesful quasi-realistic 
Standard Model realizations in String Theory 
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Why be interested in field theory approach to  
magnetic compactifications ?  Several reasons:  

§  If broken SUSY, most of quantum corrections not 
calculable in string theory  
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§  Subtlety: there is no mass gap in the spectrum :   
soft masses given by the FI term of the same order 
(           )  as the masses of Landau levels                  
 
 
one needs an effective theory for the whole tower. 
Truncation to « zero modes »  inconsistent.   

1/R



3) Effective field theory 
• Abelian 6d SUSY theory compactified on a torus. 
N=2 SUSY in 4d before the magnetic flux; 
4d multiplets:      vector                  
                     charged hyper 
• 6d effective action in superfields: (Marcus,Sagnotti,Siegel ; 

Arkani-Hamed,Gregoire,Wacker)   
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(V,�)
(Q, Q̃)Quantum Corrections

WB, Dierigl, Dudas, Schweizer ’16

S6 =

Z

d

6
x

n

1
4

Z

d

2
✓W

↵
W↵ + h.c. +

Z

d

4
✓

⇣

@V @V + ��+
p
2V

�

@�+ @�

�

⌘

+

Z

d

2
✓ Q̃(@ +

p
2gq�)Q+ h.c. +

Z

d

4
✓

⇣

Qe

2gqV
Q+ Q̃e

�2gqV
Q̃

⌘o

,

@ = @5 � i@6 , �|✓=✓̄=0 = 1p
2
(A6 + iA5)

Bachas ’95: Landau levels

Wilson lines and flux, mode expansion of superfields:

Simplest example: 6d SUSY QED,  compactified on torus:

�0|✓=✓=0 =
f

2
p
2
(x5 � ix6) + ' , ' = 1p

2
(a6 + ia5) ,

Q(xM , ✓, ✓̄) =
X

n,j

Qn,j(xµ, ✓, ✓̄) n,j(xm) , Q̃(xM , ✓, ✓̄) = . . .

→effective 4d action, compute Wilson line potential
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�       are internal components of gauge fields  =  
     Wilson lines 
 
Mode expansions with flux:  

Quantum Corrections
WB, Dierigl, Dudas, Schweizer ’16
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Bachas ’95: Landau levels

Wilson lines and flux, mode expansion of superfields:

Simplest example: 6d SUSY QED,  compactified on torus:

�0|✓=✓=0 =
f

2
p
2
(x5 � ix6) + ' , ' = 1p

2
(a6 + ia5) ,

Q(xM , ✓, ✓̄) =
X

n,j

Qn,j(xµ, ✓, ✓̄) n,j(xm) , Q̃(xM , ✓, ✓̄) = . . .

→effective 4d action, compute Wilson line potential

which satisfy the canonical commutator relation [a, a†] = 1. The internal Hamiltonian
can be written in terms of the ladder operators as

H2 = �qgf
�

a†a+ aa†
�

= �2qgf
�

a†a+ 1
2

�

. (22)

Therefore, the energy eigenvalues of H2 and thus the 4d Landau level masses show the
typical spectrum of an harmonic oscillator. All levels are |N |-fold degenerate, with N
the number of flux quanta on the torus, in analogy to Landau levels. We denote the
internal field profiles as  n,j, see [14], where n refers to the Landau level and j accounts
for the |N |-fold degeneracy. The field profiles corresponding to the lowest mass can
then be constructed from the condition

a 0,j = 0 , a†  0,j = 0 . (23)

Applying the ladder operator we obtain the higher mode functions

 n,j =
1p
n!
(a†)n  0,j ,  n,j =

1p
n!
(a)n  0,j . (24)

The explicit form of the lowest wave function was obtained in [5, 14]. In our consid-
eration the specific form of the field profile is irrelevant and we will only need the
orthonormality condition4

Z

T 2

d2x ñ,|̃ n,j = �n,ñ�j,|̃ . (25)

Instead of the KK decomposition in Sec. 2 we now decompose the charged fields
with respect to the Landau levels,

Q(xM) =
X

n,j

Qn,j(xµ) n,j(xm) =
X

n,j

Qn,j(xµ)
1p
n!

�

a†
�n
 0,j(xm) ,

Q(xM) =
X

n,j

Qn,j(xµ) n,j(xm) =
X

n,j

Qn,j(xµ)
1p
n!

(a)n  0,j(xm) .
(26)

4Note that the charged wave functions in the flux background are not orthonormal with respect to
the standard KK states discussed in Sec. 2. Therefore, to discuss the interaction of the charged states
with higher excitations of the uncharged sector one has to evaluate the overlaps explicitly, see e.g. [15].

8

our choice of gauge reads3

A5 = �1
2fx6 , A6 =

1
2fx5 , F56 = @5A6 � @6A5 = f . (15)

As mentioned above, for the square torus of volume L2 the flux is quantized. In the
presence of particles with charge q the flux density can take the values

qg

2⇡

Z

T 2

F =
qg

2⇡

Z

T 2

dx5dx6 F56 =
qg

2⇡
L2f 2 Z (16)

Using a product space metric for M4 ⇥ T 2, and splitting the kinetic terms into 4d and
2d parts, the six-dimensional action (14) decomposes as

S6 =

Z

d6x
�

�⌘µ⌫DµQD⌫Q�QH2Q
�

, (17)

where after integration by parts in the internal coordinates we define the 2d Hamiltonian

H2 = �D2
5 �D2

6 = �
�

@5 � i
2qgfx6

�2 �
�

@6 +
i
2qgfx5

�2
. (18)

In analogy to the quantum harmonic oscillator with Hamiltonian H = 1
2mp2 + 1

2m!2x2

and the standard commutator relation [x, p] = i~, we identify

p = iD6 , x = iD5 , m = 1
2 , ! = 2 , (19)

with the commutator relation

[iD5, iD6] = �iqgf . (20)

This leads to the further identification ~ = �qgf [6], since we choose f to be negative
for left-handed zero modes, c.f. [25]. One now defines the ladder operators

a =

r

1

�2qgf
(iD5 �D6) ,

a† =

r

1

�2qgf
(iD5 +D6) ,

(21)

3The calculations in the following sections are equally valid for other gauge choices.

7

where (harmonic oscillator 
algebra)   
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The final 4d effective action for Landau levels is 
 
                                                                  FI term 

action as in Sec. 2,

S⇤
4 �

Z

d4x

Z

T 2

d2x

✓

Z

d2✓
1

4
W↵W↵ + h.c.

◆

=

Z

d4x

✓

Z

d2✓
1

4
W↵

0 W↵,0 + h.c.

◆

.

(35)

The last contribution we have to add leads to a kinetic term for the complex Wilson
line ' as well as a Fayet-Iliopoulos (FI) term5

S⇤
4 �

Z

d4x

Z

T 2

d2x

Z

d4✓
⇣

@V0@V0 + �0�0 +
p
2V0@�0 +

p
2V0@�0

⌘

=

Z

d4x

Z

d4✓ (''+ 2fV0) .
(36)

Note again that compared to [10] our action di↵ers by an integration by parts. This is
important since the boundary terms do not vanish in the flux background. In summary,
the 4d e↵ective action with the complete tower of charged states and a restriction to
the zero modes in the uncharged sector reads

S⇤
4 =

Z

d4x

"

Z

d4✓

 

''+
X

n,j

(Qn,je
2gqV0Qn,j + Q̃n,je

�2qgV0Q̃n,j) + 2fV0

!

+

Z

d2✓

✓

1

4
W↵

0 W↵,0 (37)

+
X

n,j

⇣

�i
p

�2qgf(n+ 1)Q̃n+1,jQn,j +
p
2qgQ̃n,j 'Qn,j

⌘

!

+ h.c.

#

.

In order to obtain the mass spectrum of the charged fields and their interactions
with the uncharged field ' one has to integrate out the auxiliary fields. The bosonic
mass terms receive contributions from F - and D-terms, whereas only the F -terms enter
for the fermion masses. The couplings of the auxiliary field D are given by

LD = fD + |Qn,j|2qgD � |Q̃n,j|2qgD +
1

2
D2 , (38)

yielding

D = �f � qg
X

n,j

⇣

|Qn,j|2 � |Q̃n,j|2
⌘

. (39)

5Here, we use @� = @� = f/
p
2 in the flux background, since @' = 0 = @', and @V = 0 = @V .
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                               Coupled mass terms 

•  SUSY broken like in the FI model, with an infinite 
number of fields. Truncation to a finite number 
inconsistent.   
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§   We also worked out the non-abelian case: SU(2)  
  gauge group in 6d with N=2 vector multiplet,  flux  
  in the generator      . 
 
 
  

E. Dudas – E. Polytechnique   

T3

§  In this case, there is always a tachyon (recombination 
mode)            which can restore  SUSY by taking a 
vev (tachyon condensation)  

              Nielsen-Olesen instability 

�+,0

§  The flux give mass to the         gauge bosons and                
breaks                                SU(2) ! U(1)

W±
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§  There is an induced Fayet-Iliopoulos term  
     for the 
 

§  In the true vacuum            will also be broken  
 
§  Interesting subtleties with the Stueckelberg  
    mechanism for Landau levels 
                                                
                                                  are absorbed by  
                                                 
                 absorbed by     
 

U(1)

U(1)
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to the derivative of the scalars can be extracted from the action (58)

S⇤
4 �

Z

d4x

Z

d4✓
X

n,j

h

�i
p

�2gf
⇣p

n��,n�1,j +
p
n+ 1�+,n+1,j

⌘

V�,n,j

+ i
p

�2gf
⇣p

n��,n�1,j +
p
n+ 1�+,n+1,j

⌘

V+,n,j

i

�
Z

d4x
X

n,j

r

�gf

2

h⇣

�
p
n @µ��,n�1,j +

p
n+ 1 @µ�+,n+1,j

⌘

Aµ
�,n,j

+
⇣

�
p
n @µ��,n�1,j +

p
n+ 1 @µ�+,n+1,j

⌘

Aµ
+,n,j

i

.

(61)

This identifies the eaten complex Goldstone mode7

�n,j =�
r

n+ 1

2n+ 3
��,n,j +

r

n+ 2

2n+ 3
�+,n+2,j , (62)

for the charged vector bosons Aµ
±,n+1,j. The modes Aµ

±,0,j eat the complex bosons �+,1,j.
To determine the mass spectrum for the remaining two real charged degrees of

freedom we need to evaluate the D-terms. The solutions of the D-term equations read

D3 = �f � g

2

X

n,j

�

|�+,n,j|2 � |��,n,j|2
�

, (63)

D+,n,j = i

r

�gf

2

p
2n+ 1

 

r

n

2n+ 1
��,n�1,j +

r

n+ 1

2n+ 1
�+,n+1,j

!

,

D�,n,j =� i

r

�gf

2

p
2n+ 1

 

r

n

2n+ 1
��,n�1,j +

r

n+ 1

2n+ 1
�+,n+1,j

!

.

(64)

Substituting the D-terms into the component action we can extract the quadratic part
of the scalar Lagrangian and identify the mass terms

LM �� gf

2

�

|�+,0,j|2

�
X

n,j

�

��,n,j, �+,n+2,j

�

✓

n+ 2
p

(n+ 1)(n+ 2)
p

(n+ 1)(n+ 2) n+ 1

◆✓

��,n,j

�+,n+2,j

◆

)

(65)

Since we chose f < 0 we see that there are |N | tachyonic modes �+,0,j that will acquire

7Here, we denote the scalar component of the superfields �± with the same letter as the superfield.

17

Aµ
+,n+1,j

�+,1,j Aµ
+,0,j
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4) Quantum corrections, Wilson lines as 
goldstone bosons  

�m2
b = �4q2g2|N |

X

n

Z
d4k

(2⇡)4

✓
n

k2 + ↵(n+ 1
2 )

� n+ 1

k2 + ↵(n+ 3
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1
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✓
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1
2 )t � (n+ 1)e�↵(n+

3
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◆

= �q2g2

4⇡2
|N |

Z 1

0
dt

1

t2

0

@ e
1
2↵t

(e↵t � 1)2
� e

1
2↵t

(e↵t � 1)2

1

A = 0

E. Dudas – E. Polytechnique   

Interested in Higgs = internal component of  the gauge 
field. Without magnetic flux, 6d gauge symmetry could 
protect only partially its mass   
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�m2
b = �4q2g2|N |

X
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d4k
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2 )
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= �q2g2
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1
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✓
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1
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◆
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1

t2

0

@ e
1
2↵t

(e↵t � 1)2
� e

1
2↵t

(e↵t � 1)2

1

A = 0

Each contribution quadratically divergent:  
sum over the whole charged tower of Landau levels is 
however exactly zero !  

Careful recent discussion of regularization: D. Ghilencea, H.M.Lee 

for the quantum corrections

�m2
b = 2q2g2|N |
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k2 + ↵(n+ 1
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,
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f = �2q2g2|N |

X

n

Z

d4k

(2⇡)4
2k2

(k2 + ↵n) (k2 + ↵(n+ 1))
,

(84)

which can be brought to the form

�m2
b = �4q2g2|N |

X

n

Z

d4k
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✓

n
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,
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(85)

Using the Schwinger representation of the propagators and performing the momentum
integrations one finds

�m2
b = �q2g2

4⇡2
|N |

X

n

Z 1

0

dt
1

t2

⇣

ne�↵(n+ 1
2 )t � (n+ 1)e�↵(n+ 3

2 )t
⌘

,

�m2
f =
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|N |

X

n
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1

t2
�

ne�↵nt � (n+ 1)e�↵(n+1)t
�

.

(86)

As in the case without flux the bosonic as well as the fermionic contribution of each
Landau level is quadratically divergent. However, interchanging summation and t-
integration and using various identities for geometrical series, one arrives at

�m2
b =� q2g2

4⇡2
|N |

Z 1

0

dt
1

t2

 

e
1
2↵t

(e↵t � 1)2
� e

1
2↵t

(e↵t � 1)2

!

=0 ,

(87)

�m2
f =

q2g2

4⇡2
|N |

Z 1

0

dt
1

t2

✓

e↵t

(e↵t � 1)2
� e↵t

(e↵t � 1)2

◆

=0 .

(88)

We conclude that, contrary to the case without flux, the contributions from the di↵erent
Landau levels add up to zero and the integrand vanishes. It is remarkable that the
bosonic and the fermionic contribution to the Wilson line mass vanish individually.

24

can be written in  
the form 



' '

Qn,j, Q̃n,j

' '

Qn+1,j, Q̃n+1,j

Qn,j, Q̃n,j

Figure 3: Bosonic contributions to the Wilson line mass with flux.

' '

�n,j

�̃n,j

Figure 4: Fermionic contribution to the Wilson line mass with flux.

charged bosonic and fermionic fields,

Lint =� i
p
2qg

X

n,j

p

↵(n+ 1) '
⇣

Q̃n+1,jQ̃n,j �Qn,jQn+1,j

⌘

+ h.c.

� 2q2g2
X

n,j

|'|2
⇣

|Qn,j|2 + |Q̃n,j|2
⌘

�
p
2qg

X

n,j

' �̃n,j�n,j + h.c. ,

(83)

where we have introduced the positive parameter ↵ = �2qgf of mass dimension two.
Note that the cubic bosonic vertex is proportional to the mass of the charged fields
involved. Moreover, the bosonic couplings do not mix the fields Q and Q̃. On the
contrary, the fermionic coupling involves the pair � and �̃ at the same Landau level n,
analogously to the Dirac mass terms in Eq. (49).

As in the case without flux there are two classes of bosonic contributions and one
class of fermionic contributions to the Wilson line mass which are depicted in Fig. 3
and Fig. 4, respectively. Using the couplings given in the Lagrangian (83) one obtains

23
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The same is true for the fermionic contribution 

We checked also that the quartic coupling is zero. 
 
Is there’s a symmetry reason ?  

�m2
0 ⇠ (loop)⇥ 1

R2

Reminder: without the flux, scalar and 
fermion loops  give separately  
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Action of charged matter fields invariant under 
translations 
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Wilson lines as Goldstone bosons 
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Z
d

6
x

�
�DM Q̄D

M
Q

�
, DMQ = (@M + iqgAM )Q

�Q = ✏

m
@mQ , �An = ✏

m
@mAn

' = 1p
2
(a6 + ia5)

�Q = ✏m@mQ , �an = 0

DmQ =
⇣
@m + iqg

⇣
am + f

2 ✏mnxn

⌘⌘
Q , hAmi = f

2 ✏mnxn

�Q = ✏m@mQ , �an = ✏m f
2 ✏nm

Translational symmetries now nonlinearly realized with Wilson lines as 
Goldstone bosons,

Symmetries for constant Wilson line background                            , 

Action of charged matter field invariant w.r.t. translations,

Flux background breaks translational symmetries spontaneously,

Symmetries for constant Wilson line background 
 
 
Flux background breaks the symmetries spontaneously  

Wilson lines as Goldstone bosons 
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Translational symmetries now nonlinearly realized with Wilson lines as 
Goldstone bosons,

Symmetries for constant Wilson line background                            , 
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Translational symmetries now non-linearly realized  
with Wilson lines as  Goldstone bosons 
 
 
 
•  Need realistic examples with pseudo-Goldstone 

bosons 
 
 
 maybe from gravitational or higher-loop  
 corrections. 
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Conclusions, Perspectives 
 
u Magnetized compactifications generate chirality 
and can break supersymmetry such that 
 

u Magnetic fields can break spontaneously symmetries 
invisible from 4d          (pseudo) Goldstones from 
higher-dim. symmetries.  

       Hope for a higher-dim. protection  of scalar masses. 
 
u Various applications possible:  hierarchy problem, 

moduli stabilization, inflation, string and field theory 
orbifold GUT’s.  

MSUSY ⇠ MGUT ⇠ R�1
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We clearly identify the kinetic term for '3 as well as the gauge covariant kinetic terms for

the charged chiral multiplets �± of charge ±1
2 . Also the FI-term for the vector multiplet

aligned with the flux V3 is present, as in the Abelian case. The remaining contributions

will lead to interaction and mass terms connecting charged states. Except the last term,

that contains four charged fields, we can derive the 4d e↵ective action along the lines of

section 3, where �± now correspond to the charged chiral multiplets Q and Q̃. The final

result is
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Integrating out the auxiliary fields in (4.8) we can work out the masses of the charged fields.

The charged vector boson masses in 4d can be evaluated using ✓�µ✓✓�⌫✓ = �1
2✓✓✓✓⌘

µ⌫ .

They are given by
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Effective action non-abelian flux 


