Implications of Symmetries in the Scalar Sector

M. N. Rebelo CFTP/IST, U. Lisboa

 Scalars 2019
Warsaw, 11 September 2019

Work done in collaboration with D. Emmanuel-Costa, Howard E. Haber, Anton Kuncinas, 0. M. Ogreid and P. Osland, arXiv:1 601.04654, DO1: 10.1007/JHEP08(2016)169, 10.1007/ JHEPO2(2016)154,
arXiv:1701.0476, DOI: 10.1007/JHEP08(2017)005, arXiv:1808.08629 DOI: 10.1007/JHEPO 1(2019)042 Kuncinas, Master Thesis, U. Bergen 2019: http://bora.uib.no/handle/1956/20467

Work Partially supported by:

FCT Fundação para a Ciência e a Tecnologia

 MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

European Union

COMPETE
PROGRAMA OPERACIONAL FACTORES DE COMPETITIVIDADE

Fundação para a Ciência e a Tecnologia
ministério da educaçÃo e ciência

Symmetries play an important rôle in multi-Higgs models

- reduction of the number of free parameters
- experimental predictions
- symmetries help to control HFCNC

Connections can be established between Symmetries and:

- mass degeneracies in the scalar sector
- existence of massless scalars
- CP violation in the scalar sector

Symmetries of the 2 Higgs Doublet Model

$$
\begin{align*}
\mathcal{V}= & m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1}+m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2}-\left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right]+\frac{1}{2} \lambda_{1}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{1}{2} \lambda_{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\left\{\frac{1}{2} \lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\left[\lambda_{6}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\lambda_{7}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right] \Phi_{1}^{\dagger} \Phi_{2}+\text { h.c. }\right\} . \tag{2.1}
\end{align*}
$$

11 independent parameters

If all the parameters are real CP is explicitly conserved:

 most general CP transformation $\quad \Phi_{i} \xrightarrow{\mathrm{CP}} U_{i j} \Phi_{j}^{*}$with U a unitary matrix which we can choose as the identity matrix when all parameters are real
However, there is still the possibility of Spontaneous Symmetry Breaking
T. D. Lee 1973

The above equation together with the assumption that the vacuum is CP invariant leads to

$$
U_{i j}\langle 0| \Phi_{j}|0\rangle^{*}=\langle 0| \Phi_{i}|0\rangle \quad \mathcal{L}(U \phi)=\mathscr{L}(\phi) \quad \mathrm{CP}|0\rangle=|0\rangle
$$

G. C. Branco, J. M. Gerard and W. Grimus 1984

CP is violated spontaneously by vevs of the form $\left(\rho_{1} e^{i \theta}, \rho_{2}\right)$,
in the region of parameters
of the potential where ρ_{1} and ρ_{2} are different from zero and

$$
e^{i \theta} \neq 1
$$

List of all possible Symmetries of the 2HDM

The complete list of such symmetries is known:

symmetry	transformation law		
\mathbb{Z}_{2}	$\Phi_{1} \rightarrow \Phi_{1}$	$\Phi_{2} \rightarrow-\Phi_{2}$	
$\mathrm{U}(1)$	$\Phi_{1} \rightarrow \Phi_{1}$	$\Phi_{2} \rightarrow e^{2 i \theta} \Phi_{2}$	
$\mathrm{SO}(3)$	$\Phi_{a} \rightarrow U_{a b} \Phi_{b}$	$U \in \mathrm{U}(2) / \mathrm{U}(1)_{\mathrm{Y}}$	(for $a, b=1,2)$
GCP1	$\Phi_{1} \rightarrow \Phi_{1}^{*}$	$\Phi_{2} \rightarrow \Phi_{2}^{*}$	
GCP2	$\Phi_{1} \rightarrow \Phi_{2}^{*}$	$\Phi_{2} \rightarrow-\Phi_{1}^{*}$	
GCP3	$\Phi_{1} \rightarrow \Phi_{1}^{*} \cos \theta+\Phi_{2}^{*} \sin \theta$	$\Phi_{2} \rightarrow-\Phi_{1}^{*} \sin \theta+\Phi_{2}^{*} \cos \theta$	$\left(\right.$ for $\left.0<\theta<\frac{1}{2} \pi\right)$
Π_{2}	$\Phi_{1} \rightarrow \Phi_{2}$	$\Phi_{2} \rightarrow \Phi_{1}$	

Deshpande and Ma 1978, Ivanov 2007, Ferreira, Haber and Silva 2009, Ferreira, Haber, Maniatis, Nachtmann and Silva 2011, Battye, Brawn, Pilaftsis 2011, Pilaftsis 2011

There are three possible Higgs family symmetries (first three rows) and three classes of CP symmetries with different U matrices (next three rows) There are seven additional accidental symmetries of the 2HDM scalar potential

Battye, Brawn, Pilaftsis 2011, Pilaftsis 2012 which are not exact symmetries since they are violated by the $\mathbf{U}(1)$ gauge kinetic term of the scalar potential, as well as by the Yukawa couplings, therefore, not considered here.

List of all possible Symmetries of the 2HDM (cont.)

Starting from a generic scalar potential given by Eq. (2.1) if the scalar potential respects one of the symmetries listed in Table 1, the coefficients of the scalar potential are constrained according to Table 2, in the basis where the symmetry is manifest

symmetry	m_{11}^{2}	m_{22}^{2}	m_{12}^{2}	λ_{1}	λ_{2}	λ_{3}	λ_{4}	$\operatorname{Re} \lambda_{5}$	$\operatorname{Im} \lambda_{5}$	λ_{6}	λ_{7}
\mathbb{Z}_{2}	-	-	0	-	-	-	-	-	-	0	0
$\mathrm{U}(1)$	-	-	0	-	-	-	-	0	0	0	0
SO(3)	-	m_{11}^{2}	0	-	λ_{1}	-	$\lambda_{1}-\lambda_{3}$	0	0	0	0
GCP1	-	-	real	-	-	-	-	-	0	real	real
GCP2	-	m_{11}^{2}	0	-	λ_{1}	-	-	-	-	-	$-\lambda_{6}$
GCP3	-	m_{11}^{2}	0	-	λ_{1}	-	-	$\lambda_{1}-\lambda_{3}-\lambda_{4}$	0	0	0
Π_{2}	-	m_{11}^{2}	real	-	λ_{1}	-	-	-	0	-	λ_{6}^{*}
$\mathbb{Z}_{2} \oplus \Pi_{2}$	-	m_{11}^{2}	0	-	λ_{1}	-	-	-	0	0	0
$\mathrm{U}(1) \oplus \Pi_{2}$	-	m_{11}^{2}	0	-	λ_{1}	-	-	0	0	0	0

In all these cases the imposed symmetry leads to explicit CP conservation In all cases GCP1, and also 2 and 3 there is invariance under hermitian conjugation

Ferreira, Haber and Silva 2009
Possibility of spontaneous CP violation with Z_2 softly broken
Branco and Rebelo 1985

Natural 2HDM mass degeneracies

Analysis of explicit expressions of the neutral scalar masses or
Consider all possible symmetries of the 2HDM
Mass degenerate neutral scalars can only arise naturally in the 2HDM in the case of the IDM with Z_5 = 0

$$
\begin{aligned}
\mathcal{V}= & Y_{1} H_{1}^{\dagger} H_{1}+Y_{2} H_{2}^{\dagger} H_{2}+\left[Y_{3} H_{1}^{\dagger} H_{2}+\text { h.c. }\right]+\frac{1}{2} Z_{1}\left(H_{1}^{\dagger} H_{1}\right)^{2} \\
& +\frac{1}{2} Z_{2}\left(H_{2}^{\dagger} H_{2}\right)^{2}+Z_{3}\left(H_{1}^{\dagger} H_{1}\right)\left(H_{2}^{\dagger} H_{2}\right)+Z_{4}\left(H_{1}^{\dagger} H_{2}\right)\left(H_{2}^{\dagger} H_{1}\right) \\
& +\left\{\frac{1}{2} Z_{5}\left(H_{1}^{\dagger} H_{2}\right)^{2}+\left[Z_{6}\left(H_{1}^{\dagger} H_{1}\right)+Z_{7}\left(H_{2}^{\dagger} H_{2}\right)\right] H_{1}^{\dagger} H_{2}+\text { h.c. }\right\}
\end{aligned}
$$

exact \mathbb{Z}_{2} symmetry $\quad H_{1} \rightarrow+H_{1}$ and $H_{2} \rightarrow-H_{2}$
$Y_{3}=Z_{6}=Z_{7}=0 \quad$ preserved by the vacuum
Physical scalar mass spectrum

$$
\begin{aligned}
m_{h}^{2}=Z_{1} v^{2}, & m_{H^{ \pm}}^{2}=Y_{2}+\frac{1}{2} Z_{3} v^{2} \\
m_{A}^{2}=m_{H^{ \pm}}^{2}+\frac{1}{2}\left(Z_{4}-Z_{5}\right) v^{2}, & m_{H}^{2}=m_{A}^{2}+Z_{5} v^{2} \\
m_{H}=m_{A}, \text { due } & \text { to } Z_{5}=0
\end{aligned}
$$

Natural 2HDM mass degeneracies (cont.)

$$
Y_{3}=Z_{6}=Z_{7}=0 . \quad \text { together with } \quad Z_{5}=0
$$

exact continuous unbroken $\mathbf{U}(1)$ symmetry $\quad H_{1} \rightarrow H_{1} \quad H_{2} \rightarrow e^{i \theta} H_{2}$ It is this symmetry that is responsible for the mass degenerate states H and A

One can now define eigenstates of $\mathbf{U}(1)$ charge:

$$
\phi^{ \pm}=\frac{1}{\sqrt{2}}[H \pm i A]
$$

Physical mass spectrum of the mass degenerate IDM:

$$
\begin{aligned}
m_{h}^{2} & =Z_{1} v^{2} \\
m_{H^{ \pm}}^{2} & =Y_{2}+\frac{1}{2} Z_{3} v^{2} \\
m_{\phi^{ \pm}}^{2} & =Y_{2}+\frac{1}{2}\left(Z_{3}+Z_{4}\right) v^{2}
\end{aligned}
$$

Natural 2HDM mass degeneracies (cont.)

Although $\phi^{ \pm}$are mass degenerate states, they can be physically distinguished on an event by event basis.

The relevant interaction terms of $\phi^{ \pm}$are

$$
\begin{aligned}
\mathscr{L}_{\text {int }}= & {\left[\frac{1}{2} g^{2} W_{\mu}^{+} W^{\mu-}+\frac{g^{2}}{4 c_{W}^{2}} Z_{\mu} Z^{\mu}\right] \phi^{+} \phi^{-}+\frac{i g}{2 c_{W}} Z^{\mu} \phi^{-\overleftrightarrow{\partial} \mu} \phi^{+}-\frac{g}{\sqrt{2}}\left[i W_{\mu}^{+} H^{-\overleftrightarrow{\partial}}{ }^{\mu} \phi^{+}+\text {h.c. }\right] } \\
& +\frac{e g}{\sqrt{2}}\left(A^{\mu} W_{\mu}^{+} H^{-} \phi^{+}+A^{\mu} W_{\mu}^{-} H^{+} \phi^{-}\right)-\frac{g^{2} s_{W}^{2}}{\sqrt{2} c_{W}}\left(Z^{\mu} W_{\mu}^{+} H^{-} \phi^{+}+Z^{\mu} W_{\mu}^{-} H^{+} \phi^{-}\right) \\
& -v\left(Z_{3}+Z_{4}\right) h \phi^{+} \phi^{-}-\frac{1}{2}\left[Z_{2}\left(\phi^{+} \phi^{-}\right)^{2}+\left(Z_{3}+Z_{4}\right) h^{2} \phi^{+} \phi^{-}\right]-Z_{2} H^{+} H^{-} \phi^{+} \phi^{-} .
\end{aligned}
$$

For example, Drell-Yan production via a virtual s-channel W^{+}exchange can produce H^{+}in association with ϕ^{-}, whereas virtual s-channel W^{-}exchange can produce H^{-}in association with ϕ^{+}. Thus, the sign of the charged Higgs boson reveals the $U(1)$-charge of the produced neutral scalar. The origin of this correlation lies in the fact that, by construction, H^{+}and ϕ^{+}both reside in H_{2}, whereas H^{-}and ϕ^{-}both reside in H_{2}^{\dagger}.

Models with three Higgs doublets

There is not yet a full study of all possible symmetries
e.g. Ivanov et al

In what follows we consider

Three Higgs doublet models with S_{3} Symmetry

An Interesting model:
A CP-conserving multi-Higgs Model with irremovable complex coefficients
I.P. Ivanov and J.P. Silva, Phys. Rev. D 93, 095014 (2016) [arXiv:1512.09276],

Was analysed by H. Haber, O. M. Ogreid, P. Osland, MNR, 2018

The Scalar potential

S_{3} is the permutation group involving three objects, $\phi_{1}, \phi_{2}, \phi_{3}$

$$
\begin{aligned}
V_{2}= & -\lambda \sum_{i} \phi_{i}^{\dagger} \phi_{i}+\frac{1}{2} \gamma \sum_{i<j}\left[\phi_{i}^{\dagger} \phi_{j}+\mathrm{hc}\right] \\
V_{4}= & A \sum_{i}\left(\phi_{i}^{\dagger} \phi_{i}\right)^{2}+\sum_{i<j}\left\{C\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{j}^{\dagger} \phi_{j}\right)+\bar{C}\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{j}^{\dagger} \phi_{i}\right)+\frac{1}{2} D\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)^{2}+\mathrm{hc}\right]\right\} \\
& +\frac{1}{2} E_{1} \sum_{i \neq j}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{i}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\sum_{i \neq j \neq k \neq i, j<k}\left\{\frac{1}{2} E_{2}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{k}^{\dagger} \phi_{i}\right)+\mathrm{hc}\right]\right. \\
& \left.+\frac{1}{2} E_{3}\left[\left(\phi_{i}^{\dagger} \phi_{i}\right)\left(\phi_{k}^{\dagger} \phi_{j}\right)+\mathrm{hc}\right]+\frac{1}{2} E_{4}\left[\left(\phi_{i}^{\dagger} \phi_{j}\right)\left(\phi_{i}^{\dagger} \phi_{k}\right)+\mathrm{hc}\right]\right\}
\end{aligned}
$$

here all fields appear on equal footing
this representation is not irreducible, for instance, the combination

$$
\phi_{1}+\phi_{2}+\phi_{3}
$$

remains invariant, it splits into two irreducible representations,
doublet and singlet: $\quad\binom{h_{1}}{h_{2}}, h_{S}$

Decomposition into these two irreducible representations

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{S}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right) \quad\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)
$$

This definition does not treat equally

$$
\phi_{1}, \phi_{2}, \phi_{3}
$$

they could be interchanged
Notice similarity with tribimaximal mixing:

$$
(F=)\left(\begin{array}{ccc}
-\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

The scalar potential in terms of fields from irreducible representations

$$
\begin{aligned}
V_{2} & =\mu_{0}^{2} h_{S}^{\dagger} h_{S}+\mu_{1}^{2}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right) \\
V_{4} & =\lambda_{8}\left(h_{S}^{\dagger} h_{S}\right)^{2}+\lambda_{5}\left(h_{S}^{\dagger} h_{S}\right)\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)+\lambda_{1}\left(h_{1}^{\dagger} h_{1}+h_{2}^{\dagger} h_{2}\right)^{2} \\
& +\lambda_{2}\left(h_{1}^{\dagger} h_{2}-h_{2}^{\dagger} h_{1}\right)^{2}+\lambda_{3}\left[\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)^{2}+\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)^{2}\right] \\
& +\lambda_{6}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{S}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{2}^{\dagger} h_{S}\right)\right] \\
& +\lambda_{7}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{S}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{S}^{\dagger} h_{2}\right)+\text { h.c. }\right] \\
& +\lambda_{4}\left[\left(h_{S}^{\dagger} h_{1}\right)\left(h_{1}^{\dagger} h_{2}+h_{2}^{\dagger} h_{1}\right)+\left(h_{S}^{\dagger} h_{2}\right)\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\text { h.c. }\right] \quad \text { Das and Dey }
\end{aligned}
$$

no symmetry under the interchange of $\quad h_{1}$ and h_{2} however there is symmetry for $\quad h_{1} \rightarrow-h_{1}$ equivalent doublet representation $\quad\binom{\chi_{1}}{\chi_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}i & 1 \\ -i & 1\end{array}\right)\binom{h_{1}}{h_{2}}$ now there is symmetry for $\quad \chi_{1} \leftrightarrow \chi_{2}$

In the special case $\quad \lambda_{4}=0 \quad$ the potential has $\mathbf{S O}(2)$ symmetry:

$$
\binom{h_{1}^{\prime}}{h_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{h_{1}}{h_{2}} \quad \text { Danger: massless scalar! }
$$

Constraining the potential by the vevs

Possibility of SCPV - real parameters

Let us start with real vacua (no CP violation)

Three minimisation conditions:

can be solved to give μ_{0}^{2} and μ_{1}^{2} in terms of the quartic coefficients:

$$
\begin{align*}
& \mu_{0}^{2}=\frac{1}{2 w_{S}}\left[\lambda_{4}\left(w_{2}^{2}-3 w_{1}^{2}\right) w_{2}-\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right)\left(w_{1}^{2}+w_{2}^{2}\right) w_{S}-2 \lambda_{8} w_{S}^{3}\right], \tag{4.2a}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)+6 \lambda_{4} w_{2} w_{S}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right], \tag{4.2b}\\
& \mu_{1}^{2}=-\frac{1}{2}\left[2\left(\lambda_{1}+\lambda_{3}\right)\left(w_{1}^{2}+w_{2}^{2}\right)-3 \lambda_{4}\left(w_{2}^{2}-w_{1}^{2}\right) \frac{w_{S}}{w_{2}}+\left(\lambda_{5}+\lambda_{6}+2 \lambda_{7}\right) w_{S}^{2}\right] . \tag{4.2c}
\end{align*}
$$

Eqs (4.2b) and (4.2c) obtained dividing by w_{1} and w_{2} respectively
Consistency requires:

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

- for $w_{1}=0$ the corresponding derivative is zero - no clash
- or else $\quad \lambda_{4}\left(3 w_{2}^{2}-w_{1}^{2}\right) w_{S}=0 \quad$ i. e., $\quad \lambda_{4}=0 \quad$ or $w_{1}= \pm \sqrt{3} w_{2}$ or $w_{S}=0$.
- for $w_{S}=0$. special condition: $\lambda_{4} w_{2}\left(3 w_{1}^{2}-w_{2}^{2}\right)=0$, i. e., in addition:

$$
\lambda_{4}=0 \text { or } w_{2}= \pm \sqrt{3} w_{1} \text {, or else } w_{2}=0
$$

SSB, real vacua, residual symmetries

Derman, Tsao Phys. Rev. D20 (1979) 1207:
($\mathrm{x}, \mathrm{x}, \mathrm{x}$) S_{3};
($\mathrm{x}, \mathrm{x}, \mathrm{y}$) S_{2};
$(x, y, z)=(x,-x, 0) S_{2}$
$\lambda_{4} \neq 0$

Translation into doublet singlet notation

$$
\begin{aligned}
& \left.(\mathrm{x}, \mathrm{x}, \mathrm{x}) \quad \rightarrow \quad\left(0,0, \omega_{S}\right) \quad w_{1}=0 \text { (also verifies } w_{1}= \pm \sqrt{3} w_{2}\right) \\
& (\mathbf{x},-\mathbf{x}, 0) \rightarrow\left(\omega_{1}, 0,0\right) \quad w_{S}=0 \text { together with } w_{2}=0 . \\
& (x, 0,-\mathbf{x}) \quad \rightarrow \quad\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together } w_{2}=\sqrt{3} w_{1} \\
& (0, \mathrm{x},-\mathrm{x}) \quad \rightarrow \quad\left(\omega_{1}, \omega_{2}, 0\right) \quad w_{S}=0 \text { together with } w_{2}=-\sqrt{3} w_{1}
\end{aligned}
$$

(x, x, y) translates into $\left(0, w_{2}, w_{S}\right)$; consistency condition: $w_{1}=0$.
(x, y, x) translates into $\left(w_{1},-\frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=-\sqrt{3} w_{2}$
(y, x, x) translates into $\left(w_{1}, \frac{1}{\sqrt{3}} w_{1}, w_{S}\right)$; consistency condition: $w_{1}=\sqrt{3} w_{2}$

For $\quad \lambda_{4}=0 \quad \mathrm{SO}(2)$ symmetry implies $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ possible solution

$$
\begin{aligned}
\lambda_{a} & =\lambda_{5}+\lambda_{6}+2 \lambda_{7}, \\
\lambda_{b} & =\lambda_{5}+\lambda_{6}-2 \lambda_{7} .
\end{aligned}
$$

Complex vacua

Table 2: Complex vacua. Notation: $\epsilon=1$ and -1 for C-III-d and C-III-e, respectively; $\xi=\sqrt{-3 \sin 2 \rho_{1} / \sin 2 \rho_{2}}, \psi=\sqrt{\left[3+3 \cos \left(\rho_{2}-2 \rho_{1}\right)\right] /\left(2 \cos \rho_{2}\right)}$. With the constraints of Table 4 the vacua labelled with an asterisk $\left(^{*}\right)$ are in fact real.

	IRF (Irreducible Rep.)	RRF (Reducible Rep.)
	w_{1}, w_{2}, w_{S}	$\rho_{1}, \rho_{2}, \rho_{3}$
C-I-a	$\hat{w}_{1}, \pm i \hat{w}_{1}, 0$	$x, x e^{ \pm \frac{2 \pi i}{3}}, x e^{\mp \frac{2 \pi i}{3}}$
C-III-a	$0, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$y, y, x e^{i \tau}$
C-III-b	$\pm i \hat{w}_{1}, 0, \hat{w}_{S}$	$x+i y, x-i y, x$
C-III-c	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0$	$x e^{i \rho}-\frac{y}{2},-x e^{i \rho}-\frac{y}{2}, y$
C-III-d, e	$\pm i \hat{w}_{1}, \epsilon \hat{w}_{2}, \hat{w}_{S}$	$x e^{i \tau}, x e^{-i \tau}, y$
C-III-f	$\pm i \hat{w}_{1}, i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho} \pm i x, r e^{i \rho} \mp i x, \frac{3}{2} r e^{-i \rho}-\frac{1}{2} r e^{i \rho}$
C-III-g	$\pm i \hat{w}_{1},-i \hat{w}_{2}, \hat{w}_{S}$	$r e^{-i \rho} \pm i x, r e^{-i \rho} \mp i x, \frac{3}{2} r e^{i \rho}-\frac{1}{2} r e^{-i \rho}$
C-III-h	$\sqrt{3} \hat{w}_{2} e^{i \sigma_{2}}, \pm \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$\begin{aligned} & x e^{i \tau}, y, y \\ & y, x e^{i \tau}, y \end{aligned}$
C-III-i	$\begin{aligned} & \sqrt{\frac{3\left(1+\tan ^{2} \sigma_{1}\right)}{1+9 \tan ^{2} \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \pm & \hat{w}_{2} e^{-i \arctan \left(3 \tan \sigma_{1}\right)}, \hat{w}_{S} \end{aligned}$	$\begin{aligned} & x, y e^{i \tau}, y e^{-i \tau} \\ & y e^{i \tau}, x, y e^{-i \tau} \end{aligned}$
C-IV-a*	$\hat{w}_{1} e^{i \sigma_{1}}, 0, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{i \rho}+x, x$
C-IV-b	$\hat{w}_{1}, \pm i \hat{w}_{2}, \hat{w}_{S}$	$r e^{i \rho}+x,-r e^{-i \rho}+x,-r e^{i \rho}+r e^{-i \rho}+x$
C-IV-c	$\begin{gathered} \sqrt{1+2 \cos ^{2} \sigma_{2}} \hat{w}_{2} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \\ \hline \end{gathered}$	$\begin{gathered} r e^{i \rho}+r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x \\ r e^{i \rho}-r \sqrt{3\left(1+2 \cos ^{2} \rho\right)}+x,-2 r e^{i \rho}+x \end{gathered}$
C-IV-d*	$\hat{w}_{1} e^{i \sigma_{1}}, \pm \hat{w}_{2} e^{i \sigma_{1}}, \hat{w}_{S}$	$r_{1} e^{i \rho}+x,\left(r_{2}-r_{1}\right) e^{i \rho}+x,-r_{2} e^{i \rho}+x$
C-IV-e	$\begin{gathered} \sqrt{-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}} \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{2}}+r e^{i \rho_{1}} \xi+x, r e^{i \rho_{2}}-r e^{i \rho_{1}} \xi+x \\ -2 r e^{i \rho_{2}}+x \end{gathered}$
C-IV-f	$\begin{gathered} \sqrt{2+\frac{\cos \left(\sigma_{1}-2 \sigma_{2}\right)}{\cos \sigma_{1}}} \hat{w}_{2} e^{i \sigma_{1}}, \\ \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S} \end{gathered}$	$\begin{gathered} r e^{i \rho_{1}}+r e^{i \rho_{2}} \psi+x \\ r e^{i \rho_{1}}-r e^{i \rho_{2}} \psi+x,-2 r e^{i \rho_{1}}+x \end{gathered}$
C-V*	$\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, \hat{w}_{S}$	$x e^{i \tau_{1}}, y e^{i \tau_{2}}, z$

Constraints

Vacuum	Constraints
C-I-a	$\mu_{1}^{2}=-2\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{1}^{2}$
C-III-a	$\begin{gathered} \hline \hline \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=\frac{4 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \\ \hline \end{gathered}$
C-III-b	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b} \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \\ \lambda_{4}=0 \end{gathered}$
C-III-c	$\begin{gathered} \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right), \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0 \end{gathered}$
C-III-d,e	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{S}^{2}}-\epsilon \lambda_{4} \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)\left(\hat{w}_{1}^{2}-3 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\epsilon \lambda_{4} \frac{\hat{w}_{S}\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)}{4 \hat{w}_{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{7}=\frac{\hat{w}_{1}^{2}-\hat{w}_{2}^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right)-\epsilon \frac{\left(\hat{w}_{1}^{2}-5 \hat{w}_{2}^{2}\right)}{4 \hat{w}_{2} \hat{w}_{S}} \lambda_{4} \end{gathered}$
C-III-f,g	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2} \lambda_{b}\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2} \lambda_{b} \hat{w}_{S}^{2}, \lambda_{4}=0 \end{gathered}$
C-III-h	$\begin{gathered} \mu_{0}^{2}=-2 \lambda_{b} \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-4\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{b}-8 \cos ^{2} \sigma_{2} \lambda_{7}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=\mp \frac{2 \cos \sigma_{2} \hat{w}_{S}}{\hat{w}_{2}} \lambda_{7} \end{gathered}$
C-III-i	

Vacuum	Constraints
C-IV-a*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{1}^{2}-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right) \hat{w}_{1}^{2}-\frac{1}{(}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-b	$\begin{gathered} \mu_{0}^{2}=\left(\lambda_{2}+\lambda_{3}\right) \frac{\left(\hat{w}_{1}^{2}-\hat{w}_{2}^{2}\right)^{2}}{\hat{w}_{2}^{2}}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left(\lambda_{1}-\lambda_{2}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2},\right. \\ \lambda_{4}=0, \lambda_{7}=-\frac{\left(\hat{w}_{1}^{1}-\hat{w}_{2}^{2}\right)}{\hat{w}_{S}^{2}}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-c	$\begin{gathered} \mu_{0}^{2}=2 \cos ^{2} \sigma_{2}\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{2}+\lambda_{3}\right) \frac{\hat{w}_{2}^{4}}{\hat{w}_{2}^{2}} \\ -\left(1+\cos ^{2} \sigma_{2}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \mu_{1}^{2}=-\left[2\left(1+\cos ^{2} \sigma_{2}\right) \lambda_{1}-\left(2+3 \cos ^{2} \sigma_{2}\right) \lambda_{2}-\cos ^{2} \sigma_{2} \lambda_{3}\right] \hat{w}_{2}^{2} \\ -\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2} \cos ^{2} \sigma_{2} \hat{w}_{2}^{2} \\ \lambda_{4}=-\frac{2 \cos _{2} \sigma_{2} \hat{w}_{2}}{\hat{w}_{S}}\left(\lambda_{2}+\lambda_{3}\right), \lambda_{7}=\frac{\cos ^{2}}{\hat{w}_{S}^{2}}\left(\lambda_{2}\right) \end{gathered}$
C-IV-d*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$
C-IV-e	$\begin{gathered} \mu_{0}^{2}=\frac{\sin ^{2}\left(2\left(\sigma_{1}-\sigma_{2}\right)\right)}{\sin 2}\left(\lambda_{2}+\lambda_{3}\right) \frac{\hat{w}_{2}^{4}}{\hat{w}_{S}^{2}} \\ -\frac{1}{2}\left(1-\frac{\sin 2 \sigma_{2}}{\sin 2 \sigma_{2}}\left(\sigma_{1}\right)\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2},\right. \\ \mu_{1}^{2}=-\left(1-\frac{\sin 2 \sigma_{1}}{\sin \sigma_{2} \sigma_{1}}\right)\left(\lambda_{1}-\lambda_{2}\right) \hat{w}_{2}^{2}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{4}=0, \lambda_{7}=-\frac{\sin \left(2\left(\sigma_{1}-\sigma_{2}\right)\right) \hat{w}_{2}^{2}}{\sin 2 \sigma_{1}\left(\hat{w}_{S}^{2}\right.}\left(\lambda_{2}+\lambda_{3}\right) \end{gathered}$
C-IV-f	$\begin{gathered} \mu_{0}^{2}=-\frac{\left(\cos \left(\sigma_{1}-2 \sigma_{2}\right)+3 \cos \sigma_{1}\right) \cos \left(\sigma_{2}-\sigma_{1}\right)}{2 \cos)_{4}} \lambda_{4} \hat{w}_{2}^{3} \\ -\frac{\cos \left(\sigma_{1}-2 \sigma_{2}\right)+3 \cos \sigma_{1}}{\hat{w}_{S}}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{2}^{2}-\lambda_{8} \hat{w}_{S}^{2}, \\ \left.\mu_{1}^{2}=-\cos \sigma_{1}-2 \sigma_{1}-2 \sigma_{2}\right)+3 \cos \sigma_{1} \\ \left.\cos \sigma_{1}+\lambda_{3}\right) \hat{w}_{2}^{2} \\ -\frac{3 \cos 2 \sigma_{1}+2 \cos \left(2\left(\sigma_{1}-\sigma_{2}\right)+\cos 2 \sigma_{2}+4\right.}{4 \cos \left(\sigma_{1}-\sigma_{2}\right) \cos \sigma_{1} \hat{\sigma}_{S}} \lambda_{4} \hat{w}_{2} \hat{w}_{S}-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{2}+\lambda_{3}=-\frac{\cos \sigma_{1}}{2 \cos \left(\sigma_{2}-\sigma_{1}\right) \hat{w}_{2}} \lambda_{4}, \lambda_{7}=-\frac{\cos \left(\sigma_{2}-\sigma_{1}\right) \hat{w}_{2}}{2 \cos \sigma_{1} \hat{w}_{S}} \lambda_{4} \end{gathered}$
C-V*	$\begin{gathered} \mu_{0}^{2}=-\frac{1}{2}\left(\lambda_{5}+\lambda_{1}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\lambda_{8} \hat{w}_{S}^{2} \omega_{S} \\ \mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right)-\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) \hat{w}_{S}^{2}, \\ \lambda_{2}+\lambda_{3}=0, \lambda_{4}=0, \lambda_{7}=0 \end{gathered}$

Complex vacua, Spontaneous CP Violation

Table 1: Spontaneous CP violation

Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV	Vacuum	λ_{4}	SCPV
C-I-a	X	no	C-III-f.g	0	no	C-IV-c	X	yes
C-III-a	X	yes	C-III-h	X	yes	C-IV-d	0	no
C-III-b	0	no	C-III-i	X	no	C-IV-e	0	no
C-III-c	0	no	C-IV-a	0	no	C-IV-f	X	yes
C-III-d,e	X	no	C-IV-b	0	no	C-V	0	no

No spontaneous CP violation in any of the cases with

$$
\lambda_{4}=0
$$

The case of $\lambda_{4}=0$

Potential has additional continuous $\mathbf{S O}(2)$ symmetry

$$
\lambda_{4}=4 A-2(C+\bar{C}+D)-E_{1}-E_{2}+E_{4}=0
$$

Derman (1979), "unnatural"
Spontaneous breaking of this SO(2) symmetry leads to massless particles
Possible solution: break the symmetry softly. The most general quadratic potential can be written:

$$
\begin{aligned}
& V=V_{2}+V_{2}^{\prime}+V_{4} \\
& V_{2}^{\prime}= \mu_{2}^{2}\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\frac{1}{2} \nu_{12}^{2}\left(h_{1}^{\dagger} h_{2}+\text { h.c. }\right)+\frac{1}{2} \nu_{01}^{2}\left(h_{S}^{\dagger} h_{1}+\text { h.c. }\right) \\
&+\frac{1}{2} \nu_{02}^{2}\left(h_{S}^{\dagger} h_{2}+\text { h.c. }\right) .
\end{aligned}
$$

Table 1: Complex vacua, for the unbroken S_{3} case, with massless states and degeneracies indicated. The first entry in the parenthesis refers to the charged sector, the second one to the neutral sector. In the footnotes below, L indicates that a linear expression in its arguments vanishes.

Vacuum	name	λ_{4}	symmetry	\# massless states	degeneracies
$C_{0 x y}$	C-III-a	$\sqrt{ }$		none	none
$C_{x 0 y}$	C-III-b	0	$\mathrm{SO}(2)$	(none,1)	none
$C_{x 0 y}$	C-IV-a	0^{α}	$\mathrm{SO}(2) \otimes \mathrm{U}(1)_{s}$	(none,2)	(none,2)
$C_{x y 0}$	C-I-a	$\sqrt{ }$		none	(none,2)
$C_{x y 0}$	C-III-c	0^{β}	$\mathrm{SO}(2)$	(none,2)	(none,2)
$C_{x y z}$	C-III-d,e	$\sqrt{ }$		none	none
$C_{x y z}$	C-III-f,g	0	$\mathrm{SO}(2)$	(none,1)	none
$C_{x y z}$	C-III-h,i	$\sqrt{ }$		none	none
$C_{x y z}$	C-IV-b	0	$\mathrm{SO}(2)$	(none,1)	none
$C_{x y z}$	C-IV-c	γ	x	(none,1)	none
$C_{x y z}$	C-IV-d	0^{α}	$\mathrm{SO}(2) \otimes \mathrm{U}(1)_{s}$	(none,2)	(none,2)
$C_{x y z}$	C-IV-e	0	$\mathrm{SO}(2)$	(none,1)	none
$C_{x y z}$	C-IV-f	γ	x	(none,1)	none
$C_{x y z}$	C-V	$0^{\alpha, \beta}$	$\mathrm{SO}(2) \otimes \mathrm{U}(1)_{1} \otimes \mathrm{U}(1)_{2} \otimes \mathrm{U}(1)_{s}$	(none,3)	(none,3)

${ }^{\alpha}$ Also $\lambda_{7}=0$.
${ }^{\beta}$ Also $\lambda_{2}+\lambda_{3}=0$.
${ }^{\gamma} L\left(\lambda_{2}+\lambda_{3}, \lambda_{4}\right), L\left(\lambda_{2}+\lambda_{3}, \lambda_{7}\right)$.
$\lambda_{4}=0 \quad$ potential acquires an additional $\mathrm{SO}(2)$ symmetry between the two members of the S3 doublet $\lambda_{4}=0 \quad$ together with $\quad \lambda_{7}=0$ the potential acquires an additional $\mathrm{SO}(2)$ together with a $\mathrm{U}(1)$ symmetry
$\begin{array}{llll}\lambda_{4}=0 & \lambda_{7}=0 \quad \text { and } \quad \lambda_{2}+\lambda_{3}=0 \quad \mathrm{SO}(2) \text { symmetry plus symmetry under independent }\end{array}$ rephasing of each doublet

A particularly interesting complex vacuum configuration

Vacuum C-III-c

$$
\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0
$$

Constraints:

$$
\mu_{1}^{2}=-\left(\lambda_{1}+\lambda_{3}\right)\left(\hat{w}_{1}^{2}+\hat{w}_{2}^{2}\right),
$$

$$
\lambda_{2}+\lambda_{3}=0, \lambda_{4}=0 \quad \text { (acquires } \mathrm{SO}(2) \text { symmetry) }
$$

Does not violate CP spontaneously
Can be rewritten as: $\quad\left(w_{1}, w_{2}, w_{S}\right)=\left(\hat{w} e^{i \sigma / 2}, \hat{w} e^{-i \sigma / 2}, 0\right)=\left(\hat{w} e^{i \sigma}, \hat{w}, 0\right)$
It is the only complex vacuum in the full list with a nontrivial phase that is not constrained by the minimisation conditions

Two massless neutral scalars, one of them is a Goldstone boson associated to the breaking of $\mathrm{SO}(2)$

The C-III-c model without soft breaking terms

phase σ is not determined by the potential.

Two massless states in the neutral sector apart from the would-be Goldstone boson
S_{3} doublet and the S_{3} singlet do not mix in the mass terms

In the neutral sector of the S_{3}-doublet, there is only one massive (CP-even) state
The S_{3}-singlet sector has two massive states (S_{1} and S_{2})

$$
\begin{aligned}
& m_{S_{1}}^{2}=\mu_{0}^{2}+\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) v^{2}-\lambda_{7} \cos \sigma v^{2} \\
& m_{S_{2}}^{2}=\mu_{0}^{2}+\frac{1}{2}\left(\lambda_{5}+\lambda_{6}\right) v^{2}+\lambda_{7} \cos \sigma v^{2}
\end{aligned}
$$

The phase sigma which is left undetermined by the potential is related to the mass splitting of these neutral scalars and also parametrises some of the triliniar couplings involving the scalar fields

The C-III-c model with soft S_{3}-breaking

Table 6: Summary of softly-broken C-III-c-like vacua. Here, "SBT" stands for "Softbreaking terms". When the two moduli are equal, we denote it \hat{w}. In the last column we listed the symmetry responsible for no spontaneous CP violation.

Case	Constraints	Allowed SBT	Vacuum	CP
1	$\begin{gathered} \lambda_{4}=0, \lambda_{2}+\lambda_{3}=0 \\ \text { C-III-c } \end{gathered}$	none	$\begin{aligned} & \left(\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0\right) \\ \equiv & \left(\hat{w} e^{i \sigma / 2}, \hat{w} e^{-i \sigma / 2}, 0\right) \end{aligned}$	$\begin{gathered} \hline \text { conserving } \\ \mathrm{SO}(2) \\ \hline \end{gathered}$
2	$\begin{gathered} \lambda_{4}=0, \lambda_{2}+\lambda_{3} \neq 0 \\ \cos \left(\sigma_{2}-\sigma_{1}\right)=0, \hat{w}_{1} \neq \hat{w}_{2} \end{gathered}$	μ_{2}^{2}	$\left(\pm i \hat{w}_{1}, \hat{w}_{2}, 0\right)$	conserving $h_{1} \rightarrow-h_{1}$
3	$\begin{gathered} \lambda_{4}=0, \lambda_{2}+\lambda_{3} \neq 0 \\ \cos \left(\sigma_{2}-\sigma_{1}\right) \neq 0, \hat{w}_{1}=\hat{w}_{2} \end{gathered}$	ν_{12}^{2}	$\begin{aligned} & \left(\hat{w} e^{i \sigma_{1}}, \hat{w} e^{i \sigma_{2}}, 0\right) \\ \equiv & \left(\hat{w} e^{i \sigma / 2}, \hat{w} e^{-i \sigma / 2}, 0\right) \end{aligned}$	$\begin{gathered} \text { conserving } \\ h_{1} \leftrightarrow h_{2} \\ \hline \end{gathered}$
4	$\lambda_{4}=0, \lambda_{2}+\lambda_{3} \neq 0$ no other conditions	$\mu_{2}^{2}, \nu_{12}^{2}$	$\left(\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0\right)$	violating
5	$\begin{gathered} \lambda_{4} \neq 0, \lambda_{2}+\lambda_{3}=0 \\ \cos \left(\sigma_{2}-\sigma_{1}\right)=0, \hat{w}_{1}=\hat{w}_{2} \\ \text { C-I-a } \end{gathered}$	none	$(\pm i \hat{w}, \hat{w}, 0)$	conserving $h_{1} \rightarrow-h_{1}$
6	$\begin{gathered} \lambda_{4} \neq 0, \lambda_{2}+\lambda_{3}=0 \\ \cos \left(\sigma_{2}-\sigma_{1}\right)=0, \hat{w}_{1} \neq \hat{w}_{2} \end{gathered}$	ν_{02}^{2}	$\left(\pm i \hat{w}_{1}, \hat{w}_{2}, 0\right)$	conserving $h_{1} \rightarrow-h_{1}$
7	$\begin{gathered} \lambda_{4} \neq 0, \lambda_{2}+\lambda_{3}=0 \\ \cos \left(\sigma_{2}-\sigma_{1}\right) \neq 0, \hat{w}_{1}=\hat{w}_{2} \end{gathered}$	ν_{01}^{2}	$\left(\hat{w} e^{i \sigma}, \hat{w}, 0\right)$	violating
8	$\lambda_{4} \neq 0, \lambda_{2}+\lambda_{3}=0$ no other conditions	$\nu_{01}^{2}, \nu_{02}^{2}$	$\left(\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0\right)$	violating
9	$\begin{gathered} \lambda_{4} \neq 0, \lambda_{2}+\lambda_{3} \neq 0 \\ \cos \left(\sigma_{2}-\sigma_{1}\right)=0, \hat{w}_{1} \neq \hat{w}_{2} \end{gathered}$	$\mu_{2}^{2}, \nu_{02}^{2}$	$\left(\pm i \hat{w}_{1}, \hat{w}_{2}, 0\right)$	conserving $h_{1} \rightarrow-h_{1}$
10	$\begin{gathered} \lambda_{4} \neq 0, \lambda_{2}+\lambda_{3} \neq 0 \\ \cos \left(\sigma_{2}-\sigma_{1}\right) \neq 0, \hat{w}_{1}=\hat{w}_{2} \end{gathered}$	$\nu_{12}^{2}, \nu_{01}^{2}$	$\left(\hat{w} e^{i \sigma}, \hat{w}, 0\right)$	violating
11	$\begin{gathered} \lambda_{4} \neq 0, \lambda_{2}+\lambda_{3} \neq 0 \\ \sigma_{2}-\sigma_{1} \neq 0, \hat{w}_{1} \neq \hat{w}_{2} \end{gathered}$	all	$\left(\hat{w}_{1} e^{i \sigma_{1}}, \hat{w}_{2} e^{i \sigma_{2}}, 0\right)$	violating

$$
\begin{aligned}
V_{2}^{\prime}= & \mu_{2}^{2}\left(h_{1}^{\dagger} h_{1}-h_{2}^{\dagger} h_{2}\right)+\frac{1}{2} \nu_{12}^{2}\left(h_{1}^{\dagger} h_{2}+\text { h.c. }\right)+\frac{1}{2} \nu_{01}^{2}\left(h_{S}^{\dagger} h_{1}+\text { h.c. }\right) \\
& +\frac{1}{2} \nu_{02}^{2}\left(h_{S}^{\dagger} h_{2}+\text { h.c. }\right) .
\end{aligned}
$$

CONCLUSIONS

Symmetries play a crucial rôle in multi-Higgs models
Multi-Higgs models provide interesting scenarios for Dark Matter

Symmetries are needed to stabilise Dark Matter
The question of whether CP is violated spontaneously or explicitly is still open

Multi-Higgs Models have a rich phenomenology
Discoveries at the LHC are eagerly awaited

