Searches for Dark Matter at ATLAS

Francesco Conventi on behalf of the ATLAS Collaboration

Università Parthenope and INFN, Napoli

Outline

Normal Matter

Collider Production

Indirect Detection

Early Universe Annihilation

Direct Detectior

ark Matter

Motivation for Dark Matter @ LHC

- A thermal relic of the Early Universe → Detectors capable of measuring weak-scale interactions with SM
- Focus on WIMP model for dark matter: weakly interacting, massive (non relativistic), stable

Simplified Models at LHC [1507.00966]

Lagrangian parameters

	spin 0	spin 1
charge Q	Q = 0 for s-channel	
mass	unknown	
Mediator A	Н,Ф	γ,Ζ,Ζ'
Lorentz structure	scalar pseudoscalar	vector axial-vector
coupling	∝ mass	∝ charge
Example channel	DM+HF	Di-jet

g _q q̄qA	$g_{DM} \overline{\chi} \chi A$
matter-mediator	DM-mediator
$g_q m_q m_{med}$	$g_{\text{DM}}m_{\text{DM}}m_{\text{med}}$
	3 4 redundant

Matrix element = 4 parameters 2d exclusion plot must assume 2 other params

4

 $\sigma_{DM-p}^{SD} \approx (g_q \cdot g_{DM} \cdot \frac{m_{DM}}{m_{end}^2})^2$

$CERN_LPCC_2016_001$

Complementarity

Generic features of results **non-**LHC vs LHC! [1703.05703]

Total Integrated Luminosity [fb^{-†}

50–

40

30

20

10

18/04

6

Atlas detector and Run-II @ LHC

o LHC started run-2 in 2015 proton vs proton @ √s=13 TeV

ATLAS Online Luminosity

16/05 13/06 11/07 08/08 05/09

LHC Delivered ATLAS Recorded

Total Delivered: 38.9 fb⁻¹ Total Recorded: 36.0 fb⁻¹

 Parton luminosity for producing massive states is greatly enhanced -> great opportunity for searches!

√s = 13 TeV

Almost 40fb⁻¹ of data collected by the ATLAS experiment with excellent performance

03/10 31/10

How to look for dark matter?

- WIMPs can only be recognised as missing energy at the LHC
- $\circ \qquad \mbox{Need for a recoiling object: jets, W/Z} \\ \gamma, \mbox{Higgs boson}$
- Focus on simplified models and searches in event signatures denoted as Mono-X for:

Tools for Mono-X searches

It is indirect measurement of WIMP or $v \rightarrow very$ relevant for DM searches

8

In these searches **missing transverse momentum** $\mathcal{E}_T \rightarrow p_T(\chi\chi)$, reconstruction of jets, identifications of bosons are the key ingredients

Missing transverse momentum (E_T) is the p_T imbalance of the reconstructed physics objetcts:

$$E_{x(y)}^{miss} = -p_{x(y)}^{e} - p_{x(y)}^{\gamma} - p_{x(y)}^{\tau_{had}} - p_{x(y)}^{jets} - p_{x(y)}^{\mu} - p_{x(y)}^{soft}$$

PUB-2015-02

CST E_T^{miss}: Algorithm

TST ET^{miss}: Algorithm using Track Soft Term

Track E_T^{miss}: Purely reconstructed from tracks

ATLAS_CONF_2016_056

Monophoton search

Search for $pp \rightarrow \chi \chi + \gamma$ for this channel $X = \gamma$

New results with 36.1 fb⁻¹ (<u>submitted to EPJC,</u> [1704.03848])

- 1 isolated photon (pT > 150 GeV) and no leptons
- Æ_T>150GeV, at most one jet with pT >30GeV
- Combination of purely data-driven methods for fake backgrounds and MC normalized to data in specific CRs: Dominant irriducible background Z(vv)γ normalised by Z(II)γ scale factors
- o fit to \mathcal{K}_T : W/Z γ backgrounds scale factors

9

Monophoton search

Monojet

Results with 3.2 fb⁻¹ (Phys Rev D 94, 032005)

Search for an abundance of events with high \mathcal{E}_{T} + high p_{T} jet + 0 leptons

- \circ E_T > 250 GeV
- At most four jets (pT > 30 GeV)
- Leading jet pT > 250 GeV 0

Dominant background: **Z(vv)+jets**: normalised via $W(\mu v)$ +jets scale factor, theory transfer uncertainty applied in signal region

Simultaneous fit to \mathcal{E}_{T} : $\rightarrow \mathcal{E}_{T}$ dependent scale factors for background normalisation

Monojet

Exclusion plot in (m_{DM}, m_{med}) and $(\sigma_{DM-proton}, m_{DM})$ 2d plane $(g_q = 0.25 g_{DM} = 1)$

Reconstruction

Tools for Mono-X searches

Run-I analysis used anti- k_T jets with **R=0.4**

Boosted topologies: two-jets overlap and form a fat-jet (R=1.0)

Jet grooming to reduce the impact of pile-up in ATLAS→ jet **trimming**:

- k_T algorithm to create sub-jets with R=0.2
- sub-jets with p_Tⁱ/p_T^{jet} < 5% are removed

Cut on substructure variables e.g. D2 (energy correlation ratio; offers separation for 1- & 2-prong decays) is applied to reduce the multijet bkg

Mono-V($V \rightarrow hadrons$)

Search for $pp \rightarrow \chi \chi + \gamma$ for this channel $\chi = W, Z$ <u>Results with 3.2 fb⁻¹</u> (Phys. Lett. B 763 (2016) <u>251</u>)

Analysis similar to monojet search but with focus on large-R jets

- Background: Z(vv) + jets, W(lv) + jets, W(lv) from top
- Select events with MET>250 GeV and boosted W/Z (pT>200 GeV)
- Require large-R jets: both decay products of W/Z contained inside large jet (R = 1.0, anti- k_t)
- large-R jet substructure described by jet mass and D2 variable (two distinct energy concentrations)

ATLAS

signal region

 10^{2}

10

10

10⁻²

10⁻³

2 1.5

 $\sqrt{s} = 13 \text{ TeV} \int Ldt = 3.2 \text{ fb}^{-1}$

15

E_T^{miss}+W/Z: vector model m_{DM}=10 GeV, m_{med}=10 TeV

Data 2015

Z+iets

W∔jets Single top

Diboson

Uncertainty

Pre-fit background

No excess over SM prediction observed Results interpreted in:

EFT model

(mass scale of the model vs DM mass)

Simplified model

(observed limit on the signal strength in 2D plane of m_{med} and m_{DM})

 $Mono-Z(Z \rightarrow II)$

Search for $pp \rightarrow \chi \chi + l^+ l^-$ for this channel $\chi = Z$ <u>Results with 13.3 fb⁻¹ (ATLAS_CONF_2016_056</u>)

Signature: opposite sign leptons and $\boldsymbol{\textit{E}}_{\mathsf{T}}$

- Æ_T > 90 GeV
- boosted Z-boson with $\Delta R(II) < 1.8$, b-veto

Dominant background $ZZ \rightarrow IIvv$ from MC corrected to NNLO QCD and NLO EW calculation.

- WZ and Z+jets (small) normalised via CRs using scale factor.
- Bkg uncertainty dominated by Z+jets

Limit on DM production in simplified model for vector mediator

MonoHiggs $(H \rightarrow bb)$ Search for $pp \rightarrow \chi\chi + bb$ for this channel X = H<u>New Results with 36.1 fb⁻¹ (ATLAS_CONF_2017_028)</u>

Higgs involved in WIMP production in different models:

- coupling to heavy mediator Z'
- coupling to Z' and pseudo-scalar A (2HDM)
- Heavy scalar model
- E_T < 500 GeV: Resolved region \rightarrow two distinct b-jets
- $\mathcal{E}_{T} > 500 \text{ GeV}$: boosted Higgs \rightarrow large-R jet with substructure (as in mono-V)
- Main backgrounds: W/Z+jets, tt
- Shape-fit to mjj or mJ (boosted region) in different *E*_T bins and #b-jets

MonoHiggs $(H \rightarrow_{YY})$

Search for $pp \rightarrow \chi\chi$ + bb for this channel X = H New Results with 36.1 fb⁻¹ (ATLAS_CONF_2017_024)

Signature: Two photons with m_{γγ} in [105,160] GeV and Æ_T

- **5 categories** formed based on \mathcal{E}_T significance ($\mathcal{E}_T/\sqrt{\Sigma}E_T$) and $p_T(\gamma\gamma)$, p_T^{hard} , # of leptons and $|z_{PV}^{hard} z_{PV}^{\gamma\gamma}|$ with different sensitivity:
 - \rightarrow First category for vector Z' and 2HDM models
 - \rightarrow All categories for heavy resonce H
- Background in $m_{\gamma\gamma}$ fitted with exponential function+double sided crystal ball \rightarrow for SM Higgs resonance

Higgs \rightarrow invisible

- Direct searches for H→invisible (Vector-boson fusion,associated VH production)
- Higgs production and decay rates:

 $bb, \gamma\gamma, ZZ, WW, \mu\mu, \tau\tau$

Combined upper limit on BR(Higgs→invisible)<22%

Vector boson fusion (VBF) 20.3 fb⁻¹@ 8 TeV (JHEP01(2016)172

Higgs Strahlung (VH) 13.3 fb⁻¹@ 13 TeV (ATLAS-CONF-2016-056)

DM + Heavy Flavour Searches

Searches for bb $+ \not E_T$ and $t \not t + \not E_T$ production: \rightarrow sensitive to (pseudo-)scalar mediator

DM+bb: (ATLAS_CONF_2016_086) Results with 13.3 fb⁻¹

Signature:

Exactly two b-jets, 3rd jet veto, no leptons and \mathcal{E}_{T}

- Dominant background Z(vv) + b-jets reduced by cut Ο requiring well separated b-jets $\Delta R(b_1, b_2)$ and momentum imbalance between b-jets (Imb(b1,b2)
- Background normalization using 3 CRs: Z(vv) + bjets constrained from Z(II) + b

Limits on DM+ bb with pseudoscalar mediator (similar results for scalar mediator)

DM + Heavy Flavour Searches

DM+tt : Results for 13.2 fb⁻¹

<u>ATLAS_CONF_2016_077, 2016_050, 2016_076</u>

- In SUSY searches for stops with 0, 1 or 2 charged leptons produced limits also on DM for scalar/pseudoscalar mediator
- Many SRs, based on kinematics/topological discriminating variables, have regions dedicated to DM searches

• Similar sensitivities for 0,1,2 leptons channel

Di-jet resonance search

NEW Results with 37 fb⁻¹ ([1703.09127])

Search for resonances on m_{ii} spectrum

- Limits are set on excited quarks q*, quantum black holes, W',Z',W*, generic Gauss-shaped resonances
- $\circ~$ For simplified models: limit on coupling g_q to standard model particles as a function of the mediator mass mZ'

22

Use new approaches to cover the low mass region!!

- Trigger Level Analysis (TLA) partial info stored
- Di-jet + ISR

Full Event O(1-2MB) → trigger rate too high for dijet event ATLAS **TLA**: store only jet related info (1-10 kB)

Simplified Models: Combination of Exclusion

<u>Combining dark matter searches</u> in terms of simplified models with an axial-vector mediator model:

Simplified Models: Combination of Exclusion

With non-zero coupling to leptons $g_1=0.01$ and less 'optimistic' coupling to standard model quarks: $g_q = 0.1$:

Simplified Models: Combination of Exclusion

Limit on spin-dependent WIMP-proton scattering cross section:

Summary and Outlook

27

- A variety of dark matter searches carried out throughout 2015 and 2016 Run-II data taking
 - New results with full 2015+2016 dataset > Run 1
 - Many others to come soon with full 2015+2016 data set
- Interpretations focused on Simplified models:
 - DM production via heavy mediator (mono-X)
 - Model dependent approach
 - Complementary sensitivity compared to direct dark matter searches
 - Constraints from di-jet resonance searches
- Many ways to improve:
 - Experimental techniques: fitting strategies, jet substructure, flavour tagging, ...
 - Interaction with theorists: higher-order prediction for bkg, better control of theoretical uncertainties (relevant for many measurement), ...