The Principle of Plenitude

Asimina Arvanitaki Perimeter Institute

Plenitude

Gottfried Wilhelm Leibniz

"This best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection."

The High Energy Frontier

The Length Scales in the Universe

80% of the energy scale left to explore

Opportunities to probe the low energy frontier

- •Short Distance Tests
- of Gravity
- •Extra Dimensions

Dimopoulos, Kapitulnik (1997)

- Tests of Gravity
 Gravitational Wave
 detection at low frequencies
 Tests of Atom Neutrality at 30 decimals
- Dimopoulos, Geraci (2003) Dimopoulos, Kasevich et. al.(2006-2008)

- •Axion Dark Matter Detection
- •Axion Force
- Detection

Graham et. al. (2012) AA, Geraci (2014)

Setting the Time StandardDilaton Dark MatterDetection

AA, Huang, Van Tilburg (2014)

The Mystery of Dark Matter

Models of Dark Matter

• What is it made out of?

• How is it produced?

• Does it have interactions other than gravitational?

Why is the Electric Dipole Moment of the Neutron Small?

The Strong CP Problem and the QCD axion

 $EDM \thicksim e ~fm ~\theta_s$

Experimental bound: $\theta_s < 10^{-10}$

Why is the Electric Dipole Moment of the Neutron Small?

The Strong CP Problem and the QCD axion

Solution: $\theta_s \propto a(x,t)$ is a dynamical field, an axion

Axion mass from QCD:

$$\begin{split} \mu_a \sim 6 \times 10^{-11} \ \mathrm{eV} \ \frac{10^{17} \ \mathrm{GeV}}{f_a} \sim (3 \ \mathrm{km})^{-1} \ \frac{10^{17} \ \mathrm{GeV}}{f_a} \\ \mathrm{f_a}: \text{axion decay constant} \end{split}$$

Give rise to a plenitude of Universes

• Extra dimensions

Give rise to a plenitude of massless particles in our Universe

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

$$e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$$

while

 $\vec{B} = 0$

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy

Solenoid

 \vec{B}

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid $e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$ while $\vec{B} = 0$

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy

Non-trivial gauge configurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid $e \int A_{\mu} dx^{\mu} = e \times \text{Magnetic Flux}$ while $\vec{B} = 0$

Non-trivial topology: "Blocking out" the core still leaves a non-trivial gauge, but no mass

A Plenitude of (Almost) Massless Particles

- Spin-0 non-trivial gauge field configurations: String Axiverse
- Spin-1 non-trivial gauge field configurations: String Photiverse

 Fields that determine the shape and size of extra dimensions as well as values of fundamental constants: Dilatons, Moduli, Radion

Properties of Plenitude of Particles from String Theory

- They couple very weakly to the Standard Model
- They can be extremely light

• Constrained if the coupling is large enough by astrophysics, BBN, CMB...

Dark Matter Particles in the Galaxy

Usually we think of ...

like a WIMP

Dark Matter Particles in the Galaxy

Usually we think of ...

instead of...

like a WIMP

 $\lambda_{DM} = \frac{\hbar}{m_{DM}v}$

Dark Matter Particles in the Galaxy

3 1 m Z

Decreasing DM Mass

Dark Matter Particles in the Galaxy

Equivalent to a Scalar Wave

Going from DM particles to a DM "wave"

When
$$n_{DM} > \frac{1}{\lambda_{DM}^3}$$

In our galaxy this happens when $m_{DM} < 1 \text{ eV/c}^2$

we can talk about DM $\phi(x,t)$ and locally

 $\phi(t) \approx \phi_0 \cos \omega_{DM} t$

with amplitude

 $\phi_0 \propto \frac{\sqrt{\text{DM density}}}{\text{DM mass}}$

with frequency

$$\omega_{DM} \approx \frac{m_{DM}c^2}{\hbar}$$

and finite coherence

$$\delta\omega_{DM} \approx \frac{m_{DM}v^2}{\hbar} = 10^{-6}\omega_{DM}$$

Scalar DM field Production Mechanism

• The "misalignment mechanism" during inflation

Light Scalar Dark Matter

Just like a harmonic oscillator

*The story changes slightly if DM is a dark photon

Light Scalar Dark Matter

Just like a harmonic oscillator

Initial conditions set by inflation

*The story changes slightly if DM is a dark photon

Light Scalar Dark Matter Today

Moduli Dark Matter

• Moduli set values of measured fundamental constants

• Examples of couplings

$$d_{m_e} \frac{\phi}{M_P l} m_e e \bar{e}$$

Fundamental constants are not really constants

Oscillating Fundamental Constants

From the local oscillation of Dark Matter

Ex. for the electron mass:

$$d_{m_e} \frac{\phi}{M_P l} m_e e \bar{e}$$

$$\frac{\delta m_e}{m_e} \approx \frac{d_{m_e} \phi_o}{M_{Pl}} \cos(m_\phi t)$$

$$= 6 \times 10^{-13} \cos(m_{\phi} t) \frac{10^{-18} \text{ eV}}{m_{\phi}} \frac{d_{m_e}}{1}$$

Fractional variation set by square root of DM abundance

Need an extremely sensitive probe

Other properties of light scalars

• Mediates new interactions in matter

• Generates a fifth force in matter

Light Scalar Dark Matter Detection

• Detecting Dark Matter with Atomic Clocks

• Detecting Dark Matter with Resonant-Mass Detectors

• ARIADNE

• Black Hole Superradiance

Keeping the DM time with Atomic Clocks

with Junwu Huang and Ken Van Tilburg (2014)

Oscillating Atomic and Nuclear Energy Splittings

• Optical Splittings

$$\Delta E_{
m optical} \propto lpha_{EM}^2 m_e \sim {
m eV}$$

• Hyperfine Splittings

$$\Delta E_{
m hyperfine} \propto \Delta E_{
m optical} lpha_{EM}^2 \left(rac{m_e}{m_p}
ight) \sim 10^{-6} \, {
m eV}$$

Nuclear Splittings

 $\Delta E (m_p, \alpha_s, \alpha_{EM}) \sim 1 \text{ MeV}$

DM appears as a signature in atomic (or nuclear) clocks

Oscillating Atomic and Nuclear Energy Splittings

Excited State	
	1
	Splitting
Ground State	

$$\Delta E_{
m optical} \propto lpha_{EM}^2 m_e \sim {
m eV}$$

• Hyperfine Splittings

• Optical Splittings

$$\Delta E_{\rm hyperfine} \propto \Delta E_{\rm optical} \alpha_{EM}^2 \left(\frac{m_e}{m_p}\right) \, \sim 10^{\text{-}6} \, {\rm eV}$$

• Nuclear Splittings

 $\Delta E (m_p, \alpha_s, \alpha_{EM}) \sim 1 \text{ MeV}$

DM appears as a signature in atomic (or nuclear) clocks
Atomic Clocks

• Kept tuned to an atomic energy level splitting

Current definition of a second:

the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

• Have shown stability of 1 part in 10¹⁸

Compared to 1 part in 10¹³ expected by DM

• Have won several Nobel prizes in the past 20 years

How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

How well can I measure the frequency of the laser when tuned to the atom?

$$\frac{\delta f}{f} \sim \frac{\Gamma_{\rm atom}}{f} \frac{1}{\sqrt{N_{\rm atoms}}} \sqrt{\frac{\tau_{\rm cycling}}{t_{\rm experiment}}}$$

How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

How well can I measure the frequency of the laser when tuned to the atom?

From the uncertainty principle ~ 10^{-16}

How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

How well can I measure the frequency of the laser when tuned to the atom?

 $\tau_{cycling}$ time that it takes to do one measurement (of order the atomic lifetime)

How do you take the measurements?

• Observe two clocks every $\tau_{cycling}$ to remove systematics

• Calculate ratio of frequencies which depends on Dark Matter

 Take Fourier transform to look for oscillations with period longer than τ_{cycling}

Atomic Clock DM searches are broadband searches

What type of comparisons can we do?

• Hyperfine to Optical transitions

• Sensitive to m_e , m_q , and α_s (less to α_{EM})

• Optical to Optical transitions

• Nuclear to Optical transitions

• Sensitive to m_e , α_{EM} , m_q , and α_s

The Dy isotope and Rb/Cs Clock Comparison

sensitivity to α_{EM} variations

Ken Van Tilburg and the Budker group (2015)

Hees et. al (2016)

Analysis performed with existing data

Nuclear to Optical Clock Comparison

Future Sensitivity of a ²²⁹Th clock with 10⁻¹⁵/Hz^{-1/2} noise

The Sound of Dark Matter

with Ken Van Tilburg and Savas Dimopoulos (2015)

Oscillating interatomic distances

• The Bohr radius changes with DM

•
$$r_B \sim (\alpha m_e)^{-1}$$

 $\frac{\delta r_B}{r_B} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$

• The size of solids changes with DM

•
$$L \sim N (\alpha m_e)^{-1}$$

$$\frac{\delta L}{L} = -\left(\frac{\delta \alpha_{EM}}{\alpha_{EM}} + \frac{\delta m_e}{m_e}\right)$$

Need macroscopic objects to get a detectable signal

Resonant-Mass Detectors

• In the 1960's: The Weber Bar

Strain sensitivity h~10⁻¹⁷

• Today: AURIGA, NAUTILUS, MiniGrail

Strain sensitivity h~10⁻²³

Plenitude

Gottfried Wilhelm Leibniz

"This best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection."

Length Scales in the Universe

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy. - Hamlet

Back up

Axion Resonant InterAction DetectioN Experiment

with Andrew Geraci (2014)

and A. Kapitulnik, Chen-Yu Liu, J. Long, Y. Semertzidis, M. Snow (to be built)

$$\begin{array}{ll} 6 \times 10^{-27} \left(\frac{10^9 \ GeV}{f_a} \right) \lesssim g_s \lesssim 10^{-21} \left(\frac{10^9 \ GeV}{f_a} \right) \\ & \mbox{From CP violation} & \mbox{From CP violation} \\ & \mbox{in the Standard Model} & \mbox{allowed by experiment} \end{array}$$

 $g_p \approx 10^{-9} \left(\frac{m_f}{1 \text{ GeV}}\right) \left(\frac{10^9 \text{ GeV}}{f_a}\right)$

Short Range Interactions of the Axion

Monopole-Dipole Interaction

Mass with N nucleons

Spin

. .

Dipole-Dipole Interaction

Spin

$$\frac{g_p \vec{\nabla} a}{m_f} \cdot \vec{\sigma}$$

Short Range Interactions of the Axion

- B_{eff} is 2000 times bigger for nucleons than it is for electrons
- B_{eff} cannot be screened

Precision Magnetometry

Nuclear Magnetic Resonance

In the classical picture: Spins precessing around the perturbing magnetic field

Detection Strategy

Just like a magnetic field

Signal grows with polarized spin density n_{NMR} and coherence time of NMR sample T_2

Detection Strategy

Just like a magnetic field

Signal grows with polarized spin density $n_{\mbox{\tiny NMR}}$ and coherence time of NMR sample T_2

Detection Strategy

Just like a magnetic field

Signal grows with polarized spin density $n_{\mbox{\tiny NMR}}$ and coherence time of NMR sample T_2

Axion Resonant InterAction DetectioN Experiment

He-3 NMR sample with T₂ up to ~1000 sec

Axion Resonant InterAction DetectioN Experiment

He-3 NMR sample with T₂ up to ~1000 sec

$$B_{\min} \approx p^{-1} \sqrt{\frac{2\hbar b}{n_s \mu_{^3\mathrm{He}} \gamma V T_2}} = 3 \times 10^{-19} \mathrm{T} \times \left(\frac{1}{p}\right) \sqrt{\left(\frac{b}{1 \mathrm{Hz}}\right) \left(\frac{1 \mathrm{mm}^3}{V}\right) \left(\frac{10^{21} \mathrm{cm}^{-3}}{n_s}\right) \left(\frac{1000 \mathrm{s}}{T_2}\right)}$$

 $B_{min} = 10^{-16} \text{ T/(Hz)}^{1/2}$ for SQUIDs

Axion Resonant InterAction DetectioN Experiment

He-3 NMR sample with T₂ up to ~1000 sec

$$B_{\min} \approx p^{-1} \sqrt{\frac{2\hbar b}{n_s \mu_{^3\mathrm{He}} \gamma V T_2}} = 3 \times 10^{-19} \mathrm{T} \times \left(\frac{1}{p}\right) \sqrt{\left(\frac{b}{1 \mathrm{Hz}}\right) \left(\frac{1 \mathrm{mm}^3}{V}\right) \left(\frac{10^{21} \mathrm{cm}^{-3}}{n_s}\right) \left(\frac{1000 \mathrm{s}}{T_2}\right)}$$

 $B_{min} = 10^{-16} \text{ T/(Hz)}^{1/2}$ for SQUIDs

Monopole-Dipole Interaction Reach

Dipole-Dipole Interaction Reach

Black Holes as Particle Detectors

with Dimopoulos, Dubovsky, Kaloper, March-Russell (2009) Dubovsky(2010) Baryakhtar, Huang (2014) Baryakhtar, Dimopoulos, Dubovsky, Lasenby (2016)

Black Holes as Nature's Detectors

1 km -10 billion km

They can detect bosons of similar in size

September 14, 2015

Super-Radiance Cartoon

Super-radiant scattering of a massive object

Super-Radiance Cartoon

Super-radiant scattering of a massive object

Super-Radiance Cartoon

Super-Radiance Cartoon

Black Hole Superradiance

Penrose Process

Ergoregion: Region where even light has to be rotating

Black Hole Superradiance

Penrose Process

-M

Extracts angular momentum and mass from a spinning black hole

Photons reflected back and forth from the black hole and through the ergoregion

Black Hole Bomb

Press & Teukolsky 1972

Photons reflected back and forth from the black hole and through the ergoregion

Superradiance for a massive boson

Damour et al; Zouros & Eardley; Detweiler; Gaina (1970s)

Particle Compton Wavelength comparable to the size of the Black Hole

Superradiance for a massive boson

Damour et al; Zouros & Eardley; Detweiler; Gaina (1970s)

Particle Compton Wavelength comparable to the size of the Black Hole

Gravitational Atom in the Sky

The gravitational Hydrogen Atom

Fine-structure constant:

$$\alpha = G_{\rm N} M_{\rm BH} \mu_a = R_g \mu_a$$

Principal (n), orbital (l), and magnetic (m) quantum number for each level

Main differences from hydrogen atom:

Levels occupied by bosons - occupation number >10⁷⁷

In-going Boundary Condition at Horizon

Key Points About Superradiance

• For light axions(weak coupling) equation identical to Hydrogen atom

- Boundary conditions different:
 - Regular at the origin Ingoing (BH is absorber)

Superradiance Parametrics

Superradiance Condition

 $\omega_{\text{axion}} < m \ \Omega_+$

m : magnetic quantum number Ω_+ : angular velocity of the BH

Universal Phenomenon: Superluminal rotational motion of a conducting cylinder Superluminal linear motion - Cherenkov radiation $1/n(\omega) < v$

Condition can be extracted from requiring that $dA_{BH} > 0$

Superradiance Parametrics

Superradiance Rate

 $\tau_{sr}\,{\sim}0.6\times10^7~R_g$ for $R_g~\mu_a{\sim}~0.4$

As short as 100 sec vs $\tau_{accretion} \sim 10^8 \, years$

When $R_g \mu_a >> 1$, $\tau_{sr} = 10^7 e^{3.7(\mu_a R_g)} R_g$ When $R_g \mu_a \ll 1$

$$\tau_{sr} = \left(\frac{24}{a}\right)(\mu_a R_g)^{-9} R_g$$

Super-Radiance Signatures GW annihilations

• Signal enhanced by the square of the occupation number of the state

$$h_{\text{peak}} \simeq 10^{-22} \left(\frac{1 \,\text{kpc}}{r}\right) \left(\frac{\alpha/\ell}{0.5}\right)^{\frac{p}{2}} \frac{\alpha^{-\frac{1}{2}}}{\ell} \left(\frac{M}{10M_{\odot}}\right)$$

• Signal duration determined by the annihilation rate (can last thousands of years)

Expected Events from Annihilations

• Large uncertainties coming from tails of BH mass distribution

Pessimistic: flat spin distribution and 0.1 BH/century Realistic: 30% above spin of 0.8 and 0.4 BH/century Optimistic: 90% above spin of 0.9 and 0.9 BH/century

Plenitude

Gottfried Wilhelm Leibniz

"This best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection."

Length Scales in the Universe

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy. - Hamlet