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Plenmitude

Gottfried Wﬂem Leibniz

“ This best of all posstble worlds will

contain all possibilities, with our finite
experience of eterntty giving no reason
to dispute nature's perfection.”



The High Energy Frontier
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The Length Scales in the Universe

Neutrinos Standard
Dark Energy Model
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Scale 1n meters

80% of the energy scale left to explore



Opportunities to probe the low energy frontier

Cantilever

§ Experiments

Canmilever

®Short Distance Tests

of Gravity Y
®Fxtra Dimensions -/ y T
dilionnitide (++ 120 um at £,/3)
— hield kcutsway) _
Atom , Cantlever sescnarce If,): ~300 Hz /’v
Interferometry ‘ . Crive fraquency(f./3): ~100H 2
® Tests of Gravity .

gl |\ e Gravitational Wave Dimopoulos, Kapitulnik (1997)

detection at low frequencies

® Tests of Atom Neutrality at

30 decimals
| ® Axion Dark Matter
g
Dimopoulos, Geraci (2003) Detection
Dimopoulos, Kasevich et. al.(2006-2008) ® Axion Force
Detection

Graham et. al. (2012)
AA, Geraci (2014)

Atomic

Clocks { £ ®Setting the Time Standard

— —"- . (= jr ¥l ®ilaton Dark Matter
%

AA, Huang, Van Tilburg (2014)



The Mystery of Dark Matter

Other
nonluminous

components
Dark Energy Dark Matter reralactic 488 3.6%

~ 73% A neutrinos 0.1%

supermassive BHs 0.04%

Luminous matter
stars and luminous gas 0.4%
radiation 0.005%



Models of Dark Matter

® What i1s it made out of?

® How s it produced?

® Does it have interactions other than gravitational?



Why 1s the Electric Dipole Moment of the Neutron Small?
The Strong CP Problem and the QCD axion
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EDM Experimental bound: 0s < 10-19



Why 1s the Electric Dipole Moment of the Neutron Small?
The Strong CP Problem and the QCD axion
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Neutron

EDM Experimental bound: 0 < 10-19

Solution:

Os eca(x,t) 1s a dynamical field, an axion
Axion mass from QCD:

1017 GeV 1017 GeV
~ (3 km) 1
7

f. : axion decay constant

g ~6x 1071 eV




Elements of String Theory

® Extra dimensions
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Elements of String Theory

® Extra dimensions
® Gauge fields

® Topology

Give rise to a plenitude of Universes



Elements of String Theory

® Extra dimensions
® Gauge fields

® Topology

Give rise to a plenitude of massless particles 1n our Universe
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Solenoid

Non-trivial gauge conhgurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

e / A, dx" = e x Magnetic Flux
while

B =0

Energy stored only inside the solenoid

Non-trivial gauge configuration far away carries no energy
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Non-trivial gauge conhgurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

€ / A, dz" = e x Magnetic Flux

while

/ B =0
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Non-trivial gauge conhgurations

The Aharonov-Bohm Effect

Taking an electron around the solenoid

€ / A, dz" = e x Magnetic Flux

while

/ B =0

Non-trivial topology:
“Blocking out” the core still leaves a non-trivial gauge, but no mass



A Plenitude of (Almost) Massless Particles

® Spin-0 non-trivial gauge field conhigurations: String Axiverse
® Spin-1 non-trivial gauge field configurations: String Photiverse

® [‘ields that determine the shape and size of extra dimensions as
well as values of fundamental constants: Dilatons, Moduls,

Radion



Properties of Plenitude of Particles from String
Theory

® They couple very weakly to the Standard Model
® They can be extremely light

® Constrained if the coupling 1s large enough by astrophysics,
BBN, CMB...



What It DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy

Usually we think of ...

like a WIMP



What It DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy

Usually we think of ... instead of...

like a WIMP




What It DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy




What It DM Is a Boson and Very Light?

Dark Matter Particles in the Galaxy

Decreasmg DM Mass -

Potential Energy

Equivalent to a Scalar Wave

scalar field



Going from DM particles to a DM “wave”

1

3
ADM

k - When npy >
A»

In our galaxy this happens when mpm < 1 eV/c?

we can talk about DM ¢(x,t) and locally

o(t) =~ pgcoswprt

with amplitude with frequency
. mp o c?
bo vDM density WM R
0 DM mass .
and finite coherence
2
m (v
5CUDM ~ DM = 10_6WDM

h



Scalar DM field Production Mechanism

® The “misalignment mechanism” during inflation

Radius (meters) Light scalar DM field production

Inflation era =
10'35 to 10'33 sec.

—

STANDARD MODEL l

NFLATIONARY MODEL

NOW

Time (seconds)
A * A %
i ™ 102 10719 10°° o ——10°

EXPANSION OF THE OBSERVABLE UNIVERSE

— WIMP production



Potential Energy

Laght Scalar Dark Matter

® Just like a harmonic osaillator
$+3 H ¢+mip=0

¥4y &+ wc=0

Frozen when:

Hubble > my

scalar field

Initial conditions set by inflation

*The story changes slightly if DM is a dark photon



Potential Energy

Laght Scalar Dark Matter

® Just like a harmonic oscillator
$+3 H ¢+mip=0
¥4y &+ wc=0

Frozen when:

Hubble > my

Oscillates when:

Hubble < my

pe scales as a?

just like

scalar field

Initial conditions set by inflation

*The story changes slightly if DM is a dark photon



Potential Energy

Laght Scalar Dark Matter Today

® [fmy < 1 eV, can still be thought of as a scalar field today

Coherent for vyir?2 ~10° periods

scalar field

/8T e
Ko = P 6410 13(

g Mp

1018 eV)

7!!,,71,



Moduli Dark Matter

® Moduli set values of measured fundamental constants

® Examples of couplings

dme M—Pl Mmeee

Fundamental constants are not reaﬂy constants



Oscillating Fundamental Constants

From the local oscillation of Dark Matter

Ex. for the electron mass:
d,, ——m.,ee
Me Mpl e

0me _ dm, @0
Me N MPZ

cos(mgt)

10718 eV d,,,
me 1

=6 x 1073 cos(mgyt)

Fractional variation set by square root of DM abundance



Other properties of light scalars

® Mediates new interactions 1n matter

® Generates a fifth force 1n matter

o O

N (d;Qi)? My My J—
47TM]23Z r?

® Generates Equivalence Principle violation

F




Laght Scalar Dark Matter Detection

® Detecting Dark Matter with Atomic Clocks
® Detecting Dark Matter with Resonant-Mass Detectors
® ARIADNE

® Black Hole Superradiance



Keeping the DM time with Atomic
Clocks

with Junwu Huang

and Ken Van Tilburg (2014)



Oscillating Atomic and Nuclear Energy Splittings

® Optical Splittings

2
AEOptical X AppfMe ~ eV

® Hyperfine Splittings

AEhyperfine X AEopticalc‘52E]\4 (me) ~ 10-6 eV

® Nuclear Splittings

AE (mp, as, agm)~ 1 MeV



Oscillating Atomic and Nuclear Energy Splittings

Splitting

® Optical Splittings

2
AEoptical X AppfMe ~ eV

® Hyperfine Splittings

2
AEhyperfine X AEopticalOéE]\f (

® Nuclear Splittings

AE (mp, as, agm)~ 1 MeV



Atomic Clocks

® Kept tuned to an atomic energy level splitting

Current definition of a second:
the duration of periods of the radiation
corresponding to the transition between the two hyperfine levels
of the ground state of the atom

® Have shown stability of 1 part in 108

Compared to 1 part in 10!® expected by DM

® Have won several Nobel prizes in the past 20 years


https://en.wikipedia.org/wiki/Hyperfine_levels
https://en.wikipedia.org/wiki/Ground_state
https://en.wikipedia.org/wiki/Caesium

How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

AMP Splitting

LASER

5f Fatom 1 Tcycling
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How does and Atomic Clock Work?

Keep a laser tuned to a long-lived (> minutes) atomic transition

m Splitting ]

LASER

5f Fatom 1 Tcycling

_— Y

f f \/ Natoms texperiment

Teycling time that it takes to do one measurement (of order the atomic lifetime)



How do you take the measurements?

® Observe two clocks every teyding to remove systematics

® Calculate ratio of frequencies which depends on Dark Matter

® Take Fourier transform to look for oscillations with period longer
than Teycling



What type of comparisons can we do?

® Hyperfine to Optical transitions

® Sensitive to me, mq, and o5 (less to apm)

® Optical to Optical transitions

® Sensitive to AEM

® Nuclear to Optical transitions

® Sensitive to me, ®gM, Mq, and os



The Dy 1sotope and Rb/Cs Clock Comparison

Ken Van Tilburg

I C d the Budk 2015
sensitivity to agm variations and the Budker group (2015)

log,olfs/Hz]
-8 -6 —4 -2 0 2 4 6 8 10

Hees et. al (2016)

-24 =22 =20 -18 -16 -14 -12 -10 -8 -6 -4
log,glmg/eV]

Analysis performed with existing data



Nuclear to Optical Clock Comparison

Future Sensitivity of a ??°Th clock with 10-'%/Hz1? noise

logol/¢/Hz]
-8 -6 -4 =2 0 2 4 6 8 10

coupling to mq relative to gravity
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The Sound of Dark Matter

with Ken Van Tilburg
and Savas Dimopoulos (2015)



Oscillating interatomic distances

® The Bohr radius changes with DM

B O M Me

® The size of solids changes with DM

® L~ N (¢me)!

5L_ 504EM 57716
T e )

O M Me



Resonant-Mass Detectors

® In the 1960’s: The Weber Bar

r ‘rs! i N
B s 59
' - -
gl o
-4 -

Strain sensitivity h~10-17

® Today: AURIGA, NAUTILUS, MiniGrail

Strain sensitivity h~10-23




Experimental Sensitivity
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Plenmitude

Gottfried Wﬂem Leibniz

“ This best of all posstble worlds will

contain all possibilities, with our finite
experience of eterntty giving no reason
to dispute nature's perfection.”
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Neutrinos Standard
Dark Energy Model

Scale iIn m

There are more things in beaven and earth, Horatuo,
Than are dreamt of in your philosophy.
- Hamlet



Back up



ARIADNE:

Axion Resonant InterAction DetectioN Experiment

with Andrew Geraci (2014)
and A. Kapitulnik, Chen-Yu Liu,J. Long, Y. Semertzidis, M. Snow (to be built)



Short Range Interactions of the Axion

/

Monopole Interaction

Mass with N nucleons

fa

From CP wviolation !‘

 1In the Standard Model {i

fh‘ 6 x 10~27 (109 GeV 1

'210—21 (109 GeV)

fa

From CP Vlolatlon

Moody and
Wilczek (1984)

Dipole Interaction

N spins

—MmMayTr

gpN e

a(r) & drmy  r?

- _9 mf 109 GGV
gp ~ 10 (1 GeV) ( fa



Short Range Interactions of the Axion

Monopole-Dipole Interaction Dipole-Dipole Interaction
(.
‘ ‘ “ ‘
Mass with N nucleons Spin N spins Spin

Interaction energy:

Va
gp . 5_»
mg



Short Range Interactions of the Axion

Monopole-Dipole Interaction Dipole-Dipole Interaction

C s © -

Mass with N nucleons Spin N spins Spin

Va N E R
= gz
1sfa f eff " Hf

Just like a magnetic field

® B.ris 2000 times bigger for nucleons than it i1s for electrons

® B.icannot be screened



Precision Magnetometry

Nuclear Magnetic Resonance

/oA
K/



Precision Magnetometry

Nuclear Magnetic Resonance

B field Splitting set by B field

+

Resonant transition:
Perturbation at the splitting frequency of the spins



Precision Magnetometry

B field

Nuclear Magnetic Resonance

o

Resonant transition:

*

Splitting set by B field

+

Perturbation at the splitting frequency of the spins

In the classical picture: Spins precessing around the perturbing magnetic field



Detection Strategy

Just like a magnetic field

T Bext

SQUID

Bett

Oscillating Source Mass NMR

at resonant frequency of sample

Signal grows with polarized spin density nxur and coherence time of NMR sample To
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Detection Strategy

Just like a magnetic hield

ext

eff

SQUID

Oscillating Source Mass
at resonant frequency of sample

Signal grows with polarized spin density nxur and coherence time of NMR sample To



ARIADNE:
Axion Resonant InterAction DetectioN Experiment

He-3 NMR sample with
Ty up to ~1000 sec
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Axion Resonant InterAction DetectioN Experiment

He-3 NMR sample with
Ty up to ~1000 sec
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Bumin = 10-1° T/(Hz) 1?2
for SQUIDs




ARIADNE:
Axion Resonant InterAction DetectioN Experiment

He-3 NMR sample with
Ty up to ~1000 sec

B, ~ p_l\/ 2hb =3 x 107 T x
nspage YV 1o

(i) (5) (%) ()

Bumin = 10-1° T/(Hz) 1?2
for SQUIDs




Monopole-Dipole Interaction Reach

Unpolarized Source Mass with 10° sec integration
PQ Axion m, in eV
10~ 10~ 107

Experimental Bounds

10—27 | _

Astrophysical and Experimental Bounds

10—31

sngNl

10—35

10—39

Lo | |
0.10 1 10
Force Range in cm

Lo |
0.01

Projected Reach with increase of polarized spin density

and larger NMR sample volume
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Dipole-Dipole Interaction Reach

PQ Axion f, in GeV

9
510

1010 101‘1 10']2

Experimental Bounds

Astrophysical Bounds

Nuclear Spin Polarized Source Mass
with 10° sec integration

with 10° sec Integration

107

T)=1 sec
T el ITIEEE o ]
”0“‘01 - 01 T 1 - "”10 PQ Axion f; in GeV
Force Range in em 10—191Q£) ‘ ‘1‘(‘)10 ‘ N ‘1‘911 ‘ 10]2
Astrophysical Bounds
¥ Tomi e
10—21g \\ =1 sec
£ N\
N
S
S
Sso Setup in this talk
Electron Spin Polarized Source Mass 4.
Z’_‘ N e E
oo E

107

oot o T

Force Range in em
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Black Holes as Particle Detectors

with

Dimopoulos, Dubovsky, Kaloper, March-Russell (2009)
Dubovsky(2010)

Baryakhtar, Huang (2014)
Baryakhtar, Dimopoulos, Dubovsky, Lasenby (2016)



Black Holes as Nature’s Detectors

< »

1 km -10 billion km

They can detect bosons of similar in size



September 14, 2015
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Super-Radiance Cartoon

Super-radiant scattering of a massive object
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Super-radiant scattering of a wave




Super-Radiance Cartoon

Super-radiant scattering of a wave




Black Hole Superradiance

Penrose Process

- Rotating Black Hole

4

N
>

~ .
. Ergoreglon

Ergoregion: Region where even light has to be rotating



Black Hole Superradiance

Penrose Process

AW\~

- Rotating Black Hole

4

N
>

~ .
* Ergoregion

Extracts angular momentum and mass from a spinning black hole



Black Hole Bomb

Press & Teukolsky 1972

Photons reflected back and forth from the black hole
and through the ergoregion



Black Hole Bomb

-

Press & Teukolsky 1972

Photons reflected back and forth from the black hole
and through the ergoregion



Superradiance for a massive boson

Damour et al; Zouros & Eardley;
Detweiler; Gaina (1970s)

.

Particle Compton Wavelength comparable to the size of the Black Hole



Superradiance for a massive boson

Damour et al; Zouros & Eardley;
Detweiler; Gaina (1970s)

Particle Compton Wavelength comparable to the size of the Black Hole



Gravitational Atom 1n the Sky

The gravitational Hydrogen Atom

Fine-structure constant: = GNMBH Ha = Rg Ha
Principal (n), orbital (1), and azlu a
magnetic (m) quantum number for each level Frinding = — on2

Main differences from hydrogen atom:
Levels occupied by bosons - occupation number >1077

In-going Boundary Condition at Horizon



Key Points About Superradiance

® For light axions(weak coupling) equation identical to Hydrogen
atom

® Boundary conditions different:

® Regular at the origin » Ingoing (BH is absorber)

® Hermitian » Non-hermitian



Superradiance Parametrics

Superradiance Condition

waxion < m Q—i—

m : magnetic quantum number

(2, : angular velocity of the BH

Q.
Universal Phenomenon: i ,
(€ ) oc @ l(wt-m¢)
N ———
Superluminal rotational motion of a conducting cylinder
\v‘j
Cerenkov
| cone
Superluminal linear motion - Cherenkov radiation 1/n(w) <v _=® P
\%

Condition can be extracted from requiring that dAgu > 0



Superradiance Parametrics

Superradiance Rate

tor ~0.6 x 107 R, for Ry pa~ 0.4

As short as 100 sec vs Taceretion ~ 108 years

When R, pa >> 1, When R, pa << 1

107 .3 T(na Ry) 24 _
Tgr — 10%e Rg Top = (;)(MaRg) 9Rg

Event horizon

Q
!
)
4
Q.
w
O
o
e
Ll




Super-Radiance Signatures

GW annihilations
axion
N\
\ r
N f = 10kHz x (;t.a/lO_11 eV)
N :
graviton
/7
7 Egraviton =~ 2 Maxion
7
/7
axion 7/

® Signal enhanced by the square of the occupation number of the state

5 1
_o9 [ 1kpec aft\? a~32 M
h-peak ~ 10 ( r ) (0.5> 4 (101\[@)

® Signal determined by the annihilation rate (can last thousands of years)




Expected Events from Annihilations

Large uncertainties coming from tails of BH mass distribution

f (Hz)
100 1000 10000
ANNIHILATIONS - e Explorer
********************** ;;:j"f*"*s;;*”””””””*””‘ = Voyager
,.:' y ‘\\ = aLIGO Design
104 ------------ 4888 S N R E T — —---aLIGO 2015 .

EXpected detectable sources

100 [ ey - -
,,,,,,,,,,, 1 J -\ ______1
i
I T A | |
F 1
i
i
TR [0 7 || W o= T year ]
.,": t.on=2 days
P

Pessimistic: flat spin distribution and 0.1 BH/century

Realistic: 30% above spin of 0.8 and 0.4 BH/century

Optimistic: 90% above spin of 0.9 and 0.9 BH/century
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