

Planck 2017 - Warsaw May 23rd, 2017 Markus Klute (MIT)

Complete theory valid to very high energies

Complete theory valid to very high energies

Source: The Economist

Complete theory valid to very high energies

Is this the end?

Is there anything new to be discovered? Of course!

- → The SM fails to explain important observations
- **→** Experimental proof for physics beyond the SM
 - Cosmological dark matter (DM)
 - Baryon asymmetry
 - Non-zero, but very small neutrino mass
 - A hint: the small Higgs boson mass is rather unnatural

- **→** Dark Matter: the matter we can not see
 - first proposed as a concept by Oort and Zwicky in the ~1930th
 - confirmed by Rubin and Ford in galaxy rotation curves ~1960-70th
 - evidence through gravitational effects only
 - leading candidate: weakly interacting massive particle

→ Baryon matter asymmetry

How do particles acquire mass?

Why do they have these masses?

Why are neutrino masses tiny?

- → ... wait a minute
- → Standard Model of Particle Physics is very predictive
 - there are a finite number of free parameter
 - "infinite" number of measurements are in excellent agreement

→ Standard model did not only predict the outcome of scattering experiments, but also the existence of a new particle and it's properties - the Higgs boson

... but it is not enough

Study particle interaction, resulting reaction products and features Measure energy, direction and identity of collision products

→ The highest energies allows us to

 look deep into matter "powerful microscope": E ~ 1/size

de Broglie

Study particle interaction, resulting reaction products and features Measure energy, direction and identity of collision products

→ The highest energies allows us to

 look deep into matter "powerful microscope": E ~ 1/size

de Broglie

produce heavy particles: E = mc²

Einstein

Study particle interaction, resulting reaction products and features Measure energy, direction and identity of collision products

→ The highest energies allows us to

 look deep into matter "powerful microscope": E ~ 1/size

de Broglie

- produce heavy particles: E = mc²
- probe conditions of the early universe: E = kT

Einstein

Boltzmann

→ Elements of collider

Key collider parameter
$$E_{
m cm}^2=(E_1+E_2)^2$$
 $\mathcal{L}=rac{N_1N_2fN_b}{4\pi\sigma_x\sigma_y}$

→ Linear

vs Circular

- no synchrotron radiation
- no bending magnets
- currents and focusing are limiting L
- gradients are limiting E
- limited to one experiment

- accelerate over long distance by repetition
- recycle particles not used in collisions
- in principle, this leads to larger L and E

$$P_{\text{radiation}} = \frac{c}{6\pi\varepsilon_0} N \frac{q^2}{\rho^2} \gamma^4 \quad \downarrow$$

Energy needed to compensate Radiation becomes too large

$$\rho = \frac{p}{qB} \implies$$
 The rings become too long

→ Hadron vs Lepton Collider

"Every event at a lepton collider is physics, every event at a hadron collider is background."

- Sam Ting.

"All events (background) are equal but some events are more equal than others."

- George Orwell (Klute-fied)

→ Using history as a guide for the future

 The last ~100 year in particle physics with collider

→ Livingston Plot ~1985

- nearly 6 decades of growth
- driven by continuous innovation
- pushing energy (discovery) frontier

→ Using history as a guide for the future

 The last ~100 year in particle physics with collider

→ Livingston Plot ~1996

- It was clear that trend can not be continued into the 21st century
- SSC was meant to fall on the line!
- Two directions
 - electron-positron collider for precision measurements
 - energy frontier hadron collider

→ Using history as a guide for the future

The last ~100 year in particle physics with collider

→ Livingston Plot ~2010

- Progress slowed down considerably
- Investment in accelerator technology is still large, but directed towards tools like light sources
- Limiting factor → cost (size)!

Higgs Discovery 2012

Economist

Britain's banking scandal spreads Volkswagen overtakes the rest A power struggle at the Vatican When Lonesome George met Nora

A giant leap for science

Roadmap for Collider Experiments

Roadmap for Collider Experiments

- Titanium poles Iron yoke

 Coils Iron master collars
- → LHC dipoles stretched NbTi technology to its limit
 - 8.3T in central region via operation at 1.8k
- → HL-LHC needs new technology in iteration region: Nb₃SN
 - 12T quadrupoles with 150mm aperture to shrink β*
- Operating and upgrading the LHC is a very significant investment

HL-LHC Physics Case

- Ш
- → Higgs case at the start of the LHC was exceptional
 - something to built on, not the reference

- → Goal for the future LHC and HL-LHC program
 - Explore the energy frontier
- Precision measurements of SM parameters (including the Higgs boson)
- Sensitivity to rare SM & rare BSM processes
- Extension of discovery reach in high-mass region
- Determination of BSM parameter

→ Future Lepton Collider

Future Circular Collider (FCC-ee)
Circular Electron Position Collider (CEPC)

- → International FCC collaboration to study
 - pp collider (FCC-hh)
 - e+e- collider (FCC-ee)
 - p-e (FCC-he)
- →80-100 km infrastructure in Geneva area
- → Goal: CDR and cost review by 2018
- → Similar studies in China (50-70 km infrastructure)
 - pp collider (SppS)
 - e+e- collider (CepC)

→ Future Hadron Collider

→ Future Hadron Collider Challenges

Overall construction cost

- cost driver are magnets and the tunnel
- depend on magnet technology
- tunnel cost highly geology dependent

Magnet technology

♦ Nb₃SN foreseen for HL-LHC

Total energy stored

- for 100km, 20T machine
 - ⋄ ~200 GJ in magnet
 - ~10 GJ in beam,

Proton synchrotron radiation

SR< 3 W/m

→ Beyond the HL-LHC

→ Beyond the energy frontier

→ Beyond the energy frontier

→ Beyond the energy frontier

Ш

⇒ Example: the Higgs boson (mechanism)

- predicted in 1964
- discovered in 2012
- today's knowledge
 - consistent with SM prediction ~20% level
 - ♣ Spin-0
 - gives mass to W and Z bosons
 - gives mass to 3 generation fermions

in 100 years we will know

- consistent (or not) with SM prediction ~0.1% level
- gives mass to 2 and 1 generation fermions
- whether there is more than one Higgs boson

- **⇒** Example: Supersymmetry
 - proposed in ~1974 (by Wess & Zumino)
 - today's knowledge
 - Supersymmetry must be broken
 - discovery in ...
 - in 100 years we will know

⇒ Example: Supersymmetry

- proposed in ~1974 (by Wess & Zumino)
- today's knowledge
- discovery in ...
- in 100 years we will know

HL-LHC

Analysis	Luminosity	Model				
	(fb^{-1})	NM1	NM2	NM3	STC	STOC
all-hadronic (HT-MHT) search	300					
	3000					
all-hadronic (MT2) search	300					
	3000					
all-hadronic b ₁ search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
	3000					
monojet t̃ ₁ search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					
	$< 3\sigma$ 3 – 5 σ	> 5σ				

- **⇒** Example: dark matter
 - proposed in ~1930
 - confirmed in ~1970
 - today's knowledge
 - dark matter is very very weakly interacting
 - discovery in ...

- **⇒** Example: dark matter
 - proposed in ~1930
 - confirmed in ~1970
 - today's knowledge
 - discovery in ...
 - in 100 years we will know
 - whether (or not) WIMPs exist
 - and have answers for alternative ideas

Landscape

Large space of "Not Yet Thought Of"

Exploration

spice awaited.

Islas Galápagos

Conclusion

Unveiling the Secrets of Nature An outlook on fundamental physics in 100 years

Concluding Remarks

→ Prediction

- Niels Bohr: "it is very difficult to predict
 especially the future"
- → Progress through technology and new ideas
 - Continuous innovation (investment) is crucial

→ Spirit of exploration

 It is in the nature of fundamental research that we do not know what's beyond our current knowledge

