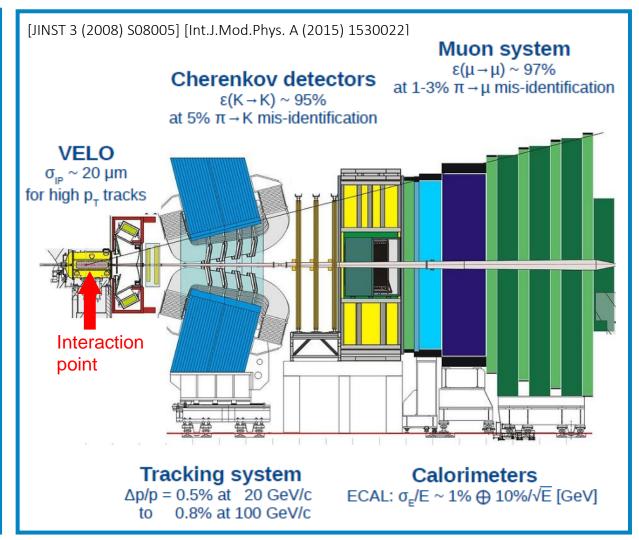


AGH UNIVERSITY OF SCIENCE

Bartłomiej Rachwał (AGH Kraków) on behalf of LHCb collaboration

Recent results from the LHCb

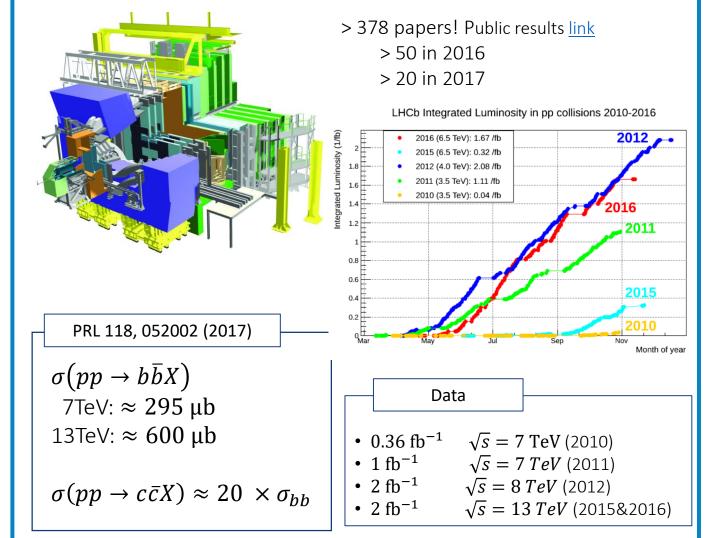

20th Planck Conference physics beyond the Standard Model 22-27 May 2017 Warszawa, PL

□ LHCb proved itself to be the Forward General-Purpose Detector at the LHC

- High cross-section of heavy-quark production
- Excellent particle identification
- Excellent decay time resolution
- Excellent momentum resolution

- AG H
- LHCb specialises (mostly) in the 'indirect' approach where precise measurements of low energy phenomena tells us about unknown physics at higher energies;

Heavy flavour production


CKM and CPV with b and c hadrons

Rare decays of b and c hadrons

EW, QCD + Exotica in forward region

Spectroscopy in pp collisions and B decays

Ions and Fixed Targen

3

Heavy flavour production

CKM and CPV with b and c hadrons

Rare decays of b and c hadrons

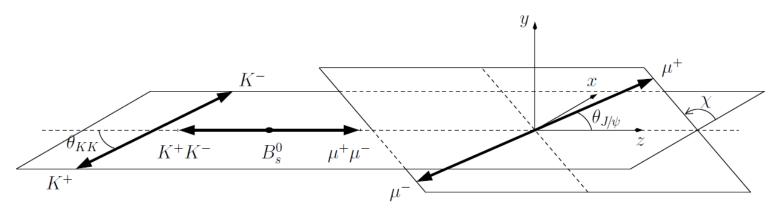
EW, QCD + Exotica in forward region

Spectroscopy in pp collisions and B decays

Ions and Fixed Targen □ First ϕ_s measurement in $B_s \rightarrow J/\psi KK$ [arXiv:1704.08217] □ CPV in baryons [Nature Physics 13 (2017) 391] □ $B_{(s)}^0 \rightarrow \mu^+\mu^-$ [PRL 118 (2017) no.19, 191801] □ $B_{(s)}^0 \rightarrow \tau^+\tau^-$ [arXiv:1703.02508] □ $B^+ \rightarrow K^+\mu^+\mu^-$ [EPJ C77 (2017) no.3, 161] □ LU test with B decays: $R(K^{*0})$ [arXiv:1705.05802]

CP-violation

D The Standard Model prediction of the CP-violating phase in $b \rightarrow c\bar{c}$ transitions:

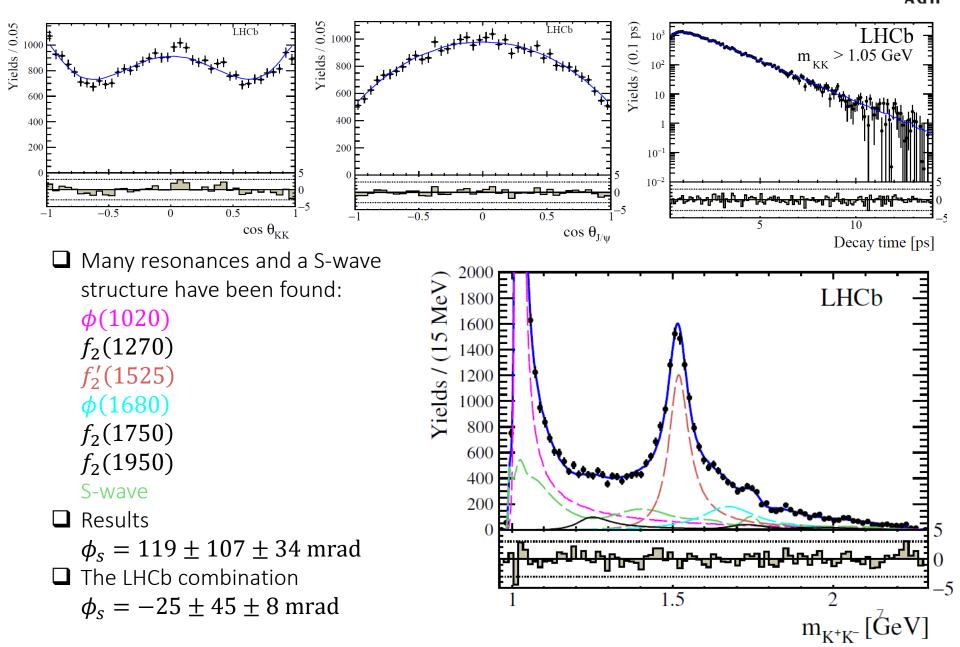

 $\phi_s^{SM} \equiv -2 \arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = -36.5^{+1.3}_{-1.2} \text{ mrad}$ [Phys. Rev. D91 (2015) 073007]

□ The average of previous measurements (D0, LHCb, ATLAS, CMS): $\phi_s = -30 \pm 33 \text{ mrad}$ [arXiv:1612.07233]

CPV | ϕ_s measurement in $B_s \rightarrow J/\psi K^+ K^-$

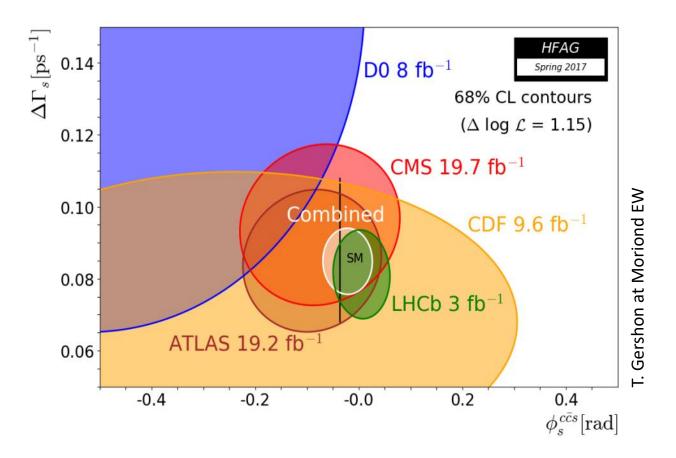
□ The LHCb update :

- ✓ Full Run 1 dataset;
- ✓ The first measurement using $B_s \rightarrow J/\psi K^+ K^-$ decays with $K^+ K^-$ mas region above the $\phi(1020)$ meson;
- ✓ The CP-even and CP-odd components in the decay fitted as functions of the B_s proper decay time and helicity angles

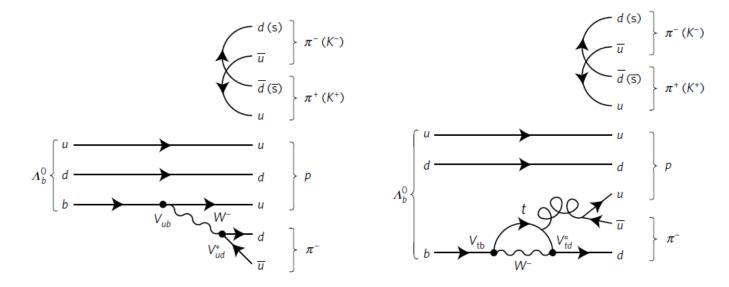


CPV | ϕ_s measurement in $B_s \rightarrow J/\psi K^+ K^-$

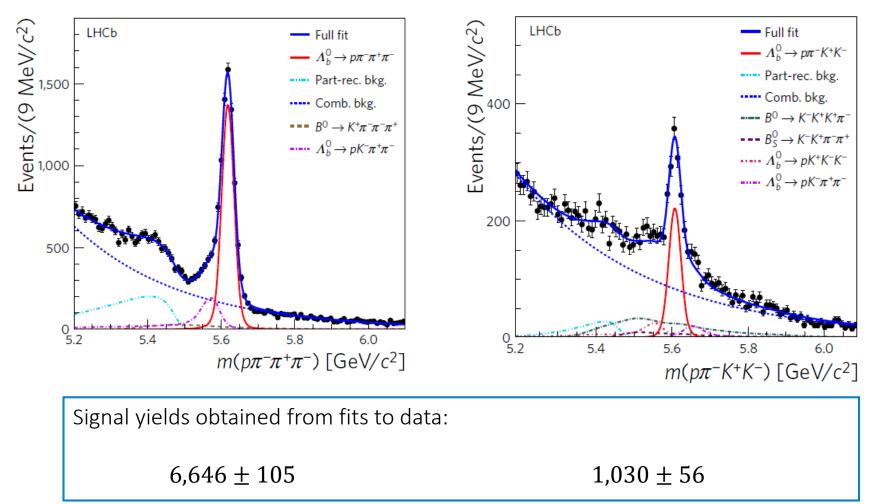
LHCD


[arXiv:1704.08217]

□ The measurement of the CP-violating phase ϕ_s is in agreement with the SM prediction:



- □ CP violation has never been measured in baryons before, despite predictions from the SM that CP violation also exists in the baryon sector.
- □ LHCb search for CP-violating asymmetries in the decay angle distributions of $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ and $\Lambda_b^0 \rightarrow p\pi^-K^+K^-$ decays


□ The *P*- and *CP*- violating observables defind on assymptries, $A_{\hat{T}}$ built from scalar triple products

$$a_p^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right), \qquad a_{CP}^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$$

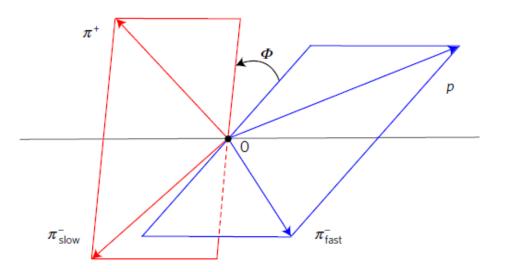
CPV | ... in baryons

LHCD

* For $\Lambda_b^0 \to p\pi^- K^+ K^-$ smaller purity and signal yield of the sample do not permit PV and CPV to be probed with the same precision as for $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$

Searches for localized P or CP violation

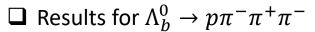
Scheme A

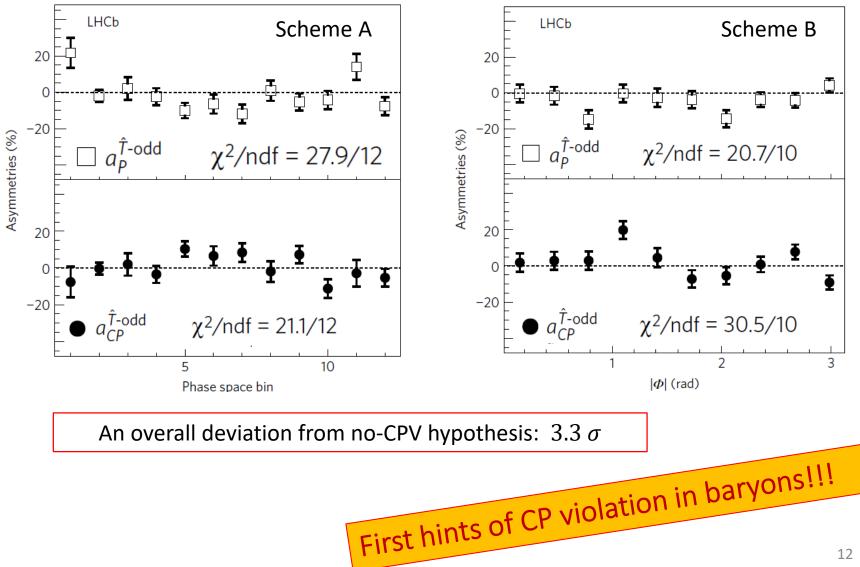

To isolate regions of phase space according to their dominant resonant contributions:

 $\Delta(1232)^{++} \to p\pi^+$

 $\rho(770)^0 \to \pi^+\pi^-$

Scheme B

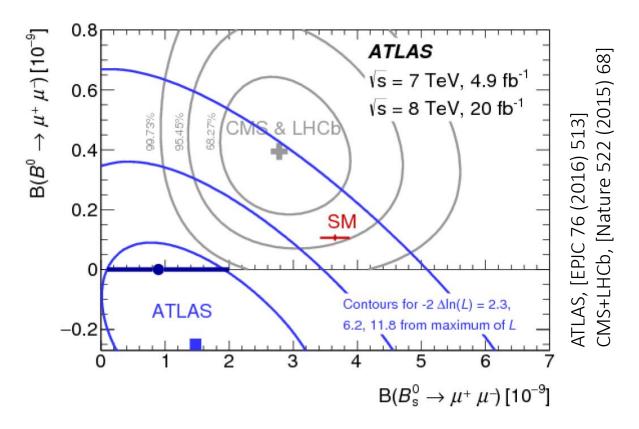

To exploits in more detail the interference of contributions visible as a function of the angle between the decay planes



CPV | ... in baryons

LHCh

Rare decays


- □ Strategy: measure with presicion processes containing SM particles
- □ Very important to have SM predictions under theoretical control
- □ Some channels are very clean, only limiting factor is statistics

□ Very accurate SM predictions [PRL 96 (2006) 241802]

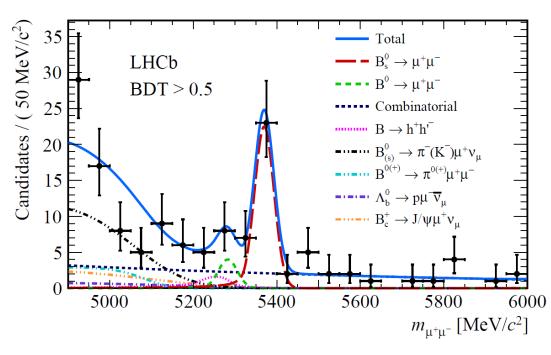
$$egin{aligned} \mathcal{B}(B^0 & o \mu^+ \mu^-) \stackrel{ ext{SM}}{=} (1.06 \pm 0.09) imes 10^{-10} \ \mathcal{B}(B^0_s & o \mu^+ \mu^-) \stackrel{ ext{SM}}{=} (3.66 \pm 0.23) imes 10^{-9} \end{aligned}$$

□ Summary previous measurements / current situation

AGH

LHCb update

- \Box 3fb⁻¹ of Run1 + 1.4fb⁻¹ of Run2
- new signal isolation
- □ new BDT: 50% better bgd rejection
- \Box improved PID: 50% less $B \rightarrow h^+h^-$

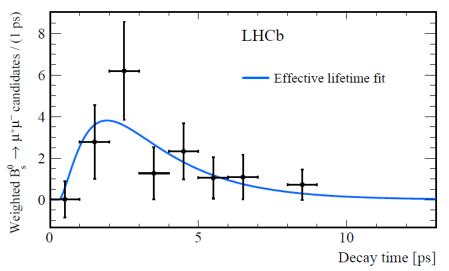


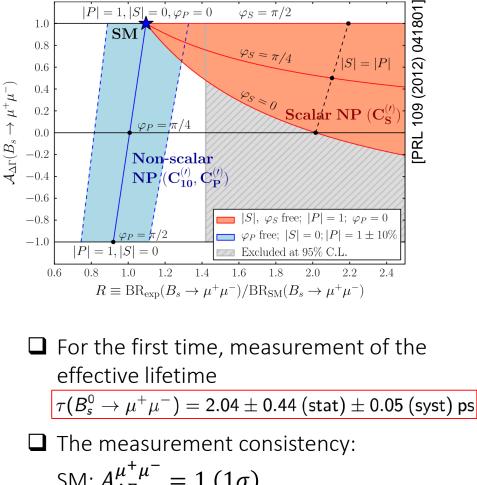
LHCb update

LH

- \Box 3fb⁻¹ of Run1 + 1.4fb⁻¹ of Run2
- new signal isolation
- □ new BDT: 50% better bgd rejection

 \Box improved PID: 50% less $B \rightarrow h^+h^-$


$$\begin{aligned} \mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.4 \times 10^{-10} \text{ at 95\% CL} \\ \mathcal{B}(B^0_s \to \mu^+ \mu^-) = (3.0 \pm 0.6 \text{ (stat)} {}^{+0.3}_{-0.2} \text{ (syst)}) \times 10^{-9} \quad (7.8\sigma) \end{aligned}$$
First single-experiment observation of the B_s mode !!!



\Rightarrow New observable: effective lifetime

Rare decays | $B^0_{(s)} \rightarrow \mu^+ \mu^-$

- Even if the BF is SM, the effective lifetime provides a probe to search for NP.
- □ The effective lifetime can be expressed in terms of $A^{\mu^+\mu^-}_{\Delta\Gamma}$ [PRL 109 (2012) 041801]

NP:
$$A_{\Delta\Gamma}^{\mu^+\mu^-} = -1 (1.4\sigma)$$

The first step for future analyses of this kind.

□ Theoretically, as clean as the muonic mode

Rare decays | $B^0_{(s)} \rightarrow \tau^+ \tau^-$

Experimentally much more challenging

□ More abundant than the muon mode [PRL 112 (2014) 101801] $\mathcal{B}(B^0 \to \tau^+ \tau^-) \stackrel{\text{SM}}{=} (2.22 \pm 0.19) \times 10^{-8}$ $\mathcal{B}(B^0_s \to \tau^+ \tau^-) \stackrel{\text{SM}}{=} (7.73 \pm 0.49) \times 10^{-7}$

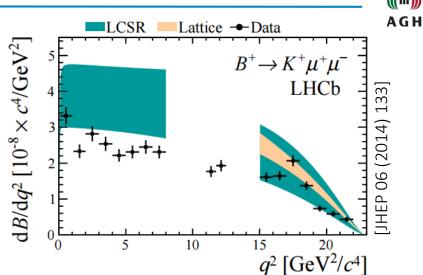
□ Will make for a very clean LFU test with muonic mode in the future □ Only existing limit on the B^0 mode from Babar [PRL 96 (2006) 241802] $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$ @ 90% C.L.

Rare decays | $B^0_{(s)} \rightarrow \tau^+ \tau^-$

□ Experimentally much more challenging

□ More abundant than the muon mode [PRL 112 (2014) 101801] $\mathcal{B}(B^0 \to \tau^+ \tau^-) \stackrel{\text{SM}}{=} (2.22 \pm 0.19) \times 10^{-8}$ $\mathcal{B}(B^0_s \to \tau^+ \tau^-) \stackrel{\text{SM}}{=} (7.73 \pm 0.49) \times 10^{-7}$

□ Will make for a very clean LFU test with muonic mode in the future □ Only existing limit on the B^0 mode from Babar [PRL 96 (2006) 241802] $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$ @ 90% C.L.


□ Analysis of LHCb Run1 data, in hadronic tau decay via the resonances

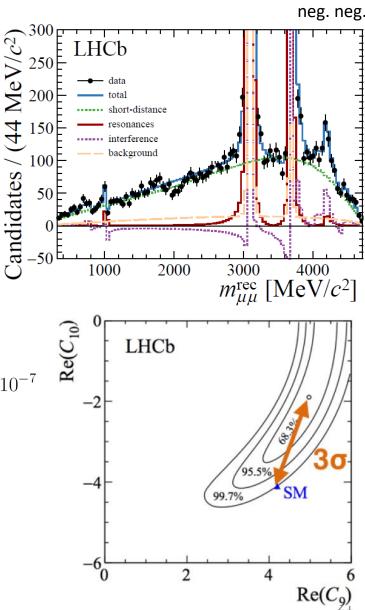
$$\tau^{-} \to a_1(1260)^{-}\nu_{\tau}, \ a_1(1260)^{-} \to \rho(770)^0 \pi^{-}$$
$$\mathcal{B}(\tau^{\pm} \to \pi^{\pm} \pi^{\mp} \pi^{\pm} \bar{\nu}_{\tau}) = (9.31 \pm 0.05)\%$$

□ World best limits set for each mode (assuming no contributions from the other):

$$\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ at } 95\% \ CL$$

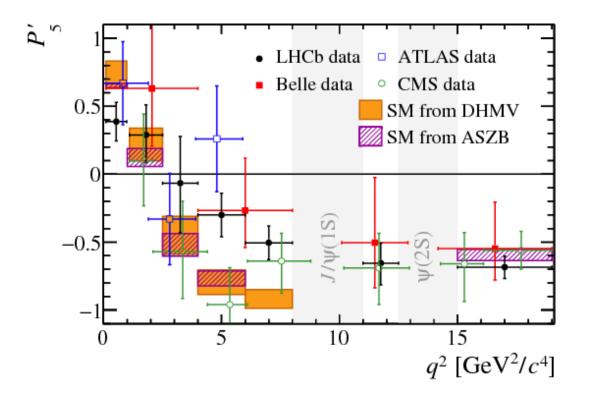
 $\mathcal{B}(B^0 \to \tau^+ \tau^-) < 2.1 \times 10^{-3} \text{ at } 95\% \ CL$

□ The observed tensions in measurements where regions of dimuon mass around the J/ψ and $\psi(2S)$ resonances were excluded [JHEP 06 (2014) 133]



- □ The observed tensions in measurements where regions of dimuon mass around the J/ψ and $\psi(2S)$ resonances were excluded
- Analyse the m(µµ) spectrum of B⁺ → K⁺µ⁺µ⁻ modeling all resonances:
 Fits with different phase hypotheses for long-distance contributions
- □ The observed **BF is lower than the SM**, in agreement with previous analysis (same data)

 $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \,(\text{stat}) \pm 0.23 \,(\text{syst})) \times 10^{-7}$

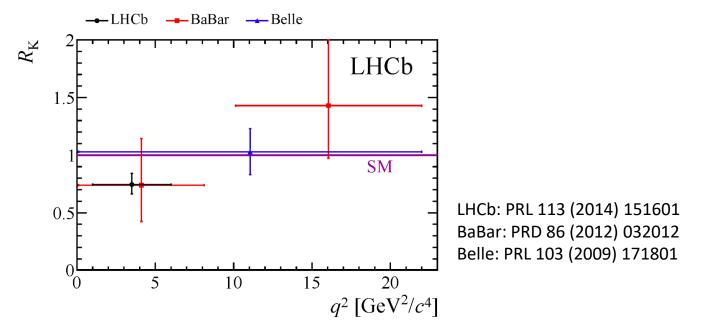

Scan of Wilson coefficients disfavours the SM solution

□ Lepton Flavour Universality tests with B decays – tension in the data coming from $B \rightarrow K^* \mu^+ \mu^-$ angular observables

LHCb: JHEP 02 (2016) 104 Belle: BELLE-CONF-1603 ATLAS: ATLAS-CONF-2017-023 CMS: CMS-PAS-BPH-15-008

DHMV: JHEP 12(2014)125 ASZB: EPJC 75 (2015) 382

* Belle, ATLAS and CMS use angular folding, differences in observables, background treatment and control modes.



- □ Lepton Flavour Universality tests with B decays tension in the data coming from $B \rightarrow K^* \mu^+ \mu^-$ angular observables
- □ Violation of lepton universality

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

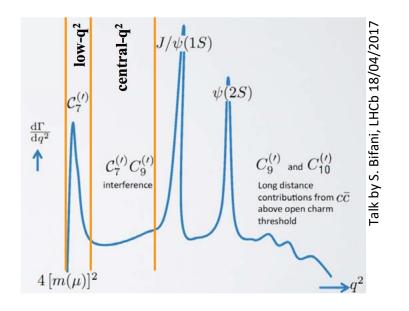
 \square *R*(*K*) results

□ LHCb : $0.745^{+0.090}_{-0.074} \pm 0.036$ in the $1 < q^2 < 6 \text{ GeV}^2/c^4$, tension with the SM at 2.6 σ

- □ Lepton Flavour Universality tests with B decays tension in the data coming from $B \rightarrow K^* \mu^+ \mu^-$ angular observables
- □ Violation of lepton universality

Rare decays | $R(K^{*0})$

 $\square R(K)$ results


LH

 $\square R(K^{*0}) \text{ measurement}$

- Using full Run 1 data
- Double ratio to cancel systematics
- Measuring in two bins of q²: Low: 0.045-1.1 GeV/c2
 Central: 1.1-6 GeV/c2

$$R_H = \frac{\int \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2} dq^2}{\int \frac{d\Gamma(B \to He^+e^-)}{dq^2} dq^2}$$

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

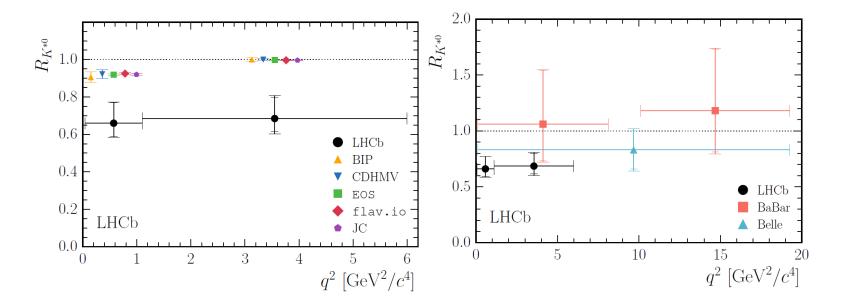
Submitted to JHEP last week!

\square $R(K^{*0})$ measurement

$$R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+ \ 0.11}{- \ 0.07} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 & \text{GeV}^2/c^4 \\ 0.69 \stackrel{+ \ 0.11}{- \ 0.07} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 & \text{GeV}^2/c^4 \end{cases}$$

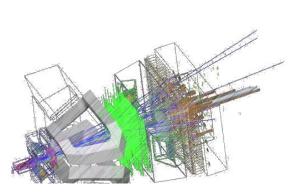
Results compatibility with the SM expectations:

- low- q^2 bin 2.1 2.3 σ
- central- q^2 bin 2.4 2.5 σ


Submitted to JHEP last week!

$\Box R(K^{*0})$ measurement

$$R_{K^{*0}} = \begin{cases} 0.66 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.03 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 & \text{GeV}^2/c^4 \\ 0.69 \stackrel{+}{_{-}} \stackrel{0.11}{_{0.07}} (\text{stat}) \pm 0.05 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 & \text{GeV}^2/c^4 \end{cases}$$


Results compatibility with the SM expectations:

- low- q^2 bin 2.1 2.3 σ
- central- q^2 bin 2.4 2.5 σ

Recent results from the LHCb Conclusions

- □ LHCb has taken series of measurement in flavour physics
- □ CP violation results compatible with the SM
- □ First hints of CP violation in baryons
- Rare decays remain the source of tensions with the SM both in LFU tests and in
 - global fits to Wilson coefficients
- □ First measurement of promising observable, the effective lifetime $B_s^0 \rightarrow \mu^+ \mu^-$
- □ Many other recent results not covered here: [link]

□ Fit results of the resonant structure.

The three possible polarizations of the J/ψ generate longitudinal (0), parallel (||) and perpendicular (\perp) transversity amplitudes.

Component	Fit fraction $(\%)$	Transversity fraction $(\%)$				
		0		\perp		
$\phi(1020)$	$70.5 \pm 0.6 \pm 1.2$	50.9 ± 0.4	23.1 ± 0.5	26.0 ± 0.6		
$f_2(1270)$	$1.6\pm0.3\pm0.2$	76.9 ± 5.5	6.0 ± 4.2	17.1 ± 5.0		
$f_2'(1525)$	$10.7\pm0.7\pm0.9$	46.8 ± 1.9	33.8 ± 2.3	19.4 ± 2.3		
$\phi(1680)$	$4.0\pm0.3\pm0.3$	44.0 ± 3.9	32.7 ± 3.6	23.3 ± 3.6		
$f_2(1750)$	$0.59{}^{+0.23}_{-0.16}\pm 0.21$	58.2 ± 13.9	31.7 ± 12.4	$10.1 {}^{+16.8}_{-6.1}$		
$f_2(1950)$	$0.44^{+0.15}_{-0.10}\pm0.14$	$2.2^{+6.7}_{-1.5}$	38.3 ± 13.8	59.5 ± 14.2		
S-wave	$10.69 \pm 0.12 \pm 0.57$	100	0	0		

AGH

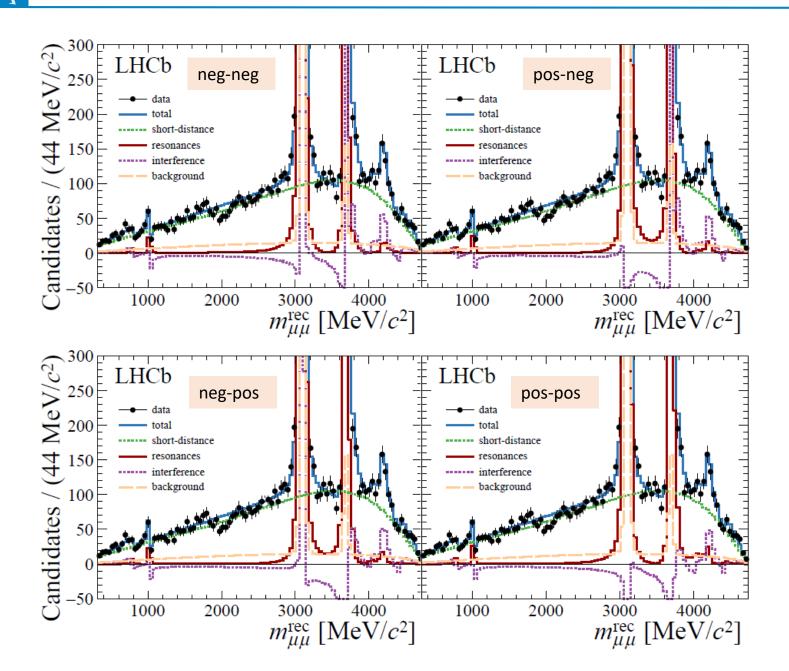
CPV | ... in baryons

 \Box Scalar triple products of final-state particle momenta in the Λ_b^0 centre-of-mass frame

$$C_{\widehat{T}} = \mathbf{p}_p \cdot (\mathbf{p}_{h_1^-} \times \mathbf{p}_{h_2^+}) \quad \overline{C}_{\widehat{T}} = \mathbf{p}_{\overline{p}} \cdot (\mathbf{p}_{h_1^+} \times \mathbf{p}_{h_2^-}) \text{ for } \overline{\Lambda}_{\underline{b}}^{\mathrm{o}}$$

□ Assymetries definiotion

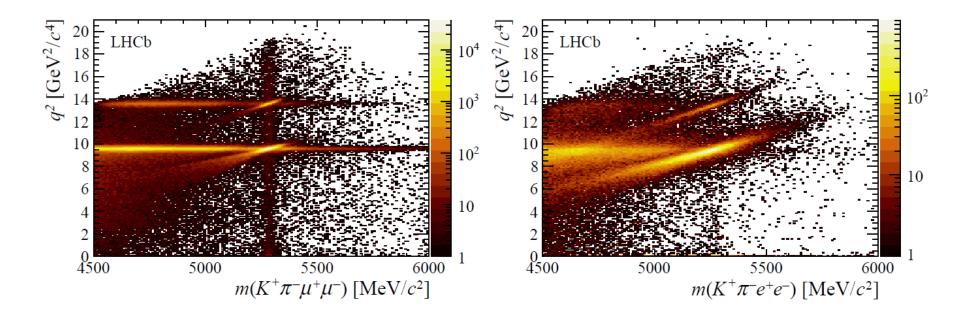
$$A_{\widehat{T}}(C_{\widehat{T}}) = \frac{N(C_{\widehat{T}} > 0) - N(C_{\widehat{T}} < 0)}{N(C_{\widehat{T}} > 0) + N(C_{\widehat{T}} < 0)}$$
$$\overline{A}_{\widehat{T}}(\overline{C}_{\widehat{T}}) = \frac{\overline{N}(-\overline{C}_{\widehat{T}} > 0) - \overline{N}(-\overline{C}_{\widehat{T}} < 0)}{\overline{N}(-\overline{C}_{\widehat{T}} > 0) + \overline{N}(-\overline{C}_{\widehat{T}} < 0)}$$
$$N \text{ and } \overline{N} \text{ are the numbers of } \Lambda_b^0 \text{ and } \overline{\Lambda}_b^0 \text{ decays}$$


□ The P- and CP-violating observables:

$$a_p^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} + \overline{A}_{\widehat{T}} \right) \qquad a_{CP}^{\widehat{T}\text{-odd}} = \frac{1}{2} \left(A_{\widehat{T}} - \overline{A}_{\widehat{T}} \right)$$

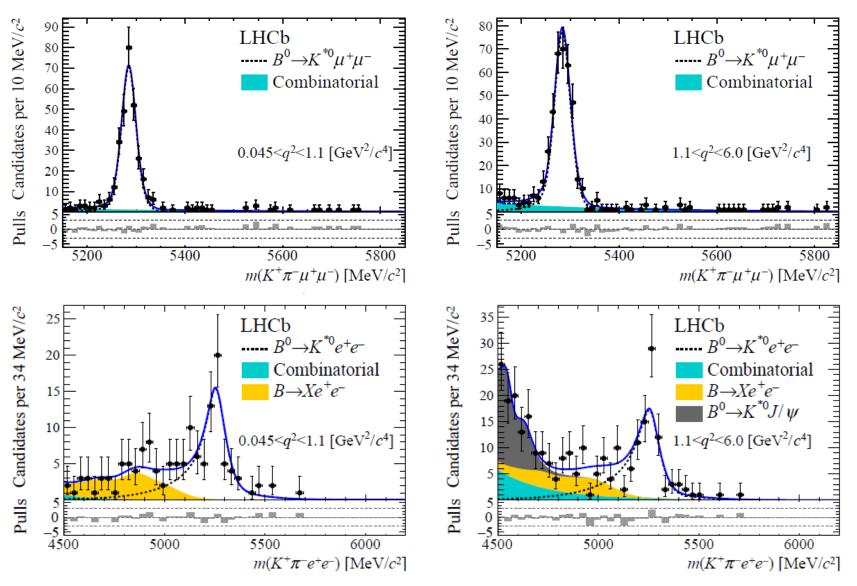
Rare decays | $B^+ \rightarrow K^+ \mu^+ \mu^-$

LHCD



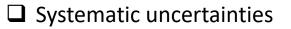
Submitted to JHEP last week!

□ Number of candidates for $B^0 \rightarrow K^{*0}l^+l^-$ final states with muons and electrons

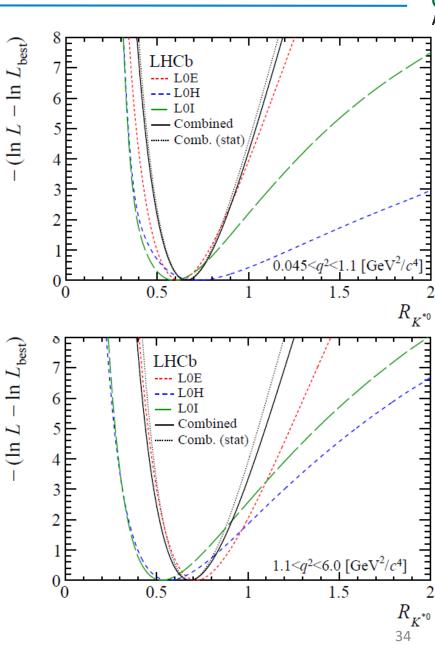


Rare decays | $R(K^{*0})$

LHCb


Submitted to JHEP last week!

33



LHCb

	$\Delta R_{K^{*0}}/R_{K^{*0}}$ [%]						
	$low-q^2$			$central-q^2$			
Trigger category	L0E	L0H	L0I	L0E	L0H	L0I	
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4	
Trigger	0.1	1.2	0.1	0.2	0.8	0.2	
PID	0.2	0.4	0.3	0.2	1.0	0.5	
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1	
Residual background	_	_	_	5.0	5.0	5.0	
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0	
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6	
$r_{J/\psi}$ ratio	1.6	1.4	1.7	0.7	2.1	0.7	
Total	4.0	6.1	5.5	6.4	7.5	6.7	

