Charged Composite Scalar Dark Matter

Ennio Salvioni

Technical University of Munich

PLANCK 2017
University of Warsaw
May 24, 2017
based on 1705.xxxxx with R. Balkin, M. Ruhdorfer and A. Weiler

Motivation

- In viable composite Higgs models, Higgs doublet
arises as set of (approximate) Goldstone bosons $\quad S O(5) \xrightarrow[H]{\xrightarrow{f}} S O(4)$
- Simple, attractive option for DM: extra Goldstone scalar as WIMP
- Mass and interactions dictated by global symmetry + explicit breaking

Motivation

- In viable composite Higgs models, Higgs doublet
arises as set of (approximate) Goldstone bosons $\quad S O(5) \xrightarrow[H]{\xrightarrow{f}} S O(4)$
- Simple, attractive option for DM: extra Goldstone scalar as WIMP
- Mass and interactions dictated by global symmetry + explicit breaking
$g_{\mathrm{DM}-\mathrm{SM}}^{2}(E)$

A pseudo-Goldstone composite Higgs

- The Higgs is a bound state of new degrees of freedom The description of the theory changes above $\sim \mathrm{TeV}$, Higgs mass naturally 'screened'

- Take analogy with QCD further: Higgs as (approximate) Goldstone boson, like pions

A pseudo-Goldstone composite Higgs

- The Higgs is a bound state of new degrees of freedom The description of the theory changes above $\sim \mathrm{TeV}$, Higgs mass naturally 'screened'

- Take analogy with QCD further: Higgs as (approximate) Goldstone boson, like pions

Agashe, Contino, Pomarol 2004

- At tree level, the Higgs doublet is exact Goldstone, e.g. $S O(5) \xrightarrow[H]{f} S O(4)$
- Breaking of global sym by ϵ generates radiative potential, dominated by top + vectorlike fermions, the top partners
- Coupling $\sim \epsilon f \bar{t} \mathcal{O}$ implies top partners are charged under QCD

Composite Scalar Dark Matter

- Additional Goldstone scalar as WIMP
- Extend minimal coset $S O(5) / S O(4)$. Symmetry stabilizing the DM?

Composite Scalar Dark Matter

- Additional Goldstone scalar as WIMP
- Extend minimal coset $S O(5) / S O(4)$. Symmetry stabilizing the DM?

Gripaios et al. 2009,
$S O(6) / S O(5) \quad \rightarrow \quad(H, \eta) \sim \mathbf{4}+\mathbf{1}_{0}$

DM can be stabilized by parity, $\eta \xrightarrow{P_{\eta}}-\eta$

$$
P_{\eta}=\operatorname{diag}(1,1,1,1,-1,1)
$$

But $\quad P_{\eta} \notin S O(6)$, in general not respected by higher order terms in chiral Lagrangian
E.g. Wess-Zumino-Witten (see $\pi_{0} \rightarrow \gamma \gamma$ in QCD, breaks $\pi \rightarrow-\pi$)

$$
\frac{\eta}{16 \pi^{2}}\left(n_{W} g^{2} W_{\mu \nu}^{a} \tilde{W}^{a \mu \nu} \underline{\mu}-n_{B} \overline{g^{2}} \overline{g^{2}} \overline{B_{\mu \nu}} \overline{\tilde{B}^{\mu \nu}}\right)
$$

Need to assume the UV respects the full $O(6)$

Composite Scalar Dark Matter

- Additional Goldstone scalar as WIMP
- Extend minimal coset $S O(5) / S O(4)$. Symmetry stabilizing the DM?

Gripaios et al. 2009,
$S O(6) / S O(5) \quad \rightarrow \quad(H, \eta) \sim \mathbf{4}+\mathbf{1}_{0}$
DM can be stabilized by parity, $\eta \xrightarrow{P_{\eta}}-\eta \quad P_{\eta}=\operatorname{diag}(1,1,1,1,-1,1)$

But $\quad P_{\eta} \notin S O(6)$, in general not respected by higher order terms in chiral Lagrangian
E.g. Wess-Zumino-Witten (see $\pi_{0} \rightarrow \gamma \gamma$ in QCD, breaks $\pi \rightarrow-\pi$)

$$
\frac{\eta}{16 \pi^{2}}\left(n_{W} g^{2} W_{\mu \nu}^{a} \tilde{K}^{a} \underline{\mu \nu}-+n_{B}^{\bar{B}} \bar{g}^{2} B_{\mu \nu}^{-} \overline{\tilde{B}^{\mu \nu}}\right)
$$

Need to assume the UV respects the full $O(6)$
see also:
Chala et al. 2016
for SO(7)/SO(6)
Ballesteros et al. 2017 for $S O(7) / G_{2}$

Charged Composite Scalar Dark Matter

- Additional Goldstone scalar as WIMP
- Extend minimal coset $S O(5) / S O(4)$. Symmetry stabilizing the DM?

$$
S O(7) / S O(6) \quad \rightarrow \quad(H, \chi) \sim \mathbf{4}+\mathbf{1}_{ \pm}
$$

Balkin, Ruhdorfer, ES, Weiler, to appear

DM candidate is complex scalar, charged under conserved $U(1)_{\text {DM }} \subset S O(6)$

$$
\chi \rightarrow e^{i \alpha} \chi
$$

Furthermore, no anomalies (no complex reps.)
UV automatically safe

Coupling to elementary fields

- SM weak gauging preserves $U(1)_{\mathrm{DM}}$
- Fermion partial compositeness

$$
\mathcal{L}_{\text {mix }} \sim \epsilon_{q} \bar{q}_{L} \mathcal{O}_{q}+\epsilon_{t} \bar{t}_{R} \mathcal{O}_{t}
$$

- If SM fermions embedded in 7 (fundamental),

$$
S O(7) / S O(6)
$$

can leave $U(1)_{\mathrm{DM}}$ intact

$$
q_{L} \rightarrow\left(\begin{array}{c}
i b_{L} \\
b_{L} \\
i t_{L} \\
-t_{L} \\
0 \\
0 \\
0
\end{array}\right), \quad t_{R} \rightarrow\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
t_{R}
\end{array}\right)
$$

- Shift symmetry of χ broken by mixing of t_{R}, parametrically $m_{\chi} \sim m_{h}$

Coupling to elementary fields

- SM weak gauging preserves $U(1)_{\mathrm{DM}}$
- Fermion partial compositeness

$$
\mathcal{L}_{\text {mix }} \sim \epsilon_{q} \bar{q}_{L} \mathcal{O}_{q}+\epsilon_{t} \bar{t}_{R} \mathcal{O}_{t}
$$

- If SM fermions embedded in 7 (fundamental),

$$
S O(7) / S O(6)
$$

can leave $U(1)_{\text {DM }}$ intact

$$
q_{L} \rightarrow\left(\begin{array}{c}
i b_{L} \\
b_{L} \\
i t_{L} \\
-t_{L} \\
0 \\
0 \\
0
\end{array}\right), \quad t_{R} \rightarrow\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
t_{R}
\end{array}\right)
$$

- Shift symmetry of χ broken by mixing of t_{R}, parametrically $m_{\chi} \sim m_{h}$ [for other choices, shift sym. can also be preserved $\Rightarrow m_{\chi} \ll m_{h}$ Mass controlled by light fermions + gauging of $U(1)_{\text {DM }}$. E.g. $t_{R} \sim \mathbf{2 1}, 27$]

Radiative scalar potential

$$
V(h, \chi)=\frac{1}{2} \mu_{h}^{2} h^{2}+\frac{\lambda_{h}}{4} h^{4}+\underbrace{\mu_{D M}^{2} \chi^{*} \chi}+\lambda_{D M}\left(\chi^{*} \chi\right)^{2}+\lambda h^{2} \chi^{*} \chi
$$

$$
\mu_{D M}^{2} \approx \frac{N_{c}}{4 \pi^{2} f^{2}} \int_{0}^{\infty} d p^{2} p^{2}(\underbrace{\sum_{i=1}^{N_{S}} \frac{\left|\epsilon_{t S}^{i}\right|^{2}}{p^{2}+m_{S i}^{2}}-\sum_{i=1}^{N_{Q}} \frac{\left|\epsilon_{t Q}^{i}\right|^{2}}{p^{2}+m_{Q i}^{2}}})
$$

obtain calculability through Generalized Weinberg Sum Rules, that give relations between parameters
$U V$-finite if $\sim \frac{1}{p^{6}}$ or faster

Radiative scalar potential

$$
\begin{aligned}
& V(h, \chi)=\frac{1}{2} \mu_{h}^{2} h^{2}+\frac{\lambda_{h}}{4} h^{4}+\underbrace{\mu_{D M}^{2} \chi^{*} \chi}+\lambda_{D M}\left(\chi^{*} \chi\right)^{2}+\lambda h^{2} \chi^{*} \chi \\
& \mu_{D M}^{2} \approx \frac{N_{c}}{4 \pi^{2} f^{2}} \int_{0}^{\infty} d p^{2} p^{2}(\underbrace{\sum_{i=1}^{N_{S}} \frac{\left|\epsilon_{t S}^{i}\right|^{2}}{p^{2}+m_{S i}^{2}}-\sum_{i=1}^{N_{Q}} \frac{\left|\epsilon_{t Q}^{i}\right|^{2}}{p^{2}+m_{Q i}^{2}}})
\end{aligned}
$$

obtain calculability through Generalized Weinberg Sum Rules, that give relations between parameters

Marzocca, Urbano 2014
Leading order prediction is $\lambda \sim \frac{\lambda_{h}}{2} \sim 0.06$, ruled out by direct detection
λ reduction is correlated with lighter top partners blue: $M_{\text {lightest }}<1 \mathrm{TeV}$, excluded by LHC
orange: LHC ok

UV-finite if $\sim \frac{1}{p^{6}}$ or faster
pheno-viable region

Pheno: direct detection

- Higgs exchange in t-channel dominates

~ vanilla Higgs portal, with minor corrections

Pheno: relic abundance

- Annihilation into tt, WW, ZZ, hh
- Interplay of derivative and portal couplings

$$
\mathcal{L} \sim \frac{1}{f^{2}} \partial\left(h^{2}\right) \partial\left(\chi^{*} \chi\right)-\lambda h^{2} \chi^{*} \chi \quad \rightarrow \quad \sigma \propto\left(\frac{2 m_{\chi}^{2}}{f^{2}}-\lambda\right)^{2}
$$

Pheno: relic abundance

- Annihilation into tt, WW, ZZ, hh
- Interplay of derivative and portal couplings

$$
\mathcal{L} \sim \frac{1}{f^{2}} \partial\left(h^{2}\right) \partial\left(\chi^{*} \chi\right)-\lambda h^{2} \chi^{*} \chi \quad \rightarrow \quad \sigma \propto\left(\frac{2 m_{\chi}^{2}}{f^{2}}-\lambda\right)^{2}
$$

for fixed DM mass, two values of λ reproduce relic abundance

Pheno: relic abundance

- Annihilation into tt, WW, ZZ, hh
- Interplay of derivative and portal couplings

$$
\mathcal{L} \sim \frac{1}{f^{2}} \partial\left(h^{2}\right) \partial\left(\chi^{*} \chi\right)-\lambda h^{2} \chi^{*} \chi \quad \rightarrow \quad \sigma \propto\left(\frac{2 m_{\chi}^{2}}{f^{2}}-\lambda\right)^{2}
$$

for fixed DM mass, two values of λ reproduce relic abundance

Top partner mixing matters

when t_{R} is fully composite, it respects χ shift symmetry
non-derivative couplings vanish
orange: $t t \chi \chi$ coupling

Top partner mixing matters

orange: $t t \chi \chi$
top partner mixing lowers λ, helps with direct detection
when t_{R} is fully composite, it respects χ shift symmetry

1
non-derivative couplings vanish

Relic Abundance

Relic Abundance

But [tree-level + CW] calculation receives large corrections:

$$
c \frac{1}{f^{2}} \partial_{\mu}|H|^{2} \partial^{\mu}|\chi|^{2}
$$

Relic Abundance

Balkin, Ruhdorfer, ES, Weiler
1705.xxxxx
viable points

But [tree-level + CW] calculation receives large corrections:

$$
c \frac{1}{f^{2}} \partial_{\mu}|H|^{2} \partial^{\mu}|\chi|^{2}
$$

$$
c_{\text {tree }}=1, \quad c_{1-\text { loop }}=\frac{N_{c}}{2 \pi^{2} f^{2}\left(\epsilon_{t}^{2}-\frac{\epsilon_{q}^{2}}{8}\right)} \log \frac{\Lambda^{2}}{m_{\psi}^{2}}
$$

irreducible uncertainty of $\sim 50 \%$ on cross section

Composite DM pheno

Effect of top partner mixing pushes λ down, relaxes direct detection constraint

Tuning

- Simple estimate of tuning is $\frac{1}{\Delta} \sim 2 \xi \quad \sim 6 \%$ for $f=1.4 \mathrm{TeV}$
- However, most natural value of portal coupling is $\lambda \sim \frac{\lambda_{h}}{2} \approx 0.06$ Too large for direct detection.

Tuning

- Simple estimate of tuning is $\quad \frac{1}{\Delta} \sim 2 \xi \quad \sim 6 \%$ for $f=1.4 \mathrm{TeV}$
- However, most natural value of portal coupling is $\lambda \sim \frac{\lambda_{h}}{2} \approx 0.06$

Too large for direct detection.
Suppressing it costs extra tuning

Collider pheno, sketch

see e.g. Serra 2015

Collider pheno, sketch

current bounds:

$$
M_{\text {singlet }}>1 \mathrm{TeV}, \quad M_{\text {doublets }}>1.2 \mathrm{TeV}, \quad M_{Y, Z}>1.4 \mathrm{TeV}
$$

Summary \& Outlook

- Composite Higgs model with UV-safe DM stabilization
- DM is pGB scalar with 200-400 GeV mass Will be fully tested by XENON1T
- Typically t_{R} is very composite, mixing with top partners has important effects in annihilation
+ large radiative corrections to derivative operators
- New LHC signals from $U(1)_{\mathrm{DM}}$ - charged top partners

Summary \& Outlook

- Composite Higgs model with UV-safe DM stabilization
- DM is pGB scalar with 200-400 GeV mass Will be fully tested by XENON1T
- Typically t_{R} is very composite, mixing with top partners has important effects in annihilation
+ large radiative corrections to derivative operators
- New LHC signals from $U(1)_{\text {DM }}$ - charged top partners
- $U(1)_{\text {DM }}$ can be weakly gauged Agrawal, Cyr-Racine, Randall, Scholtz 2016
- Indirect detection: antiproton constraints? (AMS-02)

Backup

Light top partners

$$
f=1.4 \mathrm{TeV}
$$

orange: 120 GeV < $\mathrm{m}_{\mathrm{h}}<130 \mathrm{GeV}$
red: $\quad \frac{m_{h}^{2}}{m_{t}^{2}} \approx \frac{N_{c}}{\pi^{2} f^{2}} \frac{M_{T}^{2} M_{S}^{2}}{M_{T}^{2}-M_{S}^{2}} \log \left(M_{T}^{2} / M_{S}^{2}\right)$

Indirect detection: antiprotons

Bounds from PAMELA: recast from complete analysis in Marzocca and Urbano, 2014

