Forward-backward asymmetry in the gauge-Higgs unification at the International Linear Collider

Shuichiro Funatsu Central China Normal University arXiv:1905.10007 Scalars2019 13th SEPTEMBER 2019

Gauge-Higgs Unification

The Higgs mass is protected by a gauge symmetry The Higgs boson obtains finite mass at 1-loop level Effective potential is written by Wilson line phase

$$\theta_H \equiv g \int_C dy \langle A_y \rangle$$

Hosotani mechanism

Y. Hosotani (1983) H. Hatanaka, T. Inami, C.S. Lim (1998)

SO(5) × U(1) GHU

On the Randall-Sundrum warped (AdS) spacetime

$$ds^2 = e^{-2ky}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$$

y=0UV brane

y=L IR brane

Agashe, Contino, Pomarol (2005) Contino, Da Rold, Pomarol (2007) Medina, Shah, Wagner (2007) Sakamura, Hosotani (2007) Hosotani, Oda, Ohnuma, Sakamura (2008) SF, Hatanaka, Hosotani, Orikasa, Shimotani (2013)

SO(5) × U(1) GHU

Hosotani mechanism

Higgs couplings

$\frac{\Gamma(H \to WW)}{\Gamma(H \to ZZ)} \simeq \begin{bmatrix} SM \\ Value \end{bmatrix} \times \cos^2 \theta_H$

 $\sin\theta_H$ corresponds to ξ in MCHMs

 $\Gamma(H \rightarrow \gamma \gamma)$ and $\Gamma(H \rightarrow Z \gamma)$ are evaluated in SF, Hatanaka, Hosotani, Orikasa, Shimotani (2013) SF, Hatanaka, Hosotani (2015)

Parameters

One parameter $e^{kL} \rightarrow \theta_H, m_{\rm KK}$ is determined Upper bound by LHC e^{kL} θ_H $|c_t|$ $m_{\rm KK} \,\,({\rm GeV})$ 2.90×10^{4} 0.100.16116 8063 1.70×10^{4} 0.090.11646 8721 1.01×10^{4} 0.08 0.008914 9544Lower bound from top-mass realisation

small $\theta_H \Leftrightarrow$ large KK scale

Fermion Localisation

$$\Psi_{L,R}(x,y) = \frac{e^{\frac{3}{2}ky}}{\sqrt{L}} \sum_{n=0}^{\infty} \psi_{L,R}^{(n)}(x) \frac{f_{L,R}^{(n)}(y)}{\sqrt{N^{(n)}}},$$
$$f_{L,R}^{(0)}(y) = e^{(\frac{1}{2}\mp c)ky}$$

Left-handed : localised toward the UV brane (c>+1/2) the IR brane (c<+1/2)

Right-handed : localised toward the IR brane (c > -1/2) the UV brane (c < -1/2)

 $c \rightarrow -c$, the left- and right-handed are reversed mass is invariant

Fermion Localisation

X

Gauge Boson Localisation

 $Z^{(0)}$: localised toward the IR brane very slightly $Z^{(1)}$: localised toward the IR brane

Z⁽¹⁾-couplings

 $Z^{(1)}$ -boson couplings in g_W /cos θ_W unit for sin² θ_W = 0.2312 and θ_H = 0.10,

large asymmetry of Z' couplings

Only c_l>0 is considered in this work

Z' masses: 7–8 TeV, decay width: 0.4–2 TeV

Processes

P

$e^{+} \gamma^{(1)}, Z^{(1)}, Z^{(1)}, Z^{(1)} f \neq e^{+}$

Tree level only Bhabha process: not yet $J \neq e^{-}$

Polarisation

Ignoring the Higgs exchange,

$$\frac{d\sigma}{d\cos\theta} = \frac{1}{4} \left[(1 - P_{e^-})(1 + P_{e^+}) \frac{d\sigma_{LR}}{d\cos\theta} + (1 + P_{e^-})(1 - P_{e^+}) \frac{d\sigma_{RL}}{d\cos\theta} \right]$$
$$P = +1: \text{ right-handed}$$
$$P = -1: \quad \text{left-handed}$$

It is rewritten by
$$P_{\text{eff}} = \frac{P_{e^-} - P_{e^+}}{1 - P_{e^-} P_{e^+}}$$
 as

$$\frac{d\sigma}{d\cos\theta} = \frac{(1 - P_{e^+}P_{e^-})}{4} \left[(1 - P_{\text{eff}})\frac{d\sigma_{LR}}{d\cos\theta} + (1 + P_{\text{eff}})\frac{d\sigma_{RL}}{d\cos\theta} \right]$$

$e^+e^- \rightarrow \mu^+\mu^-$

Deviation of AFB from SM ($c_1 > 0$)

-1.1 % for $P_{eff} = 0$, $\theta_H = 0.10$, $\sqrt{s} = 250 \text{ GeV}$ -2.5 % for $P_{eff} = 0.887$, η

SF, Hatanaka, Hosotani, Orikasa. Phys.Lett. B775 (2017)

$e^+e^- \rightarrow \bar{c}c$

Deviation of AFB from SM

Grey band: 0.17 % stat. error of SM prediction

$c_{c} > 0$

 $c_c < 0$

-0.33 % for $P_{eff} = 0$ +0.98 % for $P_{eff} = 0$ -0.38 % for $P_{eff} = 0.887$ +1.68 % for $P_{eff} = 0.887$ $(\theta_H = 0.10, \sqrt{s} = 250 \text{ GeV})$

$e^+e^- \rightarrow \bar{b}b$

Deviation of AFB from SM

Grey band: 0.11-0.80 % stat. error of SM prediction

$c_{b} > 0$

$c_b < 0$

+1.0 % for $P_{eff} = 0$ +1.5 % for $P_{eff} = 0$ +4.2 % for $P_{eff} = 0.887$ +7.3 % for $P_{eff} = 0.887$ ($\theta_H = 0.10, \sqrt{s} = 250 \text{ GeV}$)

Summary

- gauge-Higgs unification is a solution to the fine-tuning problem of the Higgs mass
- KK photon, Z, ZR are Z's
 They have large coupling asymmetries

TeV Z' effects are seen by $\sqrt{s} = 250$ GeV