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What is this?



• Is DM its own antiparticle?


• Does it carry spin?


• What is its mass?


• How does it couple to the SM if at all?


• I am going to present a way of ‘partially’ answering this 
questions using LHC data with fully reconstructed final 
states.



• Lots of models of DM require extra degrees of freedom 
apart from the neutral state itself.


• That is needed in order to have renormalizable couplings 
with SM (with the exception of the Higgs portal)


• I am going to assume a simplified model including our DM 
and two messengers

Our paper is laid out as follows. In Sec. II, we intro-
duce the dm models we will use for our study and state
our simplifying assumptions. In Sec. III, we show the
various signals produced by our set-up and discuss how
their features may help distinguish between our models.
Next, in Sec. IV, we discuss all the relevant constraints
on our models, comparing the dileptonic probes with jets
+ /ET , relic density and direct detection constraints. We
also show the future prospects of our set-up at the lhc
at high luminosity. In Sec. V we summarize our findings
and conclude.

II. THE MODELS

Our study focuses on simplified models in which dm �
has renormalizable Yukawa interactions with sm fermions
f through a partner field F̃ , with the interaction schemat-
ically given by L � �F̃ f . These are sometimes called “t-
channel” simplified models in reference to the t-channel
exchange of F̃ in dm annihilation. It is usually assumed
that a Z2 symmetry under which all non-sm fields are
charged odd (and sm fields charged even) is responsible
for dm stability.

We consider models comprising two sm singlets �A,B ,
motivated by the possibility that their mass parame-
ters may be tuned to interpolate between a limit of self-
conjugacy, i.e. dm is Majorana or real scalar, and a limit
where dm is Dirac or complex scalar. We also introduce a
colored field Q̃ to mediate the singlets’ interactions with
quarks, and an uncolored field one L̃ to mediate their
interactions with leptons. If �A,B are fermions, the me-
diators Q̃ and L̃ are complex scalars, while if �A,B are
real scalars the mediators are fermions. We consider the
following interaction Lagrangian involving these fields:

L � �
p
2(�Q̃Q̃�†

Bq
† + �L̃L̃�

†
B`

†) + H.c. ,

where we have suppressed indices denoting fermion chi-
rality and flavor. For spin-1/2 dm, the most general dm
mass Lagrangian is given by

Lmass = (�A �B)
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◆✓
�A

�B

◆
+H.c. . (1)

A similar-looking (squared) mass matrix may be written
down for spin-0 dm in terms of the field �� ⌘ (�A +
i�B)/

p
2 and its conjugate �†
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p
2

Lmass =
1
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�✓�m2 m2
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m2
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◆✓
��

�†
�

◆
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The fields �A,B mix to give mass eigenstates �1,2, with
the lighter species �1 serving as dm. In our analysis we
will refer to this dm field as simply �. The mediator
masses are free parameters that need not originate from
symmetry breaking. For instance, they may arise from
the scalar potential if the mediator is spin-0, or could be
vector-like if dm is spin-1/2.

We now make the following assumptions that simplify
our analysis:

1. We assume a common mass m� for the colored and
uncolored mediators, and equal dm couplings to
quarks and leptons, � ⌘ �Q̃ = �L̃.

2. We assume that dm couples to only a single chi-
rality of sm fermions. This restricts the number of
mediator species, since otherwise one would need
to introduce mediators that are both singlet and
doublet under SU(2)W . We will consider couplings
to both left-handed and right-handed leptons, but
only couplings to right-handed quarks. We do not
consider couplings to left-handed quarks because,
due to SU(2)W invariance, they will lead to new
physics (np) signals at once from both up-type and
down-type quarks in the initial state. These con-
tributions a↵ect proton-level cross sections in non-
trivial ways due to di↵erences in parton densities
between up and down quarks, which is a complica-
tion we wish to avoid in our analysis. For further
simplicity, we only consider couplings to electrons
and muons, and to either the right-handed up quark
or the right-handed down quark. This can be ar-
ranged by a special flavor structure, which we spell
out next.

3. In order to avoid flavor changing neutral currents,
we assume the existence of three generations of me-
diators with their couplings aligned with the sm
Yukawa couplings such that, in the mass basis, each
mediator generation couples only to a single genera-
tion of sm fermions. In order for dm to couple solely
to the up/down quark, or to the electron/muon, we
assume that mediators of the other generations are
heavy.

4. As manifest in Eq. (1), we assume that only �B

interacts with the sm fermions. This assumption
captures all the qualitative features of our results;
allowing both �A and �B to interact tends to only
rescale the couplings required to produce similar
signal rates.

5. Setting �m0 = 0 and varying �m, we can inter-
polate between Majorana and Dirac (or real and
complex scalar) scenarios. Specifically, the Majo-
rana (or real scalar) limit is achieved by tuning
�m, with �m ! 1 [10, 32], while �m ! 0 ren-
ders spin-1/2 dm Dirac and spin-0 dm a complex
scalar. Pure Dirac/complex scalar dm notoriously
has a large spin-independent cross section scatter-
ing o↵ nuclei, and is excluded by direct detection
experiments for the range of dm masses and cou-
plings of interest. Therefore, in our study we will
never truly take �m ! 0, setting �m = 1 MeV
as the lower limit. As discussed in Ref. [10], for
splittings of this size dm behaves like a Majorana
fermion (if spin-1/2, real scalar if spin-0) in direct
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• I am going to assume that DM is either spin 1/2 or 0 and 
the messenger therefore will have the other spin to be 
able to write the previous coupling


• The mass terms can be written as (δm is needed to avoid 
problems with large DD cross-sections)
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scalar. Pure Dirac/complex scalar dm notoriously
has a large spin-independent cross section scatter-
ing o↵ nuclei, and is excluded by direct detection
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•  Varying the spin and quantum numbers of the 
messengers one can classify the different scenarios that 
are going to be analyzed:

Model � spin Q̃, L̃ spin Q̃ under GSM L̃ under GSM

pDuRR 1/2 0 (3,1,2/3) (1,1,�1)
pDuRL 1/2 0 (3,1,2/3) (1,2,�1/2)
pCSuRR 0 1/2 (3,1,2/3) (1,1,�1)
pCSuRL 0 1/2 (3,1,2/3) (1,2,�1/2)
pDdRR 1/2 0 (3,1,�1/3) (1,1,�1)
pDdRL 1/2 0 (3,1,�1/3) (1,2,�1/2)
pCSdRR 0 1/2 (3,1,�1/3) (1,1,�1)
pCSdRL 0 1/2 (3,1,�1/3) (1,2,�1/2)

TABLE I. The simplified models studied in this paper. dm could be either spin 1/2 or 0, which fixes the spin of the colored
and uncolored mediators. We assume that dm couples to only right-handed quarks, and but couple to either right-handed
or left-handed leptons. This choice picks the transformations of the mediators under the sm gauge group GSM ⌘ SU(3)c ⌦
SU(2)W ⌦ U(1)Y .

FIG. 1. Feynman diagrams for dilepton production at the lhc. On top is the Standard Model Drell-Yan process at tree level.
The middle row shows the box contributions from pseudo-Dirac dm with scalar mediators. The bottom row shows the same
from pseudo-complex dm with fermion mediators. See the text and Table I for more details.

detection experiments, since the heavier state is
kinematically inaccessible given the local dm ve-
locity ⇠ 10�3. Majorana/real scalar dm typically
has a much smaller scattering cross section than
the Dirac/complex scalar case and hence is much
more viable [20] (see Sec. IV). Meanwhile, O(MeV)
mass splitting is well below the lhc detector reso-
lution, hence �1,2 are indistinguishable at colliders
and dm will appear as a Dirac or complex scalar
particle in our collider study. Thus, for a fixed dm
mass, varying �m � 1 MeV will have no e↵ect on
how dm appears in direct detection as all scenarios
will interact as Majorana/real scalars. However,

as we will see, �m will dramatically change how
dm appears in dilepton distributions. For the re-
mainder of this paper, we will refer to the �m � 1
MeV regime as “pseudo-Dirac” for spin-1/2 dm and
“pseudo-complex-scalar” for spin-0 dm.

6. We assume that cp-violating phases in the masses
and couplings vanish.

7. We neglect quartic couplings involving new scalars
introduced in our set-up, as they have little impact
on our dilepton signals.

To summarize, we assume that dm couples to
either right-handed up or down quarks and to
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• The usual strategy to discover a model like the one 
proposed would be to produce the color companion and 
use the standard search of jets+MET 


• But in the compressed case, needed in some scenarios to 
reproduce the correct relic abundance, the amount of 
MET may be small so the search may not be completely 
effective.


• Even if one can discover the messenger using this 
channel, it is difficult to extract information on the nature 
of DM since the final state is not fully reconstructed.



• I propose to use the following alternative fully 
reconstructed signal:

Model � spin Q̃, L̃ spin Q̃ under GSM L̃ under GSM
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pDdRR 1/2 0 (3,1,�1/3) (1,1,�1)
pDdRL 1/2 0 (3,1,�1/3) (1,2,�1/2)
pCSdRR 0 1/2 (3,1,�1/3) (1,1,�1)
pCSdRL 0 1/2 (3,1,�1/3) (1,2,�1/2)
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and uncolored mediators. We assume that dm couples to only right-handed quarks, and but couple to either right-handed
or left-handed leptons. This choice picks the transformations of the mediators under the sm gauge group GSM ⌘ SU(3)c ⌦
SU(2)W ⌦ U(1)Y .
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locity ⇠ 10�3. Majorana/real scalar dm typically
has a much smaller scattering cross section than
the Dirac/complex scalar case and hence is much
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6. We assume that cp-violating phases in the masses
and couplings vanish.

7. We neglect quartic couplings involving new scalars
introduced in our set-up, as they have little impact
on our dilepton signals.

To summarize, we assume that dm couples to
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• We first calculate analytically the LO cross-section for 
both SM and new physics:

electrons or muons of either chirality, with dm
itself having spin 0 or 1/2. Thus we may
classify our set-up into eight models, which we
dub pD

u
RR

, pDu
RL

, pCSu
RR

, pCSu
RL

, pDd
RR

, pDd
RL

, pCSd
RR

, and
pCS

d
RL

. The superscript denotes the quark to which dm
couples, and the first (second) subscript the chirality of
the quark (lepton), while “pD” and “pCS” denote whether
dm is pseudo-Dirac or a pseudo-complex scalar. The field
content of these models is summarized in Table I.

III. DISCRIMINATING SIGNALS

In this section we illustrate the various e↵ects of ra-
diative corrections from the dark sector on pp ! `+`�

spectra, and how these may help distinguish the proper-
ties of �. We will go about this task by contrasting the
signals produced by mutually exclusive cases of a sin-
gle property, keeping everything else the same, e.g. we
will compare signals of pDu

RR
and pCS

u
RR

while keeping
all masses and self-conjugation properties the same.

Assuming massless quarks and leptons, and denoting
by ✓ the centre-of-momentum scattering angle between
the incoming quark and outgoing lepton, the parton level
leading order (lo) Drell-Yan double di↵erential cross sec-
tion is given by

d�tot ⌘
d2�tot

d cos ✓ dm``

= d�SM + d�int + d�� , (3)

with

d�SM =
1

32⇡m2

``Nc

X

spins

|MSM|
2 ,

d�int =
1

32⇡m2

``Nc

X

spins

2Re(MSMM
⇤
�) ,

d�� =
1

32⇡m2

``Nc

X

spins

|M�|
2 , (4)

where Nc = 3 is the number of qcd colors, MSM =
M�+MZ is the sm amplitude for the tree-level Feynman
diagram in Fig. 1.

As our np e↵ects enter at loop level, care must be
taken to ensure that all e↵ects at a given coupling order
are consistently included. Additionally, purely sm loop
(mainly qcd) e↵ects must be accounted for. These issues
give rise to the following considerations:

• One-loop sm e↵ects enter at the amplitude level at
O(g2g2s), where g and gs are the qed and qcd cou-
plings, while np e↵ects enter at O(g2�2) for vertex
corrections and O(�4) for the box diagrams. The
net result of the purely sm loop e↵ects is to replace
d�SM in Eq. (4) by the sm cross section at next to
leading order (in qcd), d�SM,NLO.

• Interference between sm and np loops (d�int) re-
sults in contributions to d�tot of O(g4�2) and
O(g2�4), where the former involve vertex correc-
tions and the latter involve box diagrams. 2 Com-
paring these terms, we find the box contributions
significantly larger when � ⇠ 1, which is also
the regime of couplings where the np e↵ects have
enough statistical significance for lhc bounds to
apply. This happens not only due to the di↵er-
ence in power-counting the couplings, but also be-
cause the box diagrams generate more pronounced
threshold e↵ects. Moreover there is a partial can-
celation between triangle diagrams with a photon
and with a Z, as they have opposite signs.

Note also that the np e↵ects do not interfere with
the entire sm amplitude. As our models involve
couplings to a specific set of fermion chiralities, in-
terference proceeds only with the part of the sm
amplitude involving the same set of fermion chi-
ralities. For instance, the np pieces in pD

u
RL

only
interfere with qRq̄R ! Z/�⇤

! `L ¯̀L.

• The d�� term involves the square of box and vertex
corrections. These are, in principle, the same order
in perturbation theory as the interference between
the tree-level and np two-loop amplitudes. As we
have only calculated np e↵ects at one loop, most
terms in d�� cannot be consistently included in the
calculation3. An important exception that can be
included consistently is the square of the np box
diagrams, which is the only O(�8) contribution to
the cross section at any order.

• As the box diagrams dominate the interference
term, in the following discussion we will drop the
vertex correction entirely and use “M�” as a loose
notation to describe the box amplitude. The re-
sulting cross section expressions d�int and d�� are
provided in Appendix B.

As our focus in this section is on the qualitative di↵er-
ences between various dm models, rather than between
the sm and dm, we will work with d�SM,LO for now. We
will return to nlo sm e↵ects and the considerations here
itemized in Sec. IV, when we use the dilepton distribu-
tions to derive limits.
The most unique feature of d�tot occurs at

p
ŝ & 2m�,

when � goes on-shell in the box diagrams in Fig. 1, and
M� develops an imaginary part Im(M�) determined by
the optical theorem. According to the optical theorem,
Im(M�) is proportional to the product of the amplitudes

2
Vertex corrections contain divergent pieces that must be cor-

rectly subtracted and subsumed into the renormalization condi-

tions of the theory.
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⇤
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X

spins

|M�|
2 , (4)
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M�+MZ is the sm amplitude for the tree-level Feynman
diagram in Fig. 1.

As our np e↵ects enter at loop level, care must be
taken to ensure that all e↵ects at a given coupling order
are consistently included. Additionally, purely sm loop
(mainly qcd) e↵ects must be accounted for. These issues
give rise to the following considerations:

• One-loop sm e↵ects enter at the amplitude level at
O(g2g2s), where g and gs are the qed and qcd cou-
plings, while np e↵ects enter at O(g2�2) for vertex
corrections and O(�4) for the box diagrams. The
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M� develops an imaginary part Im(M�) determined by
the optical theorem. According to the optical theorem,
Im(M�) is proportional to the product of the amplitudes
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FIG. 2. Dilepton invariant mass distributions. The blue
line represents the sm background from Drell-Yan produc-
tion. The orange, green, red, and purple represent the pseudo-
Dirac, pseudo-complex, Majorana, and real scalar cases. Solid
lines represent models with right-handed quarks and right-
handed leptons (RR) whereas dashed lines represent the RL
models. Signal lines are plotted at the benchmark point
� = 2.0,m� = 500 GeV, and m� = 550 GeV.

of the tree-level diagrams (with �’s and fermions as ex-
ternal legs) obtained from “cutting” the box diagram
vertically. This imaginary part feeds into the real part
Re(M�) through dispersion relations, causing the ampli-
tude to rapidly rise near the threshold. At

p
ŝ � 2m�,

Re(M�) falls away while Im(M�) takes over as the domi-
nant contributor to |M�|

2. The net e↵ect of this takeover
at

p
ŝ � 2m� is no more than the addition of a new

channel of dilepton production, hence d�tot will be sep-
arated from d�SM by some o↵set. All these e↵ects are
reviewed in detail in Ref. [10], where the shape of the
new physics spectrum was identified as a “monocline”.
(See also Ref. [34], which comprehensively reviews dis-
persion relations.) In the following, we show that the
above e↵ects also carry the imprint of dm’s microscopic
properties, leading to diverse features in dilepton spectra.

For our m`` spectra, we integrate the cross sections in
Eq. 3 over cos ✓, and for our angular spectra we integrate
them over 400 GeV  m``  4500 GeV, the range used
by the 8 TeV atlas analysis [35]. The angular spec-
tra are computed in the Collins-Soper reference frame
[36], in which the directional ambiguity of the initial state
quark/antiquark in a pp collider is resolved by boosting
to the dilepton center-of-momentum frame and then as-
suming that the quark originated in the boost direction.
This assumption leads to anm``-dependent probability of
initial-quark misidentification, in principle determinable
using information of the parton densities (see Appendix
A of [19]). The scattering angle in this frame is given by

cos ✓CS =
Qz

|Qz|

2(p+
1
p�
2
� p�

1
p+
2
)

|Q|
p

Q2 +Q2

T

, (5)

where Q is the net momentum of the dilepton system

with Qz (QT ) the longitudinal (transverse) piece, and
p±i ⌘

�
p0i ± pzi

�p
2 with p1 (p2) the momentum of the

lepton (anti-lepton). Neglecting QT at high longitudinal
momenta, the above may be re-written as

cos ✓CS = sgn(Q) tanh

✓
�⌘

2

◆
,

where �⌘ = ⌘1 � ⌘2 is the di↵erence in the lepton and
anti-lepton pseudo-rapidities.
It is often useful to characterize the angular spectrum

as a forward-backward asymmetry,

AFB ⌘
N(cos ✓ > 0)�N(cos ✓ < 0)

N(cos ✓ > 0) +N(cos ✓ < 0)
, (6)

or a center-edge asymmetry,

ACE ⌘
N(| cos ✓| < cos ✓0)�N(| cos ✓| > cos ✓0)

N(| cos ✓| < cos ✓0) +N(| cos ✓| > cos ✓0)
, (7)

which marks out how much scattering occurs in central
regions.
We now apply the above discussions to our various

models. All spectra are shown by convolving parton-
level cross sections with MSTW2008NLO parton distribution
functions (PDFs) [33] at

p
s = 13 TeV. For our illustra-

tive plots here, we approximate lhc dilepton production
with the Drell-Yan process qq̄ ! `+`�. The treatment
of secondary processes that also contribute to dilepton
production, such as diboson, tt̄, dijet and W+jets, will
become important when we set constraints in Sec. IV. We
will also show only tree-level sm cross sections, treating
qcd corrections more carefully in Sec. IV.
As our current analysis is qualitative, we only show

here the behavior of models in which our dm couples to
up quarks, but the broad conclusions we draw hold also
for dm coupling to down quarks. See Appendix A for the
signals arising from the latter scenario. We pick an illus-
trative benchmark point with the coupling � fixed to 2.0,
and masses m� = 500 GeV and m� = 550 GeV. As elab-
orated in Ref. [10], varying � has the e↵ect of raising or
lowering d�int and d��. Depending on the sign of d�int,
this could enhance or diminish the dm signal. More-
over, increasing (decreasing) m� enhances (diminishes)
the bump feature near m`` ' 2m�. Thus these varia-
tions a↵ect the signal significance at the lhc, a point
to which we will return when finding our constraints in
Sec. IV. Here we note that the spectrum chosen here, be-
ing a “compressed” one, is illustrative of a point where
our dilepton probes are expected to outperform jets +
/ET searches, which su↵er from low signal acceptance in
these regions.
Finally, in computing our dilepton distributions we im-

pose the following kinematic cuts:

|⌘`± |  2.4 , p`
±

T � 40 GeV . (8)

We now sketch and contrast the spectral features in-
duced by various dm species. We also elucidate why

5

Blue is the SM background 
Orange pseudo Dirac 

Green pseudo Complex 
Red is Majorana 

Purple real scalar 
Solid is RR 

Dashed is RL

λ= 2 mχ=500 GeV mφ=550 GeV

Internal line going on shell

Majorana fermion DM and Real scalar (self-congugate) 
do not give enough signal!!!!



(D quarks)

600 800 1000 1200 1400

0.005
0.010

0.050
0.100

0.500
1

mee [GeV]

dσ
/d
m
ee

[fb
/G
eV

]

FIG. 9. Dilepton signals for the models in which dm couples to down quarks. The benchmark point chosen and the color code
of these plots is the same as in Sec. III. See Appendix A for more details.

eDpCSu,dRL
= 2D00 �

�
ŝ+ t̂

�
D13 .

2. Direct detection

At direct detection experiments, our dm behaves like a
Majorana or real scalar particle (see Sec. II). Here we pro-
vide the appropriate spin-independent per-nucleon scat-
tering cross sections, �SI.

a. Majorana DM (pDuRR, pD
u
RL, pD

d
RR, pD

d
RL)

We have

�SI =
4

⇡
µ2

�N |fN |
2 ,

where µ�N is the dm-nucleon (N = p, n) reduced mass,
and e↵ective coupling fN is given by [20]

fN
mN

= fqfTu +
3

4
(q2 + q̄2)gq �

8⇡

9↵s
fTGfG ,

with the Wilson coe�cients

fq =
m��2

8(m2

� �m2
�)

2
, (B5)

fG = �
↵sm��2

96⇡m2

�(m
2
� �m2

�)
2
, (B6)

and the coe�cients fTu(proton) = 0.023, fTu(neutron)
= 0.017, fTd(proton) = 0.032, fTd(neutron) = 0.041,
u2 = 0.22, ū2 = 0.034, d2 = 0.11, d̄2 = 0.036, gq = 4fq,
fTG(proton) = 0.925, fTG(neutron) = 0.922 [55, 57].

b. Real Scalar DM (pCSuRR, pCS
u
RL, pCS

d
RR, pCS

d
RL)

Here

�SI =
µ2

N

⇡

✓
fN
m�

◆2

,

with

fN
mN

= fqfTq +
3

4
(q2 + q̄2)gq. (B7)

The coe�cients on the right-hand side are the same as
before.
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• We are going to use the following kinematical variables to  
discriminate the different models:

FIG. 2. Dilepton invariant mass distributions. The blue
line represents the sm background from Drell-Yan produc-
tion. The orange, green, red, and purple represent the pseudo-
Dirac, pseudo-complex, Majorana, and real scalar cases. Solid
lines represent models with right-handed quarks and right-
handed leptons (RR) whereas dashed lines represent the RL
models. Signal lines are plotted at the benchmark point
� = 2.0,m� = 500 GeV, and m� = 550 GeV.

of the tree-level diagrams (with �’s and fermions as ex-
ternal legs) obtained from “cutting” the box diagram
vertically. This imaginary part feeds into the real part
Re(M�) through dispersion relations, causing the ampli-
tude to rapidly rise near the threshold. At

p
ŝ � 2m�,

Re(M�) falls away while Im(M�) takes over as the domi-
nant contributor to |M�|

2. The net e↵ect of this takeover
at

p
ŝ � 2m� is no more than the addition of a new

channel of dilepton production, hence d�tot will be sep-
arated from d�SM by some o↵set. All these e↵ects are
reviewed in detail in Ref. [10], where the shape of the
new physics spectrum was identified as a “monocline”.
(See also Ref. [34], which comprehensively reviews dis-
persion relations.) In the following, we show that the
above e↵ects also carry the imprint of dm’s microscopic
properties, leading to diverse features in dilepton spectra.

For our m`` spectra, we integrate the cross sections in
Eq. 3 over cos ✓, and for our angular spectra we integrate
them over 400 GeV  m``  4500 GeV, the range used
by the 8 TeV atlas analysis [35]. The angular spec-
tra are computed in the Collins-Soper reference frame
[36], in which the directional ambiguity of the initial state
quark/antiquark in a pp collider is resolved by boosting
to the dilepton center-of-momentum frame and then as-
suming that the quark originated in the boost direction.
This assumption leads to anm``-dependent probability of
initial-quark misidentification, in principle determinable
using information of the parton densities (see Appendix
A of [19]). The scattering angle in this frame is given by

cos ✓CS =
Qz

|Qz|
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1
p�
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� p�
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|Q|
p
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T

, (5)

where Q is the net momentum of the dilepton system

with Qz (QT ) the longitudinal (transverse) piece, and
p±i ⌘
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p0i ± pzi

�p
2 with p1 (p2) the momentum of the

lepton (anti-lepton). Neglecting QT at high longitudinal
momenta, the above may be re-written as

cos ✓CS = sgn(Q) tanh
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,

where �⌘ = ⌘1 � ⌘2 is the di↵erence in the lepton and
anti-lepton pseudo-rapidities.
It is often useful to characterize the angular spectrum

as a forward-backward asymmetry,

AFB ⌘
N(cos ✓ > 0)�N(cos ✓ < 0)

N(cos ✓ > 0) +N(cos ✓ < 0)
, (6)

or a center-edge asymmetry,

ACE ⌘
N(| cos ✓| < cos ✓0)�N(| cos ✓| > cos ✓0)

N(| cos ✓| < cos ✓0) +N(| cos ✓| > cos ✓0)
, (7)

which marks out how much scattering occurs in central
regions.
We now apply the above discussions to our various

models. All spectra are shown by convolving parton-
level cross sections with MSTW2008NLO parton distribution
functions (PDFs) [33] at

p
s = 13 TeV. For our illustra-

tive plots here, we approximate lhc dilepton production
with the Drell-Yan process qq̄ ! `+`�. The treatment
of secondary processes that also contribute to dilepton
production, such as diboson, tt̄, dijet and W+jets, will
become important when we set constraints in Sec. IV. We
will also show only tree-level sm cross sections, treating
qcd corrections more carefully in Sec. IV.
As our current analysis is qualitative, we only show

here the behavior of models in which our dm couples to
up quarks, but the broad conclusions we draw hold also
for dm coupling to down quarks. See Appendix A for the
signals arising from the latter scenario. We pick an illus-
trative benchmark point with the coupling � fixed to 2.0,
and masses m� = 500 GeV and m� = 550 GeV. As elab-
orated in Ref. [10], varying � has the e↵ect of raising or
lowering d�int and d��. Depending on the sign of d�int,
this could enhance or diminish the dm signal. More-
over, increasing (decreasing) m� enhances (diminishes)
the bump feature near m`` ' 2m�. Thus these varia-
tions a↵ect the signal significance at the lhc, a point
to which we will return when finding our constraints in
Sec. IV. Here we note that the spectrum chosen here, be-
ing a “compressed” one, is illustrative of a point where
our dilepton probes are expected to outperform jets +
/ET searches, which su↵er from low signal acceptance in
these regions.
Finally, in computing our dilepton distributions we im-

pose the following kinematic cuts:

|⌘`± |  2.4 , p`
±

T � 40 GeV . (8)

We now sketch and contrast the spectral features in-
duced by various dm species. We also elucidate why
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of the tree-level diagrams (with �’s and fermions as ex-
ternal legs) obtained from “cutting” the box diagram
vertically. This imaginary part feeds into the real part
Re(M�) through dispersion relations, causing the ampli-
tude to rapidly rise near the threshold. At

p
ŝ � 2m�,

Re(M�) falls away while Im(M�) takes over as the domi-
nant contributor to |M�|

2. The net e↵ect of this takeover
at

p
ŝ � 2m� is no more than the addition of a new

channel of dilepton production, hence d�tot will be sep-
arated from d�SM by some o↵set. All these e↵ects are
reviewed in detail in Ref. [10], where the shape of the
new physics spectrum was identified as a “monocline”.
(See also Ref. [34], which comprehensively reviews dis-
persion relations.) In the following, we show that the
above e↵ects also carry the imprint of dm’s microscopic
properties, leading to diverse features in dilepton spectra.

For our m`` spectra, we integrate the cross sections in
Eq. 3 over cos ✓, and for our angular spectra we integrate
them over 400 GeV  m``  4500 GeV, the range used
by the 8 TeV atlas analysis [35]. The angular spec-
tra are computed in the Collins-Soper reference frame
[36], in which the directional ambiguity of the initial state
quark/antiquark in a pp collider is resolved by boosting
to the dilepton center-of-momentum frame and then as-
suming that the quark originated in the boost direction.
This assumption leads to anm``-dependent probability of
initial-quark misidentification, in principle determinable
using information of the parton densities (see Appendix
A of [19]). The scattering angle in this frame is given by

cos ✓CS =
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2 with p1 (p2) the momentum of the

lepton (anti-lepton). Neglecting QT at high longitudinal
momenta, the above may be re-written as
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where �⌘ = ⌘1 � ⌘2 is the di↵erence in the lepton and
anti-lepton pseudo-rapidities.
It is often useful to characterize the angular spectrum

as a forward-backward asymmetry,

AFB ⌘
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, (6)

or a center-edge asymmetry,

ACE ⌘
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which marks out how much scattering occurs in central
regions.
We now apply the above discussions to our various

models. All spectra are shown by convolving parton-
level cross sections with MSTW2008NLO parton distribution
functions (PDFs) [33] at

p
s = 13 TeV. For our illustra-

tive plots here, we approximate lhc dilepton production
with the Drell-Yan process qq̄ ! `+`�. The treatment
of secondary processes that also contribute to dilepton
production, such as diboson, tt̄, dijet and W+jets, will
become important when we set constraints in Sec. IV. We
will also show only tree-level sm cross sections, treating
qcd corrections more carefully in Sec. IV.
As our current analysis is qualitative, we only show

here the behavior of models in which our dm couples to
up quarks, but the broad conclusions we draw hold also
for dm coupling to down quarks. See Appendix A for the
signals arising from the latter scenario. We pick an illus-
trative benchmark point with the coupling � fixed to 2.0,
and masses m� = 500 GeV and m� = 550 GeV. As elab-
orated in Ref. [10], varying � has the e↵ect of raising or
lowering d�int and d��. Depending on the sign of d�int,
this could enhance or diminish the dm signal. More-
over, increasing (decreasing) m� enhances (diminishes)
the bump feature near m`` ' 2m�. Thus these varia-
tions a↵ect the signal significance at the lhc, a point
to which we will return when finding our constraints in
Sec. IV. Here we note that the spectrum chosen here, be-
ing a “compressed” one, is illustrative of a point where
our dilepton probes are expected to outperform jets +
/ET searches, which su↵er from low signal acceptance in
these regions.
Finally, in computing our dilepton distributions we im-

pose the following kinematic cuts:
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duced by various dm species. We also elucidate why

5

FIG. 2. Dilepton invariant mass distributions. The blue
line represents the sm background from Drell-Yan produc-
tion. The orange, green, red, and purple represent the pseudo-
Dirac, pseudo-complex, Majorana, and real scalar cases. Solid
lines represent models with right-handed quarks and right-
handed leptons (RR) whereas dashed lines represent the RL
models. Signal lines are plotted at the benchmark point
� = 2.0,m� = 500 GeV, and m� = 550 GeV.

of the tree-level diagrams (with �’s and fermions as ex-
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vertically. This imaginary part feeds into the real part
Re(M�) through dispersion relations, causing the ampli-
tude to rapidly rise near the threshold. At
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Re(M�) falls away while Im(M�) takes over as the domi-
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2. The net e↵ect of this takeover
at
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channel of dilepton production, hence d�tot will be sep-
arated from d�SM by some o↵set. All these e↵ects are
reviewed in detail in Ref. [10], where the shape of the
new physics spectrum was identified as a “monocline”.
(See also Ref. [34], which comprehensively reviews dis-
persion relations.) In the following, we show that the
above e↵ects also carry the imprint of dm’s microscopic
properties, leading to diverse features in dilepton spectra.

For our m`` spectra, we integrate the cross sections in
Eq. 3 over cos ✓, and for our angular spectra we integrate
them over 400 GeV  m``  4500 GeV, the range used
by the 8 TeV atlas analysis [35]. The angular spec-
tra are computed in the Collins-Soper reference frame
[36], in which the directional ambiguity of the initial state
quark/antiquark in a pp collider is resolved by boosting
to the dilepton center-of-momentum frame and then as-
suming that the quark originated in the boost direction.
This assumption leads to anm``-dependent probability of
initial-quark misidentification, in principle determinable
using information of the parton densities (see Appendix
A of [19]). The scattering angle in this frame is given by
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where �⌘ = ⌘1 � ⌘2 is the di↵erence in the lepton and
anti-lepton pseudo-rapidities.
It is often useful to characterize the angular spectrum

as a forward-backward asymmetry,

AFB ⌘
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which marks out how much scattering occurs in central
regions.
We now apply the above discussions to our various

models. All spectra are shown by convolving parton-
level cross sections with MSTW2008NLO parton distribution
functions (PDFs) [33] at
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tive plots here, we approximate lhc dilepton production
with the Drell-Yan process qq̄ ! `+`�. The treatment
of secondary processes that also contribute to dilepton
production, such as diboson, tt̄, dijet and W+jets, will
become important when we set constraints in Sec. IV. We
will also show only tree-level sm cross sections, treating
qcd corrections more carefully in Sec. IV.
As our current analysis is qualitative, we only show

here the behavior of models in which our dm couples to
up quarks, but the broad conclusions we draw hold also
for dm coupling to down quarks. See Appendix A for the
signals arising from the latter scenario. We pick an illus-
trative benchmark point with the coupling � fixed to 2.0,
and masses m� = 500 GeV and m� = 550 GeV. As elab-
orated in Ref. [10], varying � has the e↵ect of raising or
lowering d�int and d��. Depending on the sign of d�int,
this could enhance or diminish the dm signal. More-
over, increasing (decreasing) m� enhances (diminishes)
the bump feature near m`` ' 2m�. Thus these varia-
tions a↵ect the signal significance at the lhc, a point
to which we will return when finding our constraints in
Sec. IV. Here we note that the spectrum chosen here, be-
ing a “compressed” one, is illustrative of a point where
our dilepton probes are expected to outperform jets +
/ET searches, which su↵er from low signal acceptance in
these regions.
Finally, in computing our dilepton distributions we im-

pose the following kinematic cuts:

|⌘`± |  2.4 , p`
±

T � 40 GeV . (8)

We now sketch and contrast the spectral features in-
duced by various dm species. We also elucidate why
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di↵erences arise between mutually exclusive cases (e.g.
spin-0 vs spin-1/2 dm), and explain how these di↵erences
can help us to sort out the properties of dm and the
mediators. Such a sorting exercise can be successfully
carried out at the lhc if our dm signals are uncovered
with su�cient statistical significance. Conversely, if the
signal-to-background ratios in the event distributions (in
our case d�tot/d�SM) are inadequate, the dm properties
that can be disentangled could only be a few, or none.
This may happen if our couplings are small or the mass
scales large so as to suppress the e↵ects of new physics
amplitudes.

III.1. Self-conjugation

As explained in Sec II, we may interpolate between
the Dirac (complex) and Majorana (real) limits of dm by
tuning �m. These limits are readily distinguished by the
monocline signature, as shown in Fig. 2, where we have
plotted d�tot in the non-self-conjugate limit �m ! 0 for
the models pD

u
RR

(solid orange), pDu
RL

(dashed orange),
pCS

u
RR

(solid green) and pCS
u
RL

(dashed green), as well
as at the self-conjugate limit �m ! 1 for the mod-
els pD

u
RR

(solid red) and pCS
u
RR

(solid purple). In the
self-conjugate limit, a subdued signal is produced, while
non-self-conjugate dm can produce large, detectable sig-
nals. Also, in the self-conjugate limit pDu

RL
(pCSu

RL
) gives

near-identical cross sections as pDu
RR

(pCSu
RL

). One may
compare all these signals with the blue curve, which cor-
responds to d�SM.

In the Majorana limit, where �2 is completely decou-
pled and only diagrams with �1 contribute to the signal,
the models pD

u
RR

and pD
u
RL

produce suppressed signals
due to destructive interference between the standard box
and crossed box amplitudes. This arises from a relative
minus sign due to an odd permutation of spinors. As
explained in [10], this can also be understood in terms
of the intricate pattern of interferences between the four
standard and four crossed boxes that makes them cancel
out one another. The monocline feature is inferred to
appear at m� + (m� + �m) ! 1, so that d�tot remains
close to d�SM across m``.

The suppression of rates in the real scalar limit of
pCS

u
RR

and pCS
u
RL

occurs for subtler reasons. Due to our
choice of coupling to a single fermion chirality, the pro-
jection operators pick only the momentum piece in the
numerator of the propagator of L̃. The momentum flow
in this propagator in the crossed box diagram is reversed
with respect to the standard box (while the fermion flows
are the same); consequently, a relative minus sign be-
tween the two amplitudes appears, giving rise to the rate
suppression.

In the limit m�,m� � ŝ, where the loops can be
shrunk to contact operators, the suppressions in the self-
conjugate limit are consistent with the loop functions
given in the e↵ective theory treatment of Ref. [37]. Since
the suppressed rates are a result of a modest addition to
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FIG. 3. Dilepton angular distributions in the Collin-Soper
frame. The color code and model parameters are as in Fig. 2.

MSM from the dark sector in the self-conjugate limit, no
sizable signals appear in the angular spectra either.
Finally, we re-emphasize that our “non-self-conjugate

limit” does not correspond to Dirac or complex scalar
dm, but only to the limit where �m is small enough to
be irresolvable at colliders while remaining large enough
to evade direct detection constraints4.

III.2. Spin

Distinguishing the spin of dm is more challenging than
the self-conjugation property, but some headway can be
made. In Fig. 2, we see a pronounced “kick” in the sig-
nal rates at m`` ' 2m� for fermionic dm (pDu

RR
, pDu

RL
),

while the rise in rates appears gentle for scalar dm
(pCSu

RR
, pCSu

RL
). This may be understood from the fact

that near threshold, the box amplitude is determined by
Im(M�), which, as mentioned above, is in turn deter-
mined by the tree-level amplitudes for ff̄ ! ��. The
pair-production of complex scalar � is more phase-space
suppressed at threshold than a Dirac �, ultimately result-
ing in a subdued slope of the rise in d�/dmee for spin-0
dm. In any case, even this di↵erence fades for larger mass
splittings between the mediators and dm, where the kick
feature is not as pronounced.

One would naively expect the angular distributions to
discern the spin of dm, on the strength of their ability to
clearly distinguish the spin of mediators in the s-channel
[38] and t-channel [19]. However, this does not turn out

4
Of course, if the stabilizing Z2 symmetry were broken such that

�1 decays well within the lifetime of the universe, a pure Dirac or

complex scalar formed with �1,2 is viable. Then �1 is no longer

the galactic dark matter searched for at direct detection, and only

collider constraints apply. The decay length of �1 determines

whether met + X or a displaced vertex is the relevant signature.

In all cases our dilepton signatures apply, though the e↵ect of

non-trivial widths must now be carefully treated.

6

Blue is the SM background 
Orange pseudo Dirac 

Green pseudo Complex 
Solid is RR 

Dashed is RL

λ= 2 mχ=500 GeV mφ=550 GeV

FIG. 2. Dilepton invariant mass distributions. The blue
line represents the sm background from Drell-Yan produc-
tion. The orange, green, red, and purple represent the pseudo-
Dirac, pseudo-complex, Majorana, and real scalar cases. Solid
lines represent models with right-handed quarks and right-
handed leptons (RR) whereas dashed lines represent the RL
models. Signal lines are plotted at the benchmark point
� = 2.0,m� = 500 GeV, and m� = 550 GeV.

of the tree-level diagrams (with �’s and fermions as ex-
ternal legs) obtained from “cutting” the box diagram
vertically. This imaginary part feeds into the real part
Re(M�) through dispersion relations, causing the ampli-
tude to rapidly rise near the threshold. At

p
ŝ � 2m�,

Re(M�) falls away while Im(M�) takes over as the domi-
nant contributor to |M�|

2. The net e↵ect of this takeover
at

p
ŝ � 2m� is no more than the addition of a new

channel of dilepton production, hence d�tot will be sep-
arated from d�SM by some o↵set. All these e↵ects are
reviewed in detail in Ref. [10], where the shape of the
new physics spectrum was identified as a “monocline”.
(See also Ref. [34], which comprehensively reviews dis-
persion relations.) In the following, we show that the
above e↵ects also carry the imprint of dm’s microscopic
properties, leading to diverse features in dilepton spectra.

For our m`` spectra, we integrate the cross sections in
Eq. 3 over cos ✓, and for our angular spectra we integrate
them over 400 GeV  m``  4500 GeV, the range used
by the 8 TeV atlas analysis [35]. The angular spec-
tra are computed in the Collins-Soper reference frame
[36], in which the directional ambiguity of the initial state
quark/antiquark in a pp collider is resolved by boosting
to the dilepton center-of-momentum frame and then as-
suming that the quark originated in the boost direction.
This assumption leads to anm``-dependent probability of
initial-quark misidentification, in principle determinable
using information of the parton densities (see Appendix
A of [19]). The scattering angle in this frame is given by

cos ✓CS =
Qz

|Qz|

2(p+
1
p�
2
� p�

1
p+
2
)

|Q|
p

Q2 +Q2

T

, (5)

where Q is the net momentum of the dilepton system

with Qz (QT ) the longitudinal (transverse) piece, and
p±i ⌘

�
p0i ± pzi

�p
2 with p1 (p2) the momentum of the

lepton (anti-lepton). Neglecting QT at high longitudinal
momenta, the above may be re-written as

cos ✓CS = sgn(Q) tanh

✓
�⌘

2

◆
,

where �⌘ = ⌘1 � ⌘2 is the di↵erence in the lepton and
anti-lepton pseudo-rapidities.
It is often useful to characterize the angular spectrum

as a forward-backward asymmetry,

AFB ⌘
N(cos ✓ > 0)�N(cos ✓ < 0)

N(cos ✓ > 0) +N(cos ✓ < 0)
, (6)

or a center-edge asymmetry,

ACE ⌘
N(| cos ✓| < cos ✓0)�N(| cos ✓| > cos ✓0)

N(| cos ✓| < cos ✓0) +N(| cos ✓| > cos ✓0)
, (7)

which marks out how much scattering occurs in central
regions.
We now apply the above discussions to our various

models. All spectra are shown by convolving parton-
level cross sections with MSTW2008NLO parton distribution
functions (PDFs) [33] at

p
s = 13 TeV. For our illustra-

tive plots here, we approximate lhc dilepton production
with the Drell-Yan process qq̄ ! `+`�. The treatment
of secondary processes that also contribute to dilepton
production, such as diboson, tt̄, dijet and W+jets, will
become important when we set constraints in Sec. IV. We
will also show only tree-level sm cross sections, treating
qcd corrections more carefully in Sec. IV.
As our current analysis is qualitative, we only show

here the behavior of models in which our dm couples to
up quarks, but the broad conclusions we draw hold also
for dm coupling to down quarks. See Appendix A for the
signals arising from the latter scenario. We pick an illus-
trative benchmark point with the coupling � fixed to 2.0,
and masses m� = 500 GeV and m� = 550 GeV. As elab-
orated in Ref. [10], varying � has the e↵ect of raising or
lowering d�int and d��. Depending on the sign of d�int,
this could enhance or diminish the dm signal. More-
over, increasing (decreasing) m� enhances (diminishes)
the bump feature near m`` ' 2m�. Thus these varia-
tions a↵ect the signal significance at the lhc, a point
to which we will return when finding our constraints in
Sec. IV. Here we note that the spectrum chosen here, be-
ing a “compressed” one, is illustrative of a point where
our dilepton probes are expected to outperform jets +
/ET searches, which su↵er from low signal acceptance in
these regions.
Finally, in computing our dilepton distributions we im-

pose the following kinematic cuts:

|⌘`± |  2.4 , p`
±

T � 40 GeV . (8)

We now sketch and contrast the spectral features in-
duced by various dm species. We also elucidate why
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FIG. 9. Dilepton signals for the models in which dm couples to down quarks. The benchmark point chosen and the color code
of these plots is the same as in Sec. III. See Appendix A for more details.

eDpCSu,dRL
= 2D00 �

�
ŝ+ t̂

�
D13 .

2. Direct detection

At direct detection experiments, our dm behaves like a
Majorana or real scalar particle (see Sec. II). Here we pro-
vide the appropriate spin-independent per-nucleon scat-
tering cross sections, �SI.

a. Majorana DM (pDuRR, pD
u
RL, pD

d
RR, pD

d
RL)

We have

�SI =
4

⇡
µ2

�N |fN |
2 ,

where µ�N is the dm-nucleon (N = p, n) reduced mass,
and e↵ective coupling fN is given by [20]

fN
mN

= fqfTu +
3

4
(q2 + q̄2)gq �

8⇡

9↵s
fTGfG ,

with the Wilson coe�cients

fq =
m��2

8(m2

� �m2
�)

2
, (B5)

fG = �
↵sm��2

96⇡m2

�(m
2
� �m2

�)
2
, (B6)

and the coe�cients fTu(proton) = 0.023, fTu(neutron)
= 0.017, fTd(proton) = 0.032, fTd(neutron) = 0.041,
u2 = 0.22, ū2 = 0.034, d2 = 0.11, d̄2 = 0.036, gq = 4fq,
fTG(proton) = 0.925, fTG(neutron) = 0.922 [55, 57].

b. Real Scalar DM (pCSuRR, pCS
u
RL, pCS

d
RR, pCS

d
RL)

Here

�SI =
µ2

N

⇡

✓
fN
m�

◆2

,

with

fN
mN

= fqfTq +
3

4
(q2 + q̄2)gq. (B7)

The coe�cients on the right-hand side are the same as
before.
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FIG. 4. Forward-backward asymmetry (left) and center-edge asymmetry (right) at the parton level, as defined in Eqs. 6 and
7. The color code and model parameters are as in Fig. 2.

to be entirely true. While angular spectra are capable
of picking up the spin of new particles interfering with
the sm via tree-level amplitudes, the angular spectrum
resulting from interference with a loop amplitude is non-
trivial. Moreover, as the loop consists of particles with
multiple spins, one expects information on the spins to
be washed away in the spectrum. To illustrate this, in
Fig. 3 we have shown the angular spectra of our mod-
els following the color code of Fig 2 and using the same
benchmark points. No visible di↵erence in the spectral
shape exists between pD

u
RR

and pCS
u
RR

; somewhat fewer
events populate the cos ✓CS < 0 region for pDu

RL
than for

pCS
u
RL

, but this does not amount to a qualitative di↵er-
ence. We notice a smaller net deviation from the sm back-
ground for spin-1/2 dm, which can be understood from
their m`` spectra in Fig. 2. Due to negative interference
between the tree and box amplitudes, we see a deficit
in cross sections with respect to the sm for m`` < 2m�,
while an excess appears at m`` > 2m� from the squared
box amplitude and threshold e↵ects overwhelming the in-
terference terms. These deviations are however washed
away when integrating over m``, as done for obtaining
the cos ✓CS spectrum. No such washing away occurs for
spin-0 dm as the tree-box interference is always construc-
tive, giving only an excess of events in the m`` spectrum.
No such washing away would occur for dm coupling to
down quarks either, as the tree-box interference is con-
structive here as well. Moreover, the magnitude of the
net deviation from background in all cases is sensitive to
the m`` window over which cross sections are integrated.
For these reasons the scattering angle is not a reliable
tool to determine the spin of dm.

III.3. Mass

From the previous sub-section, it is apparent that the
mass of dm may be readily cornered if dm is a fermion
and if its mass is not much separated from the media-

tor’s. In that case, the pronounced kick feature in the
m`` signal appears at an invariant mass of 2m�. As this
feature is a result of amplitude-level deviations, it must
also be reflected in some way in angular observables plot-
ted as a function of m``. For instance, one would see it
in the AFB, defined in Eq. (6), plotted at the parton level
(for illustration) in the left panel of Fig. 4 using the same
color code as above. The behavior of the AFB as a func-
tion of m`` with respect to the sm is in accord with the
behavior of the m`` spectrum – the telltale imprint of
interference e↵ects. Consequently, an abrupt change of
slope is visible in the orange curves at m`` ' 2m�. One
would also see the kick feature in ACE (defined in Eq. 7)
plotted at the partonic level in the right panel of Fig. 4,
where the choice cos ✓0 = 0.596 sets the sm value to zero.
Once again the abrupt change of slope at m`` ' 2m�

may be seen in the orange curves.
In principle, the dm mass is resolvable for all our

models if the mediator mass is of the same order, a
task achievable with su�ciently high statistics, by shape-
fitting signals from both m`` and cos ✓CS spectra to var-
ious hypotheses.

III.4. Chirality

The relative chirality between the quarks and leptons
in the new physics amplitude, i.e. whether the model is
RR or RL, shows up in dilepton spectra in quite interesting
ways. (RR and LL, and separately RL and LR, yield similar
spectra.) We see a di↵erence in the pD

u
RL

and pD
u
RR

sig-
nals in the m`` spectrum in Fig. 2, though both exhibit
similar shapes. This is due to the di↵erence in projection
operators in the fermion chains: in pD

u
RL

(pDu
RR

), the
combination of PR and PL (PR and PR) picks the mass
(momentum) piece from the numerator of the �1 prop-
agator. When we turn to the pCS

u
RL

and pCS
u
RR

signals,
however, we find negligible di↵erence. This is because the
fermion chains are now di↵erent, always coming with the
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FIG. 9. Dilepton signals for the models in which dm couples to down quarks. The benchmark point chosen and the color code
of these plots is the same as in Sec. III. See Appendix A for more details.

eDpCSu,dRL
= 2D00 �

�
ŝ+ t̂

�
D13 .

2. Direct detection

At direct detection experiments, our dm behaves like a
Majorana or real scalar particle (see Sec. II). Here we pro-
vide the appropriate spin-independent per-nucleon scat-
tering cross sections, �SI.

a. Majorana DM (pDuRR, pD
u
RL, pD

d
RR, pD

d
RL)

We have

�SI =
4

⇡
µ2

�N |fN |
2 ,

where µ�N is the dm-nucleon (N = p, n) reduced mass,
and e↵ective coupling fN is given by [20]

fN
mN

= fqfTu +
3

4
(q2 + q̄2)gq �

8⇡

9↵s
fTGfG ,

with the Wilson coe�cients

fq =
m��2

8(m2

� �m2
�)

2
, (B5)

fG = �
↵sm��2

96⇡m2

�(m
2
� �m2

�)
2
, (B6)

and the coe�cients fTu(proton) = 0.023, fTu(neutron)
= 0.017, fTd(proton) = 0.032, fTd(neutron) = 0.041,
u2 = 0.22, ū2 = 0.034, d2 = 0.11, d̄2 = 0.036, gq = 4fq,
fTG(proton) = 0.925, fTG(neutron) = 0.922 [55, 57].

b. Real Scalar DM (pCSuRR, pCS
u
RL, pCS

d
RR, pCS

d
RL)

Here

�SI =
µ2

N

⇡

✓
fN
m�

◆2

,

with

fN
mN

= fqfTq +
3

4
(q2 + q̄2)gq. (B7)

The coe�cients on the right-hand side are the same as
before.
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• Bounds from 8 TeV:

Ωχh2 > 0.12
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FIG. 5. The bounds on our models at two di↵erent hierarchies between m� and m�. Bounds at 95% c.l. from the lhc are
obtained from measurements at 8 TeV and 20 fb�1; the orange (blue) curves depict dilepton bounds on the RR (RL) models, and
are solid (dashed) for mee (cos ✓CS) bounds; the purple regions are excluded by jets + met searches. The green curves are 90%
c.l. Xenon1T constraints on spin-independent scattering, and the red region leads to dm overabundance through freeze-out.
See text for further details.

�2

b =
NbinsX

i=1

(Ndi �Nbi)
2

Nbi + �2
sysi

, (9)

and locate the 95% c.l. bound at ��2
⌘ �2

s��2

b = 5.99.
Here the systematic errors �sysi are taken from [35, 39].

Our central findings are best understood by directly

comparing the right- and left-hand panels of Figs 5 and 6.
The relative behavior of these bounds is dictated by two
ingredients – (i) the PDFs: as the up quark has higher
parton densities in the proton than the down quark, one
expects stronger dilepton bounds for dm coupling to up
quarks for dm coupling to down quarks, and (ii) interfer-
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Ωχh2 > 0.12
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FIG. 6. The bounds on our models at two di↵erent hierarchies between m� and m�. Bounds at 95% c.l. from the lhc are
obtained from measurements at 8 TeV and 20 fb�1; the orange (blue) curves depict dilepton bounds on the RR (RL) models,
and are solid (dashed) for mee (cos ✓CS) bounds; the magenta curves depict jets + met constraints. The green curves are 90%
c.l. Xenon1T constraints on spin-independent scattering, and the red region leads to dm overabundance through freeze-out.
See text for further details.

ence e↵ects, or more precisely, the signal contribution of
the interference versus the squared box, i.e. d�int versus
d�� in Eq. (4). For example, for the models pD

u
RR

and
pD

u
RL

, the tree-level and box diagrams interfere destruc-
tively, resulting in a deficit of events with respect to the
sm for m`` < 2m�; this may be seen in Fig 2. (On the

other hand, the relative sign of the down quark’s electric
charge with respect to the up quark ensures that tree-box
interference in the case of dm coupling to down quarks
is constructive.) As this deficit occurs in the low mee

bins, where the event population is high, its contribu-
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• Prospect for 13 TeV:
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FIG. 7. The 95% c.l. reach of our models at the 13 TeV lhc with 100 fb�1. The color code is as in Fig. 5. The dashed blue
curves would exclude regions occupied by the blue dots.

is because the s-wave piece of complex scalar dm annihi-
lation is chirality suppressed, whereas that of Dirac dm
is not [4, 20]. At m� = 1.1 m� and m�  450 GeV,
spin-0 dm gives weaker bounds since the e�cient self-
annihilation of the colored fermion mediator drives the
co-annihilation mechanism in this region.

Our dilepton probes greatly complement direct detec-
tion searches as well. Limits from the latter are generally
strong when the mediator is near-degenerate with dm in

mass, as seen in the m� = 1.1m� plots. This is due to
the factor of (m2

� � m2
�)

�k in the cross sections, where
k = 4 (2) for spin-1/2 (spin-0) dm. The limit on spin-
1/2 dm is mostly insensitive to � at m� ' 600 GeV
due to our scaling of the scattering cross sections with
⌦�h2/0.12 / h�vi – the former/ �4 and the latter/ ��4

at large �, where co-annihilations with the mediators are
unimportant. The limit does vary with the coupling at
small �, where co-annihilations dominate. This asymp-
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FIG. 8. The 95% c.l. reach of our models at the 13 TeV lhc with 100 fb�1. The color code is as in Fig. 5.

totic behavior of the limit with respect to � allows our
dilepton probes to constrain our set-up better than di-
rect detection at m� & 600 GeV. On the other hand, the
direct detection limit does not asymptote as quickly for
spin-0 dm. This is because, as just mentioned, dm anni-
hilations are chirality-suppressed in the s-wave, allowing
co-annihilations to influence freeze-out even at large �.
As a result, direct detection limits dwarf all other con-
straints for spin-0 dm at m� = 1.1m�. The potency of
dilepton probes is better at higher m�. Due to the m�k

�

scaling, the limits weaken with m� so much as to dis-
appear from the m� = 2m� plots, allowing dilepons to
probe this region better.

Finally, in Figs 7 and 8 we show the future 95% c.l.
sensitivity of our dilepton probes at the 13 TeV lhc with
a luminosity of L = 300 fb�1. The color code is as in
Fig. 5. To obtain these sensitivities, we performed a �2

fit to the background, i.e. we set Ndi ! Nbi in Eq. (9),
assuming a systematic error of 2% and reusing our 8 TeV
lepton reconstruction e�ciencies. Our sensitivities im-
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Conclusions

• DM is one of the reasons that we need physics BSM.


• It is one that has some experimental evidence (although 
only gravitational)


• In models where DM couples to the SM one can use a 
mono-X channel to discover it….


• or use a cascade decay into DM (susy like…..)



• In this talk I have shown an alternative way of discovering 
DM using dilepton events


• If there are color and uncolor messengers (à la susy) one 
can produce dilepton via loops.


• Interference of those loops with the SM DY production 
can be the handle to discover new physics at the LHC.


• Angular correlations depend heavily on the spin of DM.


• The same approach can be use for LQ or Z’.


