Scalars 2023

Lepton flavor specific extended Higgs model

Based on 10.1103/PhysRevD.107.095001 [arXiv:2301.08641 [hep-ph]]

Bernardo Gonçalves

In collaboration with Matthew Knauss and Marc Sher

Outline

- Motivation
- The model (scalar sector, couplings, theoretical constraints)
- Benchmarks models
- The model without ($q \tau)$ - (μe) mixing
- The aligned model (constraints and signatures)
- Final remarks

Motivation

Taken from A portrait of the Higgs boson by the CMS experiment ten years after the discovery, Nature 607 (2022) 60

Muon-specific 2HDM (Abe, Sato, and Yagyu):

- The muon and the remaning fields couple to different Higgs doublets
- A Z_{4} symmetry makes the model free of tree-level FCNC and restricts the structure of Yukawa couplings
- Muon interactions of scalars can be substantially enhanced or supressed relative to those with tau leptons

Can the three leptonic generations couple to different Higgses?

Extending the muon-specific 2HDM

Our idea: each of the charged leptons couples to a different Higgs doublet

$$
\Phi_{e}+\Phi_{\mu}+\Phi_{\tau}
$$

Symmetry $\left(Z_{4}\right)_{e} \times\left(Z_{4}\right)_{\mu} \times\left(Z_{4}\right)_{\tau}:$ no tree-level FCNC and diagonal Yukawa matrix

	L_{ℓ}	ℓ_{R}	Φ_{ℓ}	Other fields
$\left(Z_{4}\right)_{\ell}$	i	i	-1	1

Simplest implementation: 4HDM in which the fourth Higgs couples to quarks Φ_{q}

> Lepton Flavor Specific Extended Higgs Model

The model: scalar sector

Fixing notation...
Scalar potential: $\quad V=V_{2}+V_{4}$

$$
\begin{array}{rlrl}
V_{2}=m_{q q}^{2} \Phi_{q}^{\dagger} \Phi_{q}+\ldots & V_{4} & =\lambda_{1}^{q}\left(\Phi_{q}^{\dagger} \Phi_{q}\right)^{2}+\ldots \\
& +\left[m_{q e}^{2}\left(\Phi_{q}^{\dagger} \Phi_{e}\right)+\ldots\right. & & +\lambda_{3}^{q e}\left(\Phi_{q}^{\dagger} \Phi_{q}\right)\left(\Phi_{e}^{\dagger} \Phi_{e}\right)+\ldots \\
& + \text { H.c. }] & & +\lambda_{4}^{q e}\left(\Phi_{q}^{\dagger} \Phi_{e}\right)\left(\Phi_{e}^{\dagger} \Phi_{q}\right)+\ldots \\
& & & +\frac{1}{2}\left[\lambda_{5}^{q e}\left(\Phi_{q}^{\dagger} \Phi_{e}\right)^{2}+\ldots+\text { H.c. }\right]
\end{array}
$$

The model: scalar sector

Scalar potential: $\quad V=V_{2}+V_{4}$

$$
\begin{aligned}
& V_{2}=m_{(\underline{q})}^{2} \Phi_{(9)}^{\dagger} \Phi_{(q)}+ \\
& +\left[m_{9 \mathfrak{9} \cap}^{2}\left(\Phi_{9}^{\dagger} \Phi_{\emptyset}\right)+\right. \\
& + \text { H.c.] } \\
& V_{4}=\lambda_{1}^{\natural}\left(\Phi_{9}^{\dagger} \Phi_{(q)}\right)^{2}+ \\
& +\lambda_{3}^{90}\left(\Phi_{9}^{\dagger} \Phi_{(G)}\right)\left(\Phi_{\varrho}^{\dagger} \Phi_{\ominus}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}\left[\lambda_{5}^{9 \theta}\left(\Phi_{9}^{\dagger} \Phi_{0}\right)^{2}+\ldots+\text { H.c. }\right]
\end{aligned}
$$

The model: scalar sector

Higgs doublets:

Fixing notation...

$$
\Phi_{i}=\binom{\phi_{i}^{+}}{\left(v_{i}+\phi_{i}+i \chi_{i}\right) / \sqrt{2}}, \quad(i=q, e, \mu, \tau)
$$

$$
\begin{aligned}
v_{q} & =v \cos \beta_{2} \cos \beta_{3} \cos \beta_{4} \\
v_{e} & =v \sin \beta_{2} \cos \beta_{3} \cos \beta_{4} \\
v_{\mu} & =v \sin \beta_{3} \cos \beta_{4} \\
v_{\tau} & =v \sin \beta_{4}
\end{aligned}
$$

Rotation to the Higgs basis

$$
\left(\begin{array}{c}
h_{0} \\
H_{1} \\
H_{2} \\
H_{3}
\end{array}\right)=\mathcal{O}_{\beta}\left(\begin{array}{c}
\phi_{q} \\
\phi_{e} \\
\phi_{\mu} \\
\phi_{\tau}
\end{array}\right) \quad \mathcal{O}_{\beta}=\left(\begin{array}{cccc}
c_{\beta_{2}} c_{\beta_{3}} c_{\beta_{4}} & s_{\beta_{2}} c_{\beta_{3}} c_{\beta_{4}} & s_{\beta_{3}} c_{\beta_{4}} & s_{\beta_{4}} \\
-s_{\beta_{2}} & c_{\beta_{2}} & 0 & 0 \\
-c_{\beta_{2}} c_{\beta_{3}} & -s_{\beta_{2}} s_{\beta_{3}} & c_{\beta_{3}} & 0 \\
-c_{\beta_{2}} c_{\beta_{3}} s_{\beta_{4}} & -s_{\beta_{2}} c_{\beta_{3}} s_{\beta_{4}} & -s_{\beta_{3}} s_{\beta_{4}} & c_{\beta_{4}}
\end{array}\right)
$$

The model: scalar sector

Rotations to the mass basis:

Fixing notation...

SCALAR SECTOR

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3} \\
h_{4}
\end{array}\right)=\mathcal{O}_{\alpha}\left(\begin{array}{l}
\phi_{q} \\
\phi_{e} \\
\phi_{\mu} \\
\phi_{\tau}
\end{array}\right)
$$

$$
\begin{aligned}
\mathcal{O}_{\alpha} & =\mathbf{R}_{34} \mathbf{R}_{24} \mathbf{R}_{23} \mathbf{R}_{14} \mathbf{R}_{13} \mathbf{R}_{12} \\
\mathbf{R}_{24} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{\alpha_{24}} & 0 & s_{\alpha_{24}} \\
0 & 0 & 1 & 0 \\
0 & -s_{\alpha_{24}} & 0 & c_{\alpha_{24}}
\end{array}\right)
\end{aligned}
$$

The model: scalar sector

Rotations to the mass basis:

PSEUDOSCALAR SECTOR

$$
\left(\begin{array}{c}
G^{0} \\
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)=\mathcal{O}_{\gamma} \mathcal{O}_{\beta}\left(\begin{array}{c}
\chi_{q} \\
\chi_{e} \\
\chi_{\mu} \\
\chi_{\tau}
\end{array}\right)
$$

Fixing notation...

The model: scalar sector

Rotations to the mass basis:
CHARGED SECTOR

$$
\left(\begin{array}{l}
G^{+} \\
H_{1}^{+} \\
H_{2}^{+} \\
H_{3}^{+}
\end{array}\right)=\mathcal{O}_{\delta} \mathcal{O}_{\beta}\left(\begin{array}{l}
\phi_{q}^{+} \\
\phi_{e}^{+} \\
\phi_{\mu}^{+} \\
\phi_{\tau}^{+}
\end{array}\right)
$$

Fixing notation...

The model: gauge couplings

$$
\begin{gathered}
\mathcal{L}_{\mathrm{k}}=\sum_{i=1}^{4}\left|D_{\mu} \Phi_{i}\right|^{2} \longrightarrow\left(\sum_{i=1}^{4} C_{i} h_{i}\right)\left(\frac{g}{2 c_{W}} m_{Z} Z_{\mu} Z^{\mu}+g m_{W} W_{\mu}^{-} W^{+\mu}\right) \\
\alpha_{1 j}=\beta_{j}
\end{gathered} \longrightarrow \begin{gathered}
C_{1}=1 \\
C_{k}=0, k, 4
\end{gathered} \quad, k \neq 1 .
$$

Alignment limit

The model: Yukawa couplings

$$
\begin{gathered}
\mathcal{L}_{Y}^{S}=-\sum_{f \in\{q, e, \mu, \tau\}} \frac{m_{f}}{v}\left(\xi_{h_{1}}^{f} \bar{f} f h_{1}+\xi_{h_{2}}^{f} \bar{f} f h_{2}+\xi_{h_{3}}^{f} \bar{f} f h_{3}+\xi_{h_{4}}^{f} \bar{f} f h_{4}\right) \\
\mathcal{L}_{Y}^{P}=-\sum_{f \in\{q, e, \mu, \tau\}}\left(-i \frac{m_{f}}{v}\right)\left(\xi_{A_{1}}^{f} \bar{f} \gamma_{5} f A_{1}+\xi_{A_{2}}^{f} \bar{f} \gamma_{5} f A_{2}+\xi_{A_{3}}^{f} \bar{f} \gamma_{5} f A_{3}\right) \\
\longrightarrow \begin{array}{c}
\xi_{h_{j}}^{q}=\frac{\mathcal{O}_{\alpha j, 1}}{\hat{v}_{1}}, \quad \ldots \\
\xi_{A_{j}}^{q}=\frac{\left(\mathcal{O}_{\gamma} \mathcal{O}_{\beta}\right)_{j, 1}}{\hat{v}_{1}}, \\
\ldots \\
\hat{v}_{i} \equiv v_{i} / v
\end{array}
\end{gathered}
$$

The model: Yukawa couplings

$$
\begin{gathered}
\mathcal{L}_{Y}^{S}=-\sum_{f \in\{q, e, \mu, \tau\}} \frac{m_{f}}{v}\left(\xi_{h_{1}}^{f} \bar{f} f h_{1}+\xi_{h_{2}}^{f} \bar{f} f h_{2}+\xi_{h_{3}}^{f} \bar{f} f h_{3}+\xi_{h_{4}}^{f} \bar{f} f h_{4}\right) \\
\mathcal{L}_{Y}^{P}=-\sum_{f \in\{q, e, \mu, \tau\}}\left(-i \frac{m_{f}}{v}\right)\left(\xi_{A_{1}}^{f} \bar{f} \gamma_{5} f A_{1}+\xi_{A_{2}}^{f} \bar{f} \gamma_{5} f A_{2}+\xi_{A_{3}}^{f} \bar{f} \gamma_{5} f A_{3}\right) \\
\longrightarrow \begin{array}{c}
\xi_{h_{j}}=\frac{\mathcal{O}_{\alpha j(\mathbb{D}}}{\hat{v}_{\mathbb{1}}}, \ldots \\
\longrightarrow \xi_{A_{j}}^{(\mathcal{Q}}=\frac{\left(\mathcal{O}_{\gamma} \mathcal{O}_{\beta}\right)_{j \mathbb{D}}}{\hat{v}_{\mathbb{1}}}, \quad \ldots \\
\hat{v}_{i} \equiv v_{i} / v
\end{array}
\end{gathered}
$$

The model: Yukawa couplings

$$
\begin{aligned}
& \xi_{H_{j}}^{q L R}=\frac{\left(\mathcal{O}_{\delta} \mathcal{O}_{\beta}\right)_{j, 1}}{\hat{v}_{1}}, \\
& \hat{v}_{i} \equiv v_{i} / v
\end{aligned}
$$

The model: Yukawa couplings

$$
\begin{aligned}
& \hat{S}_{H_{j}}^{\left(\mathcal{H}_{j} R\right.}=\frac{\left(\mathcal{O}_{\delta} \mathcal{O}_{\beta}\right)_{i \mathbb{D}}}{\hat{\mathcal{O}}_{\mathrm{D}}}, \\
& \hat{v}_{i} \equiv v_{i} / v
\end{aligned}
$$

General Yukawa couplings too cumbersome to be shown here

The model: theoretical constraints

- Boundedness from below criteria

4. CRITERIA FOR COPOSITIVE MATRICES OF ORDER FOUR

Let A be a matrix of the form

$$
A=\left(\begin{array}{llll}
a_{1} & a_{12} & a_{13} & a_{14} \tag{4.1}\\
a_{12} & a_{2} & a_{23} & a_{24} \\
a_{13} & a_{23} & a_{3} & a_{34} \\
a_{14} & a_{24} & a_{34} & a_{4}
\end{array}\right)
$$

For all neutral directions

According to the signs of the off-diagonal elements of A, we consider eight different cases. Six of these cases are contained in the following theorem.

From Li Ping and Feng Yu Yu, Criteria for copositive matrices of order four, Linear Algebra and its Applications, Volume 194 (1993), doi.org/10.1016/0024-3795(93)90116-6.

The model: theoretical constraints

- Boundedness from below criteria
- Oblique parameters - arXiv:0802.4353 [hep-ph]
- Quartic couplings less than 4π

Benchmark models

- The model without $(q \tau)-(\mu e)$ mixing
- The aligned model

The model without $(q \tau)-(\mu e)$ mixing

4×4 is broken into two 2×2

Upper $\mathbf{2} \times \mathbf{2}$ very similar to lepton-specific 2HDM

$$
\begin{gathered}
\mu_{X} \equiv \frac{\sigma(p p \rightarrow H) \mathrm{BR}(H \rightarrow X)}{\sigma(p p \rightarrow H)_{\mathrm{SM}} \mathrm{BR}(H \rightarrow X)_{\mathrm{SM}}} \\
X=g g, \mu \mu, \tau \tau, \bar{c} c, \bar{b} b, \bar{t} t, \gamma \gamma, \gamma Z, W W, Z Z
\end{gathered}
$$

Allowed regions for different values of $\left(v_{q}^{2}+v_{\tau}^{2}\right)^{1 / 2} / v$

The model without $(q \tau)-(\mu e)$ mixing

Much of the VEV is saturated by $\boldsymbol{v}_{\boldsymbol{q}}$ and $\boldsymbol{v}_{\boldsymbol{\tau}}$

Phenomenologically unacceptable (additional massless scalars, the coupling to the muon vanishes)

Allowed regions for different values of $\left(v_{q}^{2}+v_{\tau}^{2}\right)^{1 / 2} / v$

The aligned model

$$
\alpha_{1 j}=\beta_{j}
$$

The aligned model

$$
\begin{aligned}
& \lambda_{1}^{i}=\frac{1}{2 v_{i}^{3}}\left(v_{i} M_{s, i i}^{2}+\sum_{j \neq i} v_{j} m_{i j}^{2}\right) \\
& \lambda_{3}^{i j}=\frac{1}{v_{i} v_{j}}\left(M_{s, i j}^{2}-2 M_{c, i j}^{2}+m_{i j}^{2}\right) \\
& \lambda_{4}^{i j}=\frac{1}{v_{i} v_{j}}\left(2 M_{c, i j}^{2}-M_{p, i j}^{2}-m_{i j}^{2}\right) \\
& \lambda_{5}^{i j}=\frac{1}{v_{i} v_{j}}\left(M_{p, i j}^{2}-m_{i j}^{2}\right)
\end{aligned}
$$

The aligned model

- Bounded-from-below conditions
- Oblique parameters
- Quartic couplings and Yukawa couplings less than 4π
- Charged Higgs masses must exceed 80 GeV
- Higgs diphoton decay
- B and K meson oscillations
- b $\rightarrow \boldsymbol{s} \boldsymbol{\gamma}$ constraints
- Searches for heavy neutral and charged Higgs bosons at the LHC

The aligned model

Searches for heavy neutral Higgs bosons decaying into leptons, which generally focus on tauonic decays, should also study muonic and electronic decays

The aligned model

There are more points in the region above 180 GeV since below that mass a much higher proportion of points are experimentally excluded

Concluding remarks

- We have studied a 4HDM in which one scalar doublet couples to quarks and the other three couple to the electron, muon and tau families, respectively
- Dielectron and dimuon decays of the extra lightest neutral scalar can be much larger than expected
- An interesting signature arises from vector boson fusion into two Higgs bosons, each of which decays into an electron or muon pair

Concluding remarks

- We have studied a 4HDM in which one scalar doublet couples to quarks and the other three couple to the electron, muon and tau families, respectively
- Dielectron and dimuon decays of the extra lightest neutral scalar can be much larger than expected
- An interesting signature arises from vector boson fusion into two Higgs bosons, each of which decays into an electron or muon pair

Funded through SFRH/BD/139165/2018 and CERN/FIS-PAR/0025/2021

REPÚBLICA PORTUGUESA

C(1)MPETE
2020

Backup slides

Scalar benchmark points	S 1	S 2
$\beta_{2} / \pi, \beta_{3} / \pi, \beta_{4} / \pi$	$0.05,0.16,0.18$	$0.04,0.14,0.21$
$\alpha_{23} / \pi, \alpha_{24} / \pi, \alpha_{34} / \pi$	$-0.09,-1.00,-0.70$	$-0.02,-0.05,0.10$
$\gamma_{23} / \pi, \gamma_{24} / \pi, \gamma_{34} / \pi$	$0.50,0.59,0.80$	$0.16,0.52,0.39$
$\delta_{23} / \pi, \delta_{24} / \pi, \delta_{34} / \pi$	$0.08,-0.26,-0.96$	$0.62,-0.93,-0.95$
$m_{h_{2}}, m_{h_{3}}, m_{h_{4}}(\mathrm{GeV})$	$269,396,483$	$175,359,360$
$m_{A_{1}}, m_{A_{2}}, m_{A_{3}}(\mathrm{GeV})$	$439,454,484$	$265,351,369$
$m_{H_{1}^{ \pm}}, m_{H_{2}^{+}}, m_{H_{3}^{ \pm}}(\mathrm{GeV})$	$438,441,443$	$289,352,370$
$m_{q e}^{2}, m_{q \mu}^{2}, m_{q \tau}^{2}\left(\mathrm{GeV}^{2}\right)$	$-17700,71700,-340000$	$16000,-34600,-168000$
$m_{e \mu}^{2}, m_{e \tau}^{2}, m_{\mu \tau}^{2}\left(\mathrm{GeV}^{2}\right)$	$-18600,20700,-53600$	$14000,-31200,-57400$
$\operatorname{BR}\left(h_{2} \rightarrow e e\right)$	2.72×10^{-3}	1.63×10^{-4}
$\operatorname{BR}\left(h_{2} \rightarrow \mu \mu\right)$	4.68×10^{-1}	7.85×10^{-6}
$\operatorname{BR}\left(h_{2} \rightarrow \tau \tau\right)$	1.22×10^{-1}	7.42×10^{-1}

Backup slides

Charged benchmark points	C 1	C 2
$\beta_{2} / \pi, \beta_{3} / \pi, \beta_{4} / \pi$	$0.05,0.05,0.09$	$0.10,0.16,0.11$
$\alpha_{23} / \pi, \alpha_{24} / \pi, \alpha_{34} / \pi$	$0.09,0.54,0.34$	$0.20,0.88,0.72$
$\gamma_{23} / \pi, \gamma_{24} / \pi, \gamma_{34} / \pi$	$-0.04,0.66,0.60$	$0.68,0.50,-0.52$
$\delta_{23} / \pi, \delta_{24} / \pi, \delta_{34} / \pi$	$-0.98,0.00,-0.36$	$1.00,0.00,0.77$
$m_{h_{2}}, m_{h_{3}}, m_{h_{4}}(\mathrm{GeV})$	$127,187,208$	$180,237,240$
$m_{A_{1}}, m_{A_{2}}, m_{A_{3}}(\mathrm{GeV})$	$131,179,244$	$161,172,173$
$m_{H_{1}^{ \pm}}, m_{H_{2}^{ \pm}}, m_{H_{3}}(\mathrm{GeV})$	$164,172,229$	$158,181,234$
$m_{q e}^{2}, m_{q \mu}^{2}, m_{q \tau}^{2}\left(\mathrm{GeV}^{2}\right)$	$-14800,-17400,6210$	$57000,-127000,-15100$
$m_{e \mu}^{2}, m_{e}^{2}, m_{\mu \tau}^{2}\left(\mathrm{GeV}^{2}\right)$	$5880,22100,9060$	$-75600,-9570,81300$
$\operatorname{BR}\left(H_{1}^{ \pm} \rightarrow e^{ \pm} \nu_{e}\right)$	2.24×10^{-3}	1.68×10^{-2}
$\operatorname{BR}\left(H_{1}^{ \pm} \rightarrow \mu^{ \pm} \nu_{\mu}\right)$	5.36×10^{-1}	6.91×10^{-3}
$\operatorname{BR}\left(H_{1}^{ \pm} \rightarrow \tau^{ \pm} \nu_{\tau}\right)$	4.55×10^{-1}	5.23×10^{-1}

