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U(Nc) symmetry+ (classi.) Scale Invariance.

A slight extension to embed:

TheScale invariance is broken by anomaly. 
                                                                            Callan, ’70; Symanzik, ’70
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The massless theory is free of IR divergences off-shell. 
                                                                                                            Loewenstein+Zimmermann, ’76

The scale invariance can  protect the Higgs mass 
from the fine tuning problem. 

                                                                                                            Bardeen, ’95



We can use Ls to effectively  
describe dynamical scale symmetry breaking  
caused by the SU(Nc) invariant condensation 

of the scalar bi-linear in the confinement phase:
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CLAIM:

Ls is an effective Lagrangian for  
the strongly interacting non-abelian GT

(J.K and M.Yamada,PRD ’16)
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At low energy:

The effective theory for chiral symmetry breaking is:
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Input : vh = 246 GeV , mh = 126 GeV , ΩDMh
2 = 0.120± 0.005
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A very brief review on 
Nambu-Jona-Lasinio (NJL) model

(4-fermi)
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The relevant global symmetry

(4+6 fermi)

Finally

* mu problem, Kim Nieles

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg

potential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

U(1)A ! Z
6

m⌘̃ > m
˜K > m⇡̃
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n2
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First of all I would like to thank you for inviting me. The talk
is based on the papers here. This one will be published within
a week or so. I will talk about Nambu-Goldstone Dark Matter
in a Scale Invariant Bright Hidden sector.

The basic idea behind is very similar to that of technicolor,
because I would like to generate the SM scale through dynamical
chiral symmetry breaking in a hidden sector, as you will see. I
gave basically the same talk in Okinawa last month, so for Oda
san it may be boring. Sorry.
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Eqs of motion:

Auxiliary fields (mean fields)

Input : vh = 246 GeV , mh = 126 GeV , ΩDMh
2 = 0.120± 0.005

S†S

⟨(S†
iSj)⟩ = ⟨

Nc∑

c=1
Sc†
i S

c
j⟩ ∝ δij

Nc = #of the hidden colors

i, j = 1, . . . , Nf

LQCD = −1

2
trF 2 + iψ̄iγ

µDµψi

⟨ψ̄iψj⟩ = ⟨
Nc∑

c=1
ψ̄c
iψ

c
j⟩ ∝ δij

LNJL = iψ̄iγ
µ∂µψi+2G Φ†Φ+. . . = iψ̄iγ

µ∂µψi+G
[
(ψ̄λaψ)2 − (ψ̄γ5λ

aψ)2
]
+. . .

LNJL = iψ̄iγ
µ∂µψi −

1

4G
(σaσa + πaπa)− ψ̄λaσaψ − iψ̄γ5π

aλaψ

σa = −2G ψ̄λaψ , πa = −i2G ψ̄γ5λ
aψ

Φij = ψ̄i(1− γ5)ψj =
1

2

N2
f−1∑

a=0
λaji ψ̄λ

a(1− γ5)ψ

U(3)L × U(3)R

SU(3)V × U(1)V × Z6

SU(3)L × SU(3)R → SU(3)V

7



Assume SU(Nc) xSU(Nf) invariant condensation:

Integrate out        to get   the effective potential:ψ
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(with 4 fermi)
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First of all I would like to thank you for inviting me. The talk
is based on the papers here. This one will be published within
a week or so. I will talk about Nambu-Goldstone Dark Matter
in a Scale Invariant Bright Hidden sector.

The basic idea behind is very similar to that of technicolor,
because I would like to generate the SM scale through dynamical
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Figure 3. Schematic figure of the Columbia phase diagram in 3-flavour QCD at
µB = 0 on the plane with the light and heavy quark masses. The U(1)A symmetry
restoration is not taken into account. Near the left-bottom corner the chiral
phase transition is of first order and turns to smooth crossover as mud and/or
ms increase. The right-top corner indicates the deconfinement phase transition
in the pure gluonic dynamics.

tricritical point), so that the critical exponents take the classical (mean-field) values
[97], which is confirmed in numerical studies of the chiral model [98].

4.2. Lattice QCD simulations

Although the critical properties expected from the Ginzburg-Landau-Wilson analysis
discussed above are expected to be universal, the quantities such as the critical
temperature and the equation of state depend on the details of microscopic dynamics.
In QCD, only a reliable method known for microscopic calculation is the lattice-
QCD simulation in which the functional integration is carried out on the space-time
lattice with a lattice spacing a and the lattice volume V by the method of importance
sampling. In lattice-QCD simulations there are at least two extrapolations required
to obtain physical results; the extrapolation to the continuum limit (a ! 0) and the
extrapolation to the thermodynamic limit (V ! 1). Therefore, lattice results receive
not only statistical errors due to the importance sampling but systematic errors due
to the extrapolations also.

For nearly massless fermions in QCD, there is an extra complication to reconcile
chiral symmetry and lattice discretization; the Wilson fermion and the staggered
fermion have been the standard ways to define light quarks on the lattice, while
the domain-wall fermion and the overlap fermion recently proposed have more solid
theoretical ground although the simulation costs are higher. For various applications
of lattice-QCD simulations to the system at finite T and µB, see a recent review [39].

Here we mention only two points relevant to the discussions below: (i) The
thermal transition for physical quark masses is likely to be crossover as indicated
by a star-symbol in figure 3. This is based on the finite-size scaling analysis using
staggered fermion [38]. Confirmation of this result by other fermion formalisms is
necessary, however. (ii) The (pseudo)-critical temperature Tpc with di↵erent types of
fermions and with di↵erent lattice spacings are summarized in figure 4. In view of
these data with error bars, we adopt a conservative estimate at present; Tpc = 150–
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First of all I would like to thank you for inviting me. The talk
is based on the papers here. This one will be published within
a week or so. I will talk about Nambu-Goldstone Dark Matter
in a Scale Invariant Bright Hidden sector.

The basic idea behind is very similar to that of technicolor,
because I would like to generate the SM scale through dynamical
chiral symmetry breaking in a hidden sector, as you will see. I
gave basically the same talk in Okinawa last month, so for Oda
san it may be boring. Sorry.
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Back to the scalar model
with U(N  ) flavor symmetry.

The color indices are suppressed.
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U(N  ) flavor symmetry and 
(anomalous) scale invariance, 
which is dynamically broken 
by 

The  global symmetry.

U(N   ) flavor symmetry and 
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At the classical level:

At the quantum  level:

The guiding principle: 
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⟨S†
iSj⟩ ̸= 0 with ⟨Si⟩ = 0 .

mDM [TeV] σSI [cm
2]
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U(1)A
Z6

χ =
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∂mu
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)
− λ
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φ4

LS = ∂µS
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UNIQUE !

It remains to show:  
Scale invariance is dynamically broken.  
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at low energy
U(Nf)+classi. Scale Invariance



1 Introduce the auxiliary field such that:

2 Integrate out the fluctuation of S to get:
= M2(S̄†

i S̄i) + λH(H
†H)2 −Nf (NfλS + λ′

S)f
2 +

NcNf

32π2
M4 ln

M2

Λ2
H

, (17)

where the divergence 1/ϵ̄ was removed by renormalization of the coupling constants in the

MS scheme and ΛH = µe3/4 is the scale at which the quantum correction vanishes if M =

ΛH . Note here that the scale ΛH is generated by quantum effect in the classically scale

invariant effective theory (3) and becomes the origin of the electroweak scale as it will be

seen below.

The minima of the effective potential (17) can be obtained from the solution of the gap

equations3

0 =
∂

∂S̄a
i

VMFA =
∂

∂f
VMFA =

∂

∂Hl
VMFA (l = 1, 2). (18)

The first equation (18) yields ⟨S̄a
i ⟩⟨M2⟩ = 0, which is satisfied in the following three cases:

(i) ⟨S̄a
i ⟩ ̸= 0 and ⟨M2⟩ = 0; (ii) ⟨S̄a

i ⟩ = 0 and ⟨M2⟩ = 0; (iii) ⟨S̄a
i ⟩ = 0 and ⟨M2⟩ ̸= 0.

The case (i) corresponds to the end-point solution [99] in which the effective potential has

a flat direction, i.e., Veff = 0 for f = H = 0. The gap equations in the case (i) imply the

relation ⟨f⟩ = 2λH/NfλHS⟨H†H⟩, and the effective potential at the minimum vanishes, i.e.,

⟨VMFA⟩ = 0 for an arbitrary value of S̄. In the case (ii) ⟨VMFA⟩ = 0 follows trivially. In the

case (iii), using the other gap equations, we obtain

|⟨H⟩|2 = v2h
2

=
NfλHS

G
Λ2

H exp

(
32π2λH

NcG
− 1

2

)
, ⟨f⟩ = f0 =

2λH

NfλHS
|⟨H⟩|2, (19)

⟨M2⟩ = M2
0 =

G

NfλHS
|⟨H⟩|2 (20)

at the minimum, where G ≡ 4NfλHλS−Nfλ2
HS+4λHλ′

S. The value of the effective potential

at this minimum is given by

⟨VMFA⟩ = −NcNf

64π2
Λ4

H exp

(
64π2λH

NcG
− 1

)
< 0. (21)

We therefore conclude that the case (iii) corresponds to the absolute minimum of the effective

potential (17) as far as G > 0 is satisfied. The Higgs mass at this level of approximation is

calculated to be

m2
h0 = |⟨H⟩|2

(
16λ2

H(NfλS + λ′
S)

G
+

NcNfλ2
HS

8π2

)
. (22)

3 A similar potential problem has been studied in [96–99]. But they did not study the classical scale

invariant case in detail, and moreover no coupling to the SM was introduced.
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Observable:
• Spectrum of the energy density of GW ΩGW(ν)
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• Frequency of GW ν [Hz]
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FIG. 2. Left: The scale phase transition for case (i), in which the hidden sector is disconnected from

the SM. The (dimensionless) critical temperature is TS/ΛH ≃ 7.0. Right: The (dimensionless) potential

Veff/Λ4
H against f1/2/ΛH for T/ΛH = 7.1 (red dashed), TS/ΛH (black), 6.9 (green dash-dotted). The

potential energy density at the origin is subtracted from Veff so that the form of the potential for different

temperatures can be compared.

Finally, the ring contribution from the gauge bosons is [63]

VRING= − T

12π

(
2a3/2g +

1

2
√
2

(
ag + cg − [(ag − cg)

2 + 4b2g]
1/2
)3/2

+
1

2
√
2

(
ag + cg + [(ag − cg)

2 + 4b2g]
1/2
)3/2 − 1

4
[g2h2]3/2 − 1

8
[(g2 + g′2)h2]3/2

)
, (36)

where

ag =
1

4
g2h2 +

11

6
g2T 2, bg = −1

4
gg′h2 , cg =

1

4
g′2h2 +

11

6
g′2T 2. (37)

The critical temperatures of the scale phase and EW phase transitions (which we denote by

TS and TEW, respectively) can be different. If TS and TEW are distant from each other, two

phase transitions cannot influence each other much. In the case that they are close or equal,

i.e. TC ≡ TS = TEW, two phase transitions can influence each other. In fact, depending on

the choice of the parameter values, these different cases can be realized in our model. Below

we consider some representative examples.

(i) Scale phase transition with Nf = 1, Nc = 6

First we consider the case with λHS = 0, i.e., no connection between the hidden sector and

the SM sector. We choose:

Nf = 1, Nc = 6, λS + λ′
S = 2.083, (38)

Scale Phase Transition 
 is 1st order.

T

At finite temperature

J.K and M.Yamada,PTEP ’15 
See also Bardeen+Moshe, ’83;

T > Tc

T <  Tc



Application: Couple to the SM.

* mu problem, Kim Nieles

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg

potential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

U(1)A ! Z
6

 ̄ H†H

m⌘̃ > m
˜K > m⇡̃

< v� >' 10�5 GeV�2 >> 10�9 GeV�2

n2

f � 1

1

SMHidden  
sector

J.Kubo and M. Yamada,
PRD93 (2016) 075016;
PTEP (2015 ) 093B01. 

point represents the wide region of the parameter space, which is consistent with the dark

matter (DM) phenomenology. (In the model we will consider there exists a DM candidate

due to an unbroken flavor symmetry in the hidden sector.) In this region of the parameter

space the scale phase transition is strongly first-order.

In section IV we will calculate the spectrum of the corresponding GW background. There

are three production mechanisms of GWs at a strong first-oder phase transition, in which

the bubble nucleation grows and the GW is produced; collisions of bubble walls Ωcoll [73? –

78], magnetohydrodynamic (MHD) turbulence ΩMHD [79–85] and also sound waves Ωsw after

the bubble wall collisions [86–89]. Using the formulas given in these papers and especially

in [66], we will compute these individual contributions to the GW background spectrum

for a set of the benchmark parameters and find that Ωcoll and ΩMHD are several orders of

magnitude smaller than Ωsw. Finally we will compare our result with the sensitivity of

various GW experiments. We will find that the scale phase transition caused by the scalar-

bilinear condensation can be strong enough to produce the GW background that can be

observed by DECIGO [90].

Sect. V is devoted to a summary, and in the appendix we compute the field renormaliza-

tion factor.

II. THE BASIC IDEA AND THE PATH-INTEGRAL APPROACH

We consider a classical scale invariant extension of the SM, which has been studied in

[58, 59]. The basic assumption there is that the origin of the EW scale is a scalar-bilinear

condensation, which forms due a strong non-abelian gauge interaction in a hidden sector and

triggers the EW symmetry breaking through a Higgs portal coupling. The hidden sector is

described by an SU(Nc) gauge theory with the scalar fields Sa
i (a = 1, . . . , Nc, i = 1, . . . , Nf )

in the fundamental representation of SU(Nc). Accordingly, the total Lagrangian is given by

LH = −1

2
trF 2 + ([DµSi]

†DµSi)− λ̂S(S
†
iSi)(S

†
jSj)

− λ̂′
S(S

†
iSj)(S

†
jSi) + λ̂HS(S

†
iSi)H

†H − λH(H
†H)2 + L′

SM, (1)

where DµSi = ∂µSi − igHGµSi, Gµ is the matrix-valued SU(Nc) gauge field, and the SM

Higgs doublet field is denoted by H (the parenthesis stands for SU(Nc) invariant products.).

The last term, L′
SM, contains the SM gauge and Yukawa interactions. Note that the Higgs

3

Higgs portal

S†S
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First of all I would like to thank you for inviting me. The talk
is based on the papers here. This one will be published within
a week or so. I will talk about Nambu-Goldstone Dark Matter
in a Scale Invariant Bright Hidden sector.

The basic idea behind is very similar to that of technicolor,
because I would like to generate the SM scale through dynamical
chiral symmetry breaking in a hidden sector, as you will see. I
gave basically the same talk in Okinawa last month, so for Oda
san it may be boring. Sorry.
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When preparing my talk in Okinawa I accidentally found an ar-
ticle by Frank Wilczek in two issues of Physics Today 1999 and
2000, with the title Mass without Mass. This is the first issue
appeared in 1999. At the beginning he said that the phrase
”Mass without mass” came from Wheeler. Wheeler is a famous
physicist in Gravity. Using this phrase Wheeler expresses his
hope that the fundamental equations of physics can explain the
origin of mass sometime. It was 1962, just after the discovery of
dynamical symmetry breaking. I do not know whether Wheeler
knew the discovery of dynamical symmetry breaking. As you
know dynamical symmetry breaking can create mass from noth-
ing.
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appeared in 1999. At the beginning he said that the phrase
”Mass without mass” came from Wheeler. Wheeler is a famous
physicist in Gravity. Using this phrase Wheeler expresses his
hope that the fundamental equations of physics can explain the
origin of mass sometime. It was 1962, just after the discovery of
dynamical symmetry breaking. I do not know whether Wheeler
knew the discovery of dynamical symmetry breaking. As you

1

No mass term
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* Higgs mass

= M2(S̄†
i S̄i) + λH(H

†H)2 −Nf (NfλS + λ′
S)f

2 +
NcNf

32π2
M4 ln

M2

Λ2
H

, (17)

where the divergence 1/ϵ̄ was removed by renormalization of the coupling constants in the

MS scheme and ΛH = µe3/4 is the scale at which the quantum correction vanishes if M =

ΛH . Note here that the scale ΛH is generated by quantum effect in the classically scale

invariant effective theory (3) and becomes the origin of the electroweak scale as it will be

seen below.

The minima of the effective potential (17) can be obtained from the solution of the gap

equations3

0 =
∂

∂S̄a
i

VMFA =
∂

∂f
VMFA =

∂

∂Hl
VMFA (l = 1, 2). (18)

The first equation (18) yields ⟨S̄a
i ⟩⟨M2⟩ = 0, which is satisfied in the following three cases:

(i) ⟨S̄a
i ⟩ ̸= 0 and ⟨M2⟩ = 0; (ii) ⟨S̄a

i ⟩ = 0 and ⟨M2⟩ = 0; (iii) ⟨S̄a
i ⟩ = 0 and ⟨M2⟩ ̸= 0.

The case (i) corresponds to the end-point solution [99] in which the effective potential has

a flat direction, i.e., Veff = 0 for f = H = 0. The gap equations in the case (i) imply the

relation ⟨f⟩ = 2λH/NfλHS⟨H†H⟩, and the effective potential at the minimum vanishes, i.e.,

⟨VMFA⟩ = 0 for an arbitrary value of S̄. In the case (ii) ⟨VMFA⟩ = 0 follows trivially. In the

case (iii), using the other gap equations, we obtain

|⟨H⟩|2 = v2h
2

=
NfλHS

G
Λ2

H exp

(
32π2λH

NcG
− 1

2

)
, ⟨f⟩ = f0 =

2λH

NfλHS
|⟨H⟩|2, (19)

⟨M2⟩ = M2
0 =

G

NfλHS
|⟨H⟩|2 (20)

at the minimum, where G ≡ 4NfλHλS−Nfλ2
HS+4λHλ′

S. The value of the effective potential

at this minimum is given by

⟨VMFA⟩ = −NcNf

64π2
Λ4

H exp

(
64π2λH

NcG
− 1

)
< 0. (21)

We therefore conclude that the case (iii) corresponds to the absolute minimum of the effective

potential (17) as far as G > 0 is satisfied. The Higgs mass at this level of approximation is

calculated to be

m2
h0 = |⟨H⟩|2

(
16λ2

H(NfλS + λ′
S)

G
+

NcNfλ2
HS

8π2

)
. (22)

3 A similar potential problem has been studied in [96–99]. But they did not study the classical scale

invariant case in detail, and moreover no coupling to the SM was introduced.
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We therefore conclude that the case (iii) corresponds to the absolute minimum of the effective
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NJL Our approach
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invariance and ΛB = e3/4µ, where the divergence is absorbed
into λ.

NcλS
8π2

ln
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⎦ = 1− NcλS
16π2
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Anomalous
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Since U(Nf) is unbroken, 
        is stable and can be a DM candidate.

 Dark Matter

Veff(σ) = 3
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⎝ σ̂
2
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− 3 I(σ̂)
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Hashino-Kanemura-Orisaka bound



 Phase Transitions (PT) 

Two order parameters:

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg

potential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

*In between

< h > , < S > , < � >

y = 0.0052 ,�H = 0.13 (1)

�HS = 0.01 , �S = 0.19 (2)

mh = 126 GeV

⌦h2 <⇠ 0.12

2mDM ' mS

1

EWPT Scale PT

EW Baryogenesis Gravitational wave BG
Hogan,`83; Witten,`84;  ....

Kuzmin+Rubakov+Shaposhnikov,`85; 
Klinkhamer+Manton,`84;  ...

22

See J.K+Yamada,’16
for the present model.
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FIG. 2. Left: The scale phase transition for case (i), in which the hidden sector is disconnected from

the SM. The (dimensionless) critical temperature is TS/ΛH ≃ 7.0. Right: The (dimensionless) potential

Veff/Λ4
H against f1/2/ΛH for T/ΛH = 7.1 (red dashed), TS/ΛH (black), 6.9 (green dash-dotted). The

potential energy density at the origin is subtracted from Veff so that the form of the potential for different

temperatures can be compared.

Finally, the ring contribution from the gauge bosons is [63]

VRING= − T

12π

(
2a3/2g +

1

2
√
2

(
ag + cg − [(ag − cg)

2 + 4b2g]
1/2
)3/2

+
1

2
√
2

(
ag + cg + [(ag − cg)

2 + 4b2g]
1/2
)3/2 − 1

4
[g2h2]3/2 − 1

8
[(g2 + g′2)h2]3/2

)
, (36)

where

ag =
1

4
g2h2 +

11

6
g2T 2, bg = −1

4
gg′h2 , cg =

1

4
g′2h2 +

11

6
g′2T 2. (37)

The critical temperatures of the scale phase and EW phase transitions (which we denote by

TS and TEW, respectively) can be different. If TS and TEW are distant from each other, two

phase transitions cannot influence each other much. In the case that they are close or equal,

i.e. TC ≡ TS = TEW, two phase transitions can influence each other. In fact, depending on

the choice of the parameter values, these different cases can be realized in our model. Below

we consider some representative examples.

(i) Scale phase transition with Nf = 1, Nc = 6

First we consider the case with λHS = 0, i.e., no connection between the hidden sector and

the SM sector. We choose:

Nf = 1, Nc = 6, λS + λ′
S = 2.083, (38)

13

where we will use the same Nf and Nc as well as the same parameter values for λS and λ′
S

when discussing case (ii) with the SM connected. (If Nf = 1, only the linear combination

λS + λ′
S is an independent coupling.) In Fig. 2 (left) we show ⟨f⟩1/2/T against T/ΛH . We

see from the figure that the scale phase transition is first order with TS/ΛH ≃ 7.0. The

right panel shows the form of the potential for T/ΛH = 7.1 (red dashed), TS/ΛH (black),

6.9 (green dash-dotted). As we will see below, the strong first-order scale phase transition

in the hidden sector can infect the EW phase transition.

The existence of the first-order phase transition observed here, was predicted in [71]. In

our analysis we have assumed (and will throughout assume) that ⟨Sa
i ⟩ = 0. However, within

the framework of the effective theory (even if we assume classical scale invariance), there is

no reason to prefer ⟨f⟩ = ⟨Sa
i ⟩ = 0 to the flat direction with ⟨Sa

i ⟩ ̸= 0 [71] (mentioned at

the end of Sect. III) at T > TS. We discard this problem here, because we assume that the

local SU(Nc) gauge symmetry of (1) remains unbroken even at T > TS.

(ii) Scale and EW phase transitions at TC ≡ TS = TEW

Now we couple the hidden sector with the SM sector. We use the same parameter values as

those given in (38) along with

λHS = 0.296, λH = 0.208. (39)

The input parameters (38) with (39) yield M = 0.410 TeV, mσ = 0.796 TeV, ΛH =

0.019 TeV, and mh = 0.125 TeV. 6 In Fig. 3 we show ⟨f⟩1/2/T (red) and ⟨h⟩/T (blue)

against T , and we can see that the scale and EW phase transitions occur at the same critical

temperature TC ≡ TS = TEW ≃ 0.135 TeV, where the dimensionless critical temperature

TC/ΛH ≃ 7.0 is basically the same as that of case (i) with the SM decoupled. This shows

that the strong first-order scale phase transition in the hidden sector can indeed infect the

EW phase transition.

We next show the form of the potential at T = TC. The curves in Fig. 4 (left) are the

intersections of the potential Veff with the surfaces defined by

0 = h− kf 1/2 (40)

for k = 1.1 (red), k = 0.95 (black dashed), k = 0.69 (black), k = 0.4 (black dash-dotted)

and k = 0.1 (blue), where their intersections with the f 1/2/TC − h/TC plane are shown

6 Due to a relatively large λHS there is a relatively large mixing between σ and the Higgs h with a mixing

angel of ∼ 0.2, which is still consistent with the LHC constraint at 95% CL [83]. This mixing has a

negative effect on mh, leading to a large λH .

Strong 1st-order 
EW and Scale PT

No DM
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A benchmark point:

Output:

λS = 0.145,λ′S = 2.045,λH = 0.15,λHS = 0.032,ΛH = 0.0621 TeV

Nf = 2, Nc = 6

mh = 0.126 TeV, vh = 0.246 TeV,mDM = 0.856 TeV,

ΩDMĥ
2 = 0.122, σSI = 5.12× 10−46 cm2

≃

m2
h0 = |⟨H⟩|2

⎛

⎝16λ
2
H(NfλS + λ′S)

G
+

NcNfλ2HS

8π2

⎞

⎠

= ⟨f⟩NfλHS

2λH

⎛

⎝16λ
2
H(NfλS + λ′S)

G
+

NcNfλ2HS

8π2

⎞

⎠

vb = 0.577

1 <∼ Γ/H4 <∼ eβ∆t with ∆t = β−1

β̃−1 = (β/H)−1 = T
d(S3/T )

dT

γ = 1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1

with

λS = 0.145,λ′S = 2.045,λH = 0.15,λHS = 0.032,ΛH = 0.0621 TeV

Nf = 2, Nc = 6

mh = 0.126 TeV, vh = 0.246 TeV,mDM = 0.856 TeV,

ΩDMĥ
2 = 0.122, σSI = 5.12× 10−46 cm2

≃

m2
h0 = |⟨H⟩|2

⎛

⎝16λ
2
H(NfλS + λ′S)

G
+

NcNfλ2HS

8π2

⎞

⎠

= ⟨f⟩NfλHS

2λH

⎛

⎝16λ
2
H(NfλS + λ′S)

G
+

NcNfλ2HS

8π2

⎞

⎠

vb = 0.577

1 <∼ Γ/H4 <∼ eβ∆t with ∆t = β−1

β̃−1 = (β/H)−1 = T
d(S3/T )

dT

γ = 1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1

T     ≃ 161 GeV T     ≃ 323 GeVc
EW SPT

c

3. Mean fields and excitations

ψ̄i(1−γ5)ψj ∝ δijσ+itaji π
a S†

iSj ∝ δijf + itaji φ
a

Condensate

4. Effective potential from

integrating out ψ integrating out δS around S̄

⟨h⟩ ⟨f⟩
> 0

λS = 0.145,λ′S = 2.045,λH = 0.15,λHS = 0.032

Nf = 2, Nc = 6

(Nf = 3, Nc = 3)

mh = 0.126 TeV, vh = 0.246 TeV,mDM = 0.856 TeV,

ΩDMĥ
2 = 0.122, σSI = 5.12× 10−46 cm2

=
NfλHS

2λH
⟨f⟩

3
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Figure 3. Schematic figure of the Columbia phase diagram in 3-flavour QCD at
µB = 0 on the plane with the light and heavy quark masses. The U(1)A symmetry
restoration is not taken into account. Near the left-bottom corner the chiral
phase transition is of first order and turns to smooth crossover as mud and/or
ms increase. The right-top corner indicates the deconfinement phase transition
in the pure gluonic dynamics.

tricritical point), so that the critical exponents take the classical (mean-field) values
[97], which is confirmed in numerical studies of the chiral model [98].

4.2. Lattice QCD simulations

Although the critical properties expected from the Ginzburg-Landau-Wilson analysis
discussed above are expected to be universal, the quantities such as the critical
temperature and the equation of state depend on the details of microscopic dynamics.
In QCD, only a reliable method known for microscopic calculation is the lattice-
QCD simulation in which the functional integration is carried out on the space-time
lattice with a lattice spacing a and the lattice volume V by the method of importance
sampling. In lattice-QCD simulations there are at least two extrapolations required
to obtain physical results; the extrapolation to the continuum limit (a ! 0) and the
extrapolation to the thermodynamic limit (V ! 1). Therefore, lattice results receive
not only statistical errors due to the importance sampling but systematic errors due
to the extrapolations also.

For nearly massless fermions in QCD, there is an extra complication to reconcile
chiral symmetry and lattice discretization; the Wilson fermion and the staggered
fermion have been the standard ways to define light quarks on the lattice, while
the domain-wall fermion and the overlap fermion recently proposed have more solid
theoretical ground although the simulation costs are higher. For various applications
of lattice-QCD simulations to the system at finite T and µB, see a recent review [39].

Here we mention only two points relevant to the discussions below: (i) The
thermal transition for physical quark masses is likely to be crossover as indicated
by a star-symbol in figure 3. This is based on the finite-size scaling analysis using
staggered fermion [38]. Confirmation of this result by other fermion formalisms is
necessary, however. (ii) The (pseudo)-critical temperature Tpc with di↵erent types of
fermions and with di↵erent lattice spacings are summarized in figure 4. In view of
these data with error bars, we adopt a conservative estimate at present; Tpc = 150–
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NJLExp.

* mu problem, Kim Nieles

*Renormalization of the energy momentum tensor

*Callen-Symanzik equation

*Interpretation of the mass scale in the Coleman-Weinberg

potential

*Mean field approximation (self consistent field) Many body par-

ticle system is approximated through ”free particles” moving in a

mean field, which is a background field, and the quantum fluctua-

tions of these free particles produce corrections to the mean field.

leadind to a selfconsistency equation (gap equation).

Hartree-Fock approximation

*Fermionic theory

*Bosonized theory

*In between

*Goldberger-Treiman relation:

f⇡G⇡qq = 0.98⇥M

*Gell-Mann-Oakes-Renner relation:

f 2

⇡m
2

⇡ = �1.00⇥ 1

2
(mu +md) < ūu+ d̄d >

1.65⇥ 108 MeV4

8
><

>:

1.99⇥ 108 MeV4 (⇤
4

)

1.62⇥ 108 MeV4 (⇤
3

)
(1)

T = 1TeV

1

1. Go from the conventional vacuum |0i to the “BCS” vacuum

|“BCS”i = |�, ⇡, K, · · ·i, where �, ⇡, K, · · · are identified with

h“BCS”| Tr  �a(1, �
5

, · · ·) |“BCS”i.
This is the definition as well as the self-consistency condition.

2. Express LNJL = L
0

+ LI, where

(a) LI is normal-ordered with respect to |“BCS”i, i.e.

h“BCS”| LI | “BCS”i = 0.

(b) L
0

is at most quadratic in fermions, where the ferimon

bilinears are NOT normal-ordered.

3. Compute diagrams with external mean fields (mesons) to pre-

dict the meson properties by integrating out the fermions. But

at the lowest order of the approximation, LI does not con-

tribute.

⇤ = 0.93 , (2G)�1/2 = 0.361 , (�GD)
�1/5 = 0.406 , mu = 0.006 , ms = 0.163

8

m⇡0(m⇡±) 0.135(0.140) 0.136

f⇡ 0.092 0.093

mK0(mK±) 0.498(0.494) 0.499

fK 0.110 0.105

m⌘ 0.548 0.460

m⌘0 0.958 0.960

�H / g2

m2 ' m2

0

+ ⇤2/16⇡2

m2 ' m2

0

� ⇤2/16⇡2

⇤

⇤
cut

M 2

H

⇥µ⌫

⇥µ
µ = �i Oi +M 2

Hj
Xj + ⇤2

cut

Y

dim.[O] = 4 , dim.[X ] = 2

9

See also:Hatsuda+Kunihiro, `94



eLISA DECIGO

vb = 0.577

1 <∼ Γ/H4 <∼ eβ∆t with ∆t = β−1

β̃−1 = (β/H)−1 = T
d(S3/T )

dT

γ = 1

L3 =
1

4f
Z−1∂if∂if + Veff(f, T )

f = γχ2 (dim[χ] = 1)

= γZ−1∂iχ∂iχ+ Veff(γχ
2, T )

Serious problems

1. SE(T ) of a non-abelian GT

S3(T )/T of the effective theory

2. A strongly 1st order PT for f (i.e.⟨f⟩1/2/TS ∼ 1) is no
longer strongly 1st order for χ if γ is large.

Our assumptions:

1. Veff is OK.

2. The kinetic term for χ is canonically normalized
if γ ∼ O(1).

1

γ Tt [TeV] S3(Tt)/Tt α β̃ Ω̃swĥ2 ν̃sw [Hz]

0.5 0.300 149 0.070 3.7× 103 1.9× 10−13 0.37

1.0 0.311 145 0.062 7.0× 103 7.4× 10−14 0.73

2.0 0.316 146 0.059 13× 103 3.4× 10−14 1.4

TABLE I: Relevant quantities for the GW background spectrum for the set of the benchmark

parameters (31). The quantities α, β̃ and γ are defined in (43), (53),(46), respectively.

FIG. 5: The GW background spectrum. The doted lines are the four different sensitivities of

eLISA, where the labels (“C1, ”· · · ,“C4”) correspond to the configurations listed in Table 1 in [66].

The data sets of their configurations are taken from [119]. The dashed lines are sensitivities of

three different designs (“Pre-DECIGO”, “FP-DECIGO” and “Correlation”) of DECIGO [91]. The

parameter γ is defined in (46).

Using the formulas given in [66], we have computed these individual contributions to the

GW background spectrum for the set of the benchmark parameters (31) and found that

Ωcoll and ΩMHD are several orders of magnitude smaller than Ωsw. Therefore, we consider

here only the contribution to ΩGW from the sound wave [87–90]:

Ωsw(ν) ĥ
2 = Ω̃swĥ

2

(
ν

ν̃sw

)3( 7

4 + 3 (ν/ν̃sw)
2

)7/2

, (55)

where

Ω̃swĥ
2 = 2.65× 10−6vbβ̃

−1

(
κα

1 + α

)2(100

g∗

)1/3

(56)
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