> Duarte Azevedo

Introduction

Standard Model and Beyond ttH confirmed (and

Analyses

Dilepton Single lepton

Results and bounds

Comparison between the two channels

Conclusions

LHC phenomenology: Probing CP-violation in $t\bar{t}H$ events

Duarte Azevedo

Collaboration: A. Onofre, E. Gouveia, R. Gonçalo

Departamento de Física da Faculdade de Ciências Universidade do Lisboa

> Harmonia Meeting VI Warsaw, 2019

NSC, Poland, HARMONIA UMO-2015/18/M/ST2/00518

Outline

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton CP observables

Results and bounds

Comparison betwee the two channels CL limits

Conclusions

1 Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

2 Analyses

Dilepton Single lepton CP observables

3 Results and bounds

Comparison between the two channels CL limits

4 Conclusions

> Duarte Azevedo

Introduction

Standard Model and Beyond

 $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton

Results and

Comparison betwee the two channels

CL limits

Conclusions

Introduction

> Duarte Azevedo

Introduction

Standard Model and Beyond ttH confirmed (and

Analyses

Dilepton Single lepton CP observables

Results and bounds

Comparison betwe the two channels CL limits

Conclusion

\rightarrow Scalar particle discovered in 2012 with mass of \sim 125 GeV at the Large Hadron Collider (LHC).

ATLAS, Phys.Lett. B716 (2012), and CMS, Phys. Lett. B 716 (2012).

The Standard Model (SM) is complete. There is no experimental result that strongly deviates from the predictions. Some mentionable exceptions:

- Muon's anomalous magnetic moment.
- B meson decay rate which seem incompatible with the SM prediction.

Still we know it cannot be the whole story.

- Gravity.
- **Dark Matter:** Several indirect evidence: Galaxy rotation curves, Gravitational lensing, Cosmic microwave background, etc.
- Enough CP-violation: to support Sakharov's condition for baryogenesis.

Standard Model and Beyond

> Duarte Azevedo

Introduction

Standard Model and Beyond tTH confirmed (and

Analyses

Dilepton Single lepton CP observables

Results and bounds

Comparison betw the two channels CL limits

Conclusions

(Complex) Two Higgs Doublet Model - (C)2HDM

Minimal scalar extension that allows for an additional source of CP-violation!

 \rightarrow Consider a scalar sector with two EW doublets Φ_1 and $\Phi_2.$

$$V = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + [\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$$
(1)

- No flavour changing neutral currents (FCNC) due to \mathbb{Z}_2 symmetry. $\Phi_2 \to -\Phi_2.$
- Complex m_{12}^2 and λ_5 (with different phases) \implies **CP-violation**.
- CP-violation is manifest in the Yukawa interactions of the <u>three scalars</u> (one of them to be identified with the 125 GeV Higgs).

	<i>u</i> -type	<i>d</i> -type	leptons
Type I	$rac{R_{i2}}{s_eta} - i rac{R_{i3}}{t_eta} \gamma_5$	$rac{R_{i2}}{s_eta} + i rac{R_{i3}}{t_eta} \gamma_5$	$rac{R_{i2}}{s_eta} + i rac{R_{i3}}{t_eta} \gamma_5$
Type II	$rac{R_{i2}}{s_{eta}} - i rac{R_{i3}}{t_{eta}} \gamma_5$	$rac{R_{i1}}{c_{eta}} - it_{eta}R_{i3}\gamma_5$	$rac{R_{i1}}{c_{eta}} - it_{eta}R_{i3}\gamma_5$
Lepton-specific	$rac{R_{i2}}{s_eta} - i rac{R_{i3}}{t_eta} \gamma_5$	$rac{R_{i2}}{s_{eta}} + i rac{R_{i3}}{t_{eta}} \gamma_5$	$rac{R_{i1}}{c_eta} - it_eta R_{i3}\gamma_5$
Flipped	$rac{R_{i2}}{s_eta} - i rac{R_{i3}}{t_eta} \gamma_5$	$\frac{R_{i1}}{c_{\beta}} - it_{\beta}R_{i3}\gamma_5$	$rac{ar{R}_{i2}}{s_eta}+irac{R_{i3}}{t_eta}\gamma_5$

Table: Components of the Yukawa couplings of the Higgs bosons H_i in the C2HDM.

$t\bar{t}H$ confirmed

...and other experimental data

- Gluon fusions seems attractive but difficult to track what particles fall in the loop. Considering the SM, it allows for large CP-odd contributions. Phys. Rev. D 92 (2015)
- With *tth* events, we are directly probing said vertex.
- VH production excludes a pure CP-odd Higgs at 99.98% Phys. Lett. B 759, 672 (2016).
- Discovered announced: CMS Phys. Rev. Lett. 120 (2018) and ATLAS Phys. Lett. B 784 (2018)

Duarte Azevedo

Introduction

Standard Model and Beyond

 $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton

Results and bounds

> Comparison betwee he two channels °L limits

Conclusions

> Duarte Azevedo

Introduction

Standard Model an Beyond

 $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyse

Dilepton Single lepton CP observables

Results and bounds

Comparison betwee the two channels CL limits

Conclusions

Parametrizing the top-Higgs Yukawa coupling

We considered the SM plus a generic CP-violating top-Higgs Yukawa coupling

$$\mathcal{L}_{Y} = y_{t}^{SM} \kappa \bar{t} (\cos \alpha + i\gamma^{5} \sin \alpha) th$$
⁽²⁾

$$\rightarrow$$
 We set $\kappa = 1$. CP-even $\alpha = 0$ (H) CP-odd $\alpha = \frac{\pi}{2}$ (A)

 \rightarrow Consider only $h \rightarrow b\bar{b}$ decays.

 \rightarrow Consider only the single lepton or dilepton final state of the $t\bar{t}$ system.

Two Analyses:

- Dilepton channel. Studied from CP-even to CP-odd in steps of $\Delta \cos \alpha = 0.1$. \implies Less statistics, worst but improves results when combined. Phys. Rev. D 96 (2017)
- Single lepton channel. Studied the CP-even and pure CP-odd.
 - \implies More statistics, <u>better</u>. Phys. Rev. D 98 (2018)

> Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and

Analyses

Dilepton Single lepton

Results and bounds

Comparison between the two channels

Conclusion

Analyses

General remarks

nomenology: Probing CP-violation in $t\bar{t}H$ events

LHC phe-

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton CP observables

Results and bounds

Comparison betw the two channels CL limits

Conclusions

Event Generation @ 13 TeV:

• MadGraph5_aMC@NLO JHEP 1407, 079 (2014)

†NNPDF2.3 PDF NPB 867, 079 (2013)

for $t\bar{t}h$, h = A, H (with HC_NLO_XO model) and $t\bar{t}b\bar{b}$ (@NLO)

other backgrounds @ LO with MLM:

 $t\bar{t}$ + jets, $t\bar{t}V$ + jets, Single top,

W(Z) + jets, VV + jets

• MadSpin JHEP 1303, 015 (2013)

full spin correlations of the top quark decays

- $\rightarrow t\bar{t}$ systems decay either to single lepton or dilepton final state (no τ -leptons).
- Pythia 6 JHEP 0605, 026 (2006)

showering and hadronization

Simulation: DELPHES 3 JHEP 1402, 057 (2014) Pre-analysis: MadAnalysis5 EPJC 74, no 10, 3103 (2014)

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton

- CP observables
- Results and bounds
- Comparison betwee the two channels CL limits

Conclusions

Pre-analysis cuts:

- $N_{\rm jets} \ge 4$
- $N_{\text{lep}} = 2$
- $p_T \ge 20$ GeV, $|\eta| \le 2.5$
- $|m_{II} m_Z| > 10 \text{ GeV}$

Reconstruction algorithm: (MadAnalysis5)

- Boosted decision tree (BDT) algorithm to assign jets to the b-quarks of the top-quarks and Higgs.
- Neutrinos' momentum is obtained by requiring the missing momentum to make up for the right invariant mass of the top-quarks and W-bosons.

Dilepton final state

13 TeV @ I HC

• A likelihood built with p_T distributions of all the objects makes up the decising criteria for choosing a certain solution.

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton

- Single lepton CP observables
- Results and bounds
- Comparison betwee the two channels CL limits

Conclusions

Pre-analysis cuts:

- $6 \le N_{\rm jets} \le 8$
- *N*_{lep} = 1
- Jets: $p_T \geq 20 \text{GeV}, |\eta_{\text{light}}| \leq 4.5, |\eta_b| \leq 2.5$
- Lepton: $p_T \geq 20 \text{GeV}, |\eta_{\mathsf{lep}}| \leq 2.5$
- $\not\!\!\!E_T > 20$ GeV.

Reconstruction algorithm: (KLFitter)

• Transfer Functions (TF) parametrize radiation and energy resolutions of jets, lepton and MET.

Single lepton final state

13 TeV @ I HC

- Likelihood function is constructed from TFs and Breit-Wigners and solution is the one that maximizes the Likelihood.
- Neutrino is reconstructed by imposing the reconstructed W-boson to have the tabulated mass.

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyse

Dilepton Single lepton

CP observables

Results and bounds

Comparison between the two channels

Conclusion

Values in fb	$N_{jets} \geq 4 \ N_{lep} \geq 2$	Kinematic Fit	m _Z cut	$\begin{vmatrix} N_b \\ \geq 3 \end{vmatrix}$	$N_b \ge 4$
$t\bar{t}+c\bar{c},t\bar{t}+$ lf	2160	1300	1110	4.78	0.06
$tar{t}+bar{b}$	87.1	51.9	44.5	2.91	0.27
$t\bar{t}+V(V=Z,W)$	7.9	4.5	3.9	0.09	0.01
Single <i>t</i>	54	26	23	0.12	0.00
V+jets ($V=W,Z$)	2700	1200	200	0.00	0.00
$V + b\bar{b}(V = W, Z)$	570	280	20	0.00	0.00
Diboson	130	53	14	0.00	0.00
Total back.	5700	2900	1410	7.90	0.34
tīH	4.04	2.49	2.15	0.26	0.033
tĪA	4.43	2.69	2.36	0.31	0.041

Table: Expected cross-sections (in fb) as a function of selection cuts, at 13 TeV, for dileptonic signal and background events at the LHC.

Dilepton cut-flow

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Single lepton

Results and bounds

Comparison betwee the two channels

Conclusion

Single lepton cut-flow

Values in fb	$\sigma(fb)$	$\sigma(fb)$	
	Pre-Selection	Final Selection	
$t\bar{t}+c\bar{c},t\bar{t}+$ lf	2488	565.5	
$tar{t}{+}bar{b}$	898.4	165.6	
$t\bar{t}+V(V=Z,W)$	74.9	4.1	
Single <i>t</i>	492.2	4.9	
W+jets	3293	0	
$W{+}bar{b}$	709.7	3.7	
Diboson	996.6	0.5	
Total back.	8953	744.3	
tīH	26.6	8.85	
tĪA	18.9	6.07	

Table: Expected cross-sections (in fb) at *pre-selection* and *final selection* levels, for $t\bar{t}h(h = H, A)$ signals and SM backgrounds, at a centre-of-mass energy of 13 TeV, at the LHC.

CP observables

LHC phenomenology: Probing CP-violation in *tTH* events

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single leptor

CP observables

Results and bounds

Comparison between the two channels

Conclusions

Based on previous works:

• Angular distributions (originally to increase SM *tt h* signal to background discrimination) based on the helicity formalism. Phys. Rev. D 92, 034021 (2015)

with f, g simple trigonometric functions.

• Gunion-He variables. Phys.Rev.Lett. 76 (1996)

$$\begin{aligned} a_1 &= \frac{(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})}{|(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})|} \quad b_1 &= \frac{(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})}{p_t^T p_t^T} \quad b_2 &= \frac{(\vec{p}_t \times \hat{n}) \cdot (\vec{p}_{\bar{t}} \times \hat{n})}{|\vec{p}_t||\vec{p}_{\bar{t}}|} \\ a_2 &= \frac{p_t^x p_{\bar{t}}^x}{|p_t^x p_t^x|} \qquad b_3 &= \frac{p_t^x p_{\bar{t}}^x}{p_t^T p_t^T} \qquad \boxed{\mathbf{b_4} = \frac{\mathbf{p}_t^z \mathbf{p}_{\bar{t}}^z}{|\mathbf{\tilde{p}}_t||\mathbf{\tilde{p}}_{\bar{t}}|}} \end{aligned}$$

(4)

> Duarte Azevedo

Introduction

Standard Model and Beyond ttH confirmed (and

Analyses

Dilepton Single lepton

Results and bounds

Comparison between the two channels

Conclusion

Results and bounds

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and

Analyses

Dilepton

Single lepton

Results an bounds

Comparison between the two channels

CL limits

Conclusions

Comparison between the two channels

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton

CP observables

Results and bounds

Comparison between the two channels

Conclusions

The variables considered in these analyses are:

- $\cos(\theta_h^{\bar{t}h})\cos(\theta_{\ell^-}^h)$ and $A_{FB}^{\ell-(h)}(direct \text{ boost})$,
- $\sin(\theta_h^{t\bar{t}h})\sin(\theta_{\bar{b}_{\bar{t}}}^{\bar{t}})$ and $A_{FB}^{\bar{b}_{\bar{t}}(\bar{t})}(sequential \text{ boost})$,
- $\sin(\theta_h^{t\bar{t}h})\cos(\theta_{b_h}^{\bar{t}})$ and $A_{FB}^{b_h(\bar{t})}(sequential \text{ boost})$,
- $\sin(\theta_t^{t\bar{t}h})\sin(\theta_{W+}^h)$ and $A_{FB}^{W+(h)}(sequential \text{ boost})$,
- $\sin(\theta_{\bar{t}}^{t\bar{t}h})\sin(\theta_{b_h}^h)$ and $A_{FB}^{b_h(h)}(sequential \text{ boost})$,
- $\sin(\theta_h^{t\bar{t}h})\sin(\theta_{\bar{t}}^{t\bar{t}})$ and $A_{FB}^{\bar{t}(t\bar{t})}(direct \text{ boost})$ and

•
$$b_4 = (p_t^z.p_{\bar{t}}^z)/(|\vec{p}_t|.|\vec{p}_{\bar{t}}|)$$
 and $A_{FB}^{b_4}$,

Variables

(b) SM to signal discrimination

> Duarte Azevedo

Introduction

Standard Model an Beyond $t\bar{t}H$ confirmed (an $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton

CP observables

Results and bounds

Comparison between the two channels

CL limits

Conclusions

Definition:

$A_{FB}^{Y} = \frac{\sigma(x_{Y} > 0) - \sigma(x_{Y} < 0)}{\sigma(x_{Y} > 0) + \sigma(x_{Y} < 0)}$ (5)

Dilepton

Single lepton

	After selection and reconstruction			Final Selection			
Asymmetries			Asymmetries	and Kine	and Kinematic Reconstruction		
	tτΗ	tŦA	tītbb		tτΗ	tīA	tītbb
$A_{FB}^{\ell-(h)}$	+0.42	+0.39	+0.24	$A_{FB}^{\ell-(h)}$	+0.10	+0.17	-0.01
$A_{FB}^{\overline{b}_{\overline{t}}(\overline{t})}$	+0.25	+0.28	+0.03	$A^{b_{\overline{t}}(\overline{t})}_{FB_{-}}$	+0.20	+0.19	-0.09
$A_{FB}^{b_h(\bar{t})}$	-0.78	-0.83	-0.76	$A_{FB}^{b_h(t)}$	-0.67	-0.72	-0.65
$A_{FB}^{W+(h)}$	+0.17	-0.06	-0.04	$A_{FB}^{W+(h)}$	-0.33	-0.51	-0.51
$A_{EB}^{b_h(h)}$	+0.37	+0.16	+0.23	$A_{FB}^{b_h(h)}$	+0.18	+0.02	-0.05
$A_{FB}^{\overline{t}(t\overline{t})}$	+0.23	+0.31	+0.01	$A_{FB}^{\overline{t}(t\overline{t})}$	+0.17	+0.15	-0.11
$A_{FB}^{b_4}$	+0.16	-0.17	+0.12	$A_{FB}^{b_4}$	+0.17	-0.08	+0.06

Asymmetries

> Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton

CP observables

Results and bounds

Comparison bet he two channel

CL limits

Conclusions

Confidence level (CL) limits for exclusion of the pure CP-odd coupling

- Assuming the SM holds.
- Computed from likelihood ratios obtained from binned distributions of the observables.
- Only statistical uncertainties are considered.
- Shown up to the High Luminosity LHC (HL-LHC), maximum expected is 3 ab^{-1} .

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton CP observables

Results and bounds

Comparison betwee the two channels

CL limits

Conclusions

\rightarrow All observables treated as uncorrelated.

Combination of channels

Duarte Azevedo

Introduction

Standard Model and Beyond $t\bar{t}H$ confirmed (and $H \rightarrow b\bar{b}$)

Analyses

Dilepton Single lepton CP observables

Results and bounds

Comparison betw the two channels

Conclusions

- $t\bar{t}H$ and $H \rightarrow b\bar{b}$ were discovered during run 2.
- Angular variables (as well as Gunion-He) are good discriminants for analyses.
- Combination with other channels might make run 2 data enough for exclusion.
- Maximal mixing scenario (cos $\alpha = \sqrt{2}/2$) will require roughly 3.5 times more luminosity than the CP-odd case for exclusion.

Conclusions