
Dark pion DM: 
WIMP or SIMP ?

Pyungwon Ko (KIAS)

Scalar 2017, Warsaw 
Nov. 30-Dec.3 (2017)



Overview on WIMP/SIMP 
scenarios in hidden 
(dark) QCD models



Contents

• Hidden (Dark) QCD scenario 


• WIMP scenario with the S-H portal 


• SIMP scenario in dark QCD


• SIMP + dark resonances (vector, scalar, etc.)



Hidden (Dark)  
QCD Scenario



hQCD (Dark QCD)
• Strassler + Zurek (2006) : hQCD + U(1)’ , new collider signatures but no 

discussion on DM from hQCD. hep-ph/0604261. PLB (2007)


• B. Patt and F. Wilczek, hep-ph/0605188. “Higgs portal”


• Hur, Ko, Jung, Lee (2007): EWSB and CDM from h-QCD, arXiv:0709.1218 [hep-
ph], PLB (2011)


• Hur, Ko (2007) : scale inv. extension of SM+hQCD. All the mass scales (including 
DM mass) from hQCD, written in 2007, arXiv:1103.2571 [hep-ph] PRL(2011)


• Proceedings: Int.J.Mod.Phys. A23 (2008) 3348-3351, AIP Conf.Proc. 1178 (2009) 
37-43, arXiv:1012.0103 (ICHEP), etc


• Many works on scale sym. models or dark QCD models during the past years


• Hochberg et al. : SIMP in Dark QCD (2014, 2015)


• Hatanaka, Jung, Ko : AdS/QCD approach, arXiv:1606.02969, JHEP (2016)



Hidden Sector
• Any NP @ TeV scale is strongly constrained by 

EWPT and CKMology


• Hidden sector made of SM singlets, and less 
constrained, and could make CDM


• Hidden gauge sym can stabilize CDM


• Generic in many BSM’s including SUSY models


• Can address “QM generation of all the mass 
scales from strong dynamics in the hidden sector”  
(orthogonal to the Coleman-Weinberg) : Hur and 
Ko, PRL (2011) and earlier paper and proceedings



Nicety of QCD
• Renormalizable


• Asymptotic freedom : no Landau pole


• QM dim transmutation :


• Light hadron masses from QM dynamics


• Flavor & Baryon # conservations : 
accidental symmetries of QCD (pion is 
stable if we switch off EW interaction, 
ignoring dim-5 operators; proton is stable 
or very long lived) 1
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h-pion & h-baryon DMs
• In most WIMP DM models, DM is stable 

due to some ad hoc Z2 symmetry


• If the hidden sector gauge symmetry is 
confining like ordinary QCD, the lightest 
mesons and the baryons could be stable 
or long-lived >> Good CDM candidates


• If chiral sym breaking in the hidden 
sector, light h-pions can be described by 
chiral Lagrangian in the low energy limit



WIMP scenario with the 
Higgs-Singlet portal

• Hur, Jung, Ko, Lee, arXiv:0709.1218 
• Hur, Ko, 1103.2571, PRL (2011) 
• Hatanaka, Jung, Ko, 1606.02969, JHEP (2016)

And proceedings: 

• Int. J. Mod. Phys. A23 (2008) 3348-3351 
• AIP Conf. Proc. 1178 (2009) 37-43 
• ICHEP 2010 Proceeding, hep-ph/1012.0103
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Key Observation
• If we switch off gauge interactions of the 

SM, then we find 

• Higgs sector ~ Gell-Mann-Levy’s linear 
sigma model which is the EFT for QCD 
describing dynamics of pion, sigma and 
nucleons

• One Higgs doublet in 2HDM could be 
replaced by the GML linear sigma model 
for  hidden sector QCD



Model-I

Potential for H1 and H2

V (H1, H2) = −µ2
1(H

†
1H1) +
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– p.34/50

Not present in the two-
Higgs Doublet model
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Relic DensityModel-I : Relic density of πh
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Model-I : Direct detection rate
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Classical Scale Sym Model

• Scale invariant extension of the SM + hQCD


• Mass scale is generated by nonperturbative strong 
dynamics in the hidden sector


• EWSB and CDM from hQCD sector

All the masses (including CDM mass) 
from hidden sector strong dynamics

Kubo, Lindner et al with dark scalar QCD condensate 



Appraisal of Scale Invariance

• May be the only way to understand the origin of mass 
dynamically (including spontaneous sym breaking)

• Without it, we can always write scalar mass terms for 
any scalar fields, and Dirac mass terms for Dirac 
fermions, the origin of which is completely unknown 

• Probably only way to control higher dimensional op’s 
suppressed by Planck scale



Model I (Scalar Messenger)

• SM - Messenger - Hidden Sector QCD

• Assume classically scale invariant lagrangian --> No 
mass scale in the beginning

• Chiral Symmetry Breaking in the hQCD generates a 
mass scale, which is injected to the SM by “S”

SM Hidden 
QCD

Singlet 
Scalar S
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Model-II

Introduce a real singlet scalar S

Modified SM with classical scale symmetry

LSM = Lkin −
λH

4
(H†H)2 −

λSH

2
S2 H†H −
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4
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+
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H̃Y N

ij N j + SN iT CY M
ij N j + h.c.

)

Hidden sector lagrangian with new strong interaction

Lhidden = −
1

4
GµνG

µν +
NHF
∑

k=1

Qk(iD · γ − λkS)Qk

– p.42/50
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Scale invariant extension of the SM
with strongly interacting hidden sector

Model considered by Meissner and Nicolai, hep-th/0612165



Model-II

Effective lagrangian far below Λh,χ ≈ 4πΛh

Lfull = Leff
hidden + LSM + Lmixing

Leff
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3 neutral scalars : h,  S and hidden sigma meson
Assume h-sigma is heavy enough for simplicity



Relic densityModel-II: Relic densities of Ωπh
h2

Ωπhh
2 in the (mh1

,mπh) plane for
(a) vh = 500 GeV and tan β = 1,

(b) vh = 1 TeV and tan β = 2.

– p.46/50
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Direct Detection RateModel-II: Direct detection rates
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Comparison with the 
previous models

• Dark gauge symmetry is unbroken (DM could be 
absolutely stable if they appeared in the asymptotic 
states), but confining like QCD (No long range dark 
force, DM becomes composite)


• DM : composite hidden hadrons (mesons and baryons)


• All masses including CDM masses from dynamical sym 
breaking in the hidden sector


• Singlet scalar is necessary to connect the hidden sector 
and the visible sector


• Higgs Signal strengths : universally reduced from one



• Additional singlet scalar improves the 
vacuum stability up to Planck scale


• Can modify Higgs inflation scenario 
(Higgs-portal assisted Higgs inflation      
[arXiv:1405.1635, JCAP (2017) with Jinsu Kim, WIPark]


• The 2nd scalar could be very very elusive 


• Can we find the 2nd scalar at LHC ?


• We will see if this class of DM can survive 
the LHC Higgs data in the coming years



SIMP scenario +  
dark resonances

Work in progress with 
Soo-Min Choi, Hyunmin Lee (CAU) 

and Alexander Natale (KIAS)



SIMP Scenario in 
Dark QCD



SIMP paradigm

The SIMP Miracle
====================================================================25% of the authors prefer the title: ‘SIMP Dark Matter’. They are uncomfortable with the term ‘miracle’ in this scenario. Damn democracy!==================================================================.

Yonit Hochberg1,2,⇤ Eric Kuflik3,† Tomer Volansky3,‡ and Jay G. Wacker4§
1
Ernest Orlando Lawrence Berkeley National Laboratory,

University of California, Berkeley, CA 94720, USA
2
Department of Physics, University of California, Berkeley, CA 94720, USA

3
Department of Physics, Tel Aviv University, Tel Aviv, Israel and

4
SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 USA

We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

mDM ⇠ ↵ann (TeqMPl)
1/2

⇠ TeV , (1)

where ↵ann is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵ann ' 1/30 above, Teq is the matter-radiation
equality temperature and MPl is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵ann ' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

mDM ⇠ ↵e↵

�
T

2
eqMPl

�1/3
⇠ 100 MeV , (2)

where ↵e↵ is the e↵ective strength of the self-interaction
of the DM which we take as ↵e↵ ' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z2 symmetry, leads to DM in the keV

↵e↵ ' 1 ↵e↵ ' 1

SMDM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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Hochberg, Kuflik, Tolansky, Wacker, arXiv:1402.5143 
Phys. Rev. Lett. 113, 171301 (2014)



SIMP Conditions
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FIG. 3: The bounds on ✏ vs. mDM. Left, coupling to electrons: The grey regions (outlined by thick dashed lines) represents
the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where the standard
2 ! 2 annihilation to the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the exclusion limits
from: direct-detection in Xenon10 [43] (purple region), along with the expected future bound from a germanium-based electron
recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
of Ne↵ [46] (red region); indirect detection of �-rays [47] (green region); direct production at LEP for a variety of mediator
mass, M , and width, � (solid-gray) [18]. Right, coupling to photons: The grey regions (outlined by thick dashed lines)
represents the range of parameters in which kinetic equilibrium with the SM is not maintained (lower gray region), and where
the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]

✓
�scatter

mDM

◆

obs

= (0.1 � 10) cm2
/g . (25)

On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are

�scatter

mDM
. 1 cm2

/g . (26)

The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that

�scatter

mDM
=

a
2
↵

2
e↵

m
3
DM

, (27)

and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at

0.3
⇣

a

0.2

⌘2
. ↵e↵ . 8

⇣
a

0.2

⌘2
, (28)

where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range

of 8
�

a
0.2

�2
MeV . mDM . 200

�
a

0.2

�2
MeV. In Fig. 2

we show the full region preferred by the small-scale struc-
ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value

2->2 Self scattering : 

with a~O(1)
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recoil experiment [44] (dashed-purple); CMB and low red shift data constraints for electrons [45] (blue region); modification
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the standard 2 ! 2 annihilation with the SM is not subdominant to the 3 ! 2 process (upper gray region). Also shown are the
exclusion limits from: indirect detection of �-rays [47] (green region); conservative CMB and low red shift data constraints [45]
(blue region); modification of Ne↵ [46] (red region).

There are two distinct reasons for this. First, much as
in the standard thermal WIMP scenario, the DM must
be in thermal equilibrium with the visible sector. Conse-
quently, it must have non-negligible couplings to SM par-
ticles, which in turn predict observable signals. Second,
the non-vanishing 5-point interaction required for the
3 ! 2 annihilations also implies sizeable self-couplings
which alter the predictions for structure formation. Be-
low, we briefly summarize these two aspects, postponing
many of the details to future work [6].

We begin with structure formation. The persistent fail-
ure of N-body simulation to reproduce the small-scale
structure of observed galactic halos has led to the ‘core
versus cusp’ and ‘too big to fail’ problems. This moti-
vates self-interacting DM with a strength [20–23]

✓
�scatter

mDM

◆

obs

= (0.1 � 10) cm2
/g . (25)

On the other hand, bullet-cluster constraints [24–26] as
well as recent simulations which reanalyze the constraints
from halo shapes [21, 23], suggest the limits on the DM
self-interacting cross section (at velocities & 300 km/sec)
are

�scatter

mDM
. 1 cm2

/g . (26)

The above constraint leaves a viable region for the pre-
ferred strength of DM self-interactions.

The SIMP scenario naturally predicts a sizable con-
tribution to the above 2 ! 2 scatterings. One may

parametrize it by defining a ⌘ ↵2!2/↵e↵ , such that

�scatter

mDM
=

a
2
↵

2
e↵

m
3
DM

, (27)

and one expects a to be of order unity. This can be
readily checked for the toy model discussed above, where
a = O(1) is found for a wide range of values of the cou-
plings of Eq. (22). For the 3 ! 2 SIMP scenario, the
constraint, Eq. (26), points to the strongly interacting
regime with DM masses at or below the GeV scale. In-
terestingly, this region in parameter space automatically
solves the small-structure anomalies discussed above. In-
deed, one may use Eqs. (25) and (26) together with the
relation Eq. (9) to derive a preferred range of ↵e↵ . Tak-
ing into account the numerical corrections as found using
the Boltzmann equation, we arrive at

0.3
⇣

a

0.2

⌘2
. ↵e↵ . 8

⇣
a

0.2

⌘2
, (28)

where the lower bound above arises from the upper bound
of Eq. (26). The corresponding DM mass is in the range

of 8
�

a
0.2

�2
MeV . mDM . 200

�
a

0.2

�2
MeV. In Fig. 2

we show the full region preferred by the small-scale struc-
ture anomalies, and the region excluded by bullet-cluster
and halo-shape constraints. The colored regions show the
preferred region for a = 1, 0.05, 10�3. The region above
the corresponding gray-dashed lines is excluded by the
bullet-cluster and halo shape constraints, for each value



Dark QCD + WZW
• Dark flavor symmetry G=SU(Nf)L x SU(Nf)R is SSB into 

diagonal H=SU(Nf)V by dark QCD condensation


• Effective Lagrangian for NG bosons (dark pions) contain 5-

point self interaction : WZW term for ㅠ5 (G/H) = Z (Nf > 2)

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
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3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U
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(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.
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Dark mesons & WZW term
• Dark flavor symmetry G=SU(Nf)x SU(Nf) is SSB into 

diagonal H=SU(Nf) by SU(Nc) QCD-like condensation. 

• Effective action for Goldstone bosons contains a 
5-point self-interaction from Wess-Zumino-
Witten term for π5(G/H)=Z (i.e. Nf ≥3).   

LWZW =
2Nc

15⇡2
✏µ⌫⇢�Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡]

Flavor symmetry ensures stability of dark 
mesons,  natural candidates for SIMP.

NC  : topological invariant 
of 5-sphere (Q+Q’) in SU(3)

U = e2i⇡/F , ⇡ ⌘ ⇡aT a

⇡Nf = 3 :

[Wess, Zumino,
1971;Witten, 1983]
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in the absence of external gauge fields



SIMP Dark Mesons

• Large color group leads to strong 5-point interactions 
while satifying bounds on self-interactions [Hochberg, 
2014]

SIMP dark mesons
• Large color group leads to strong 5-point interactions 

while satisfying bounds on self-interactions (e.g. Bullet 
cluster, halo shape.)

,

K̃+

K̃�

⇡̃�

⇡̃+

⇡̃0

⇡̃0

⇡̃0

⇡̃0

⇡̃0

[Hochberg et al, 2014]

~const~const

Thursday, June 11, 15

[Hochberg, Kuflik, Murayama, Volansky, Wacker, 1411.3727, PRL (2015)]



SIMP Parameter Space

• DM self scattering :                             


• Validity of ChPT : 
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FIG. 2: Solid curves: the solution to the Boltzmann equation of the 3 ! 2 system, yielding the measured dark matter relic
abundance for the pions, m⇡/f⇡ as a function of the pion mass (left axis). Dashed curves: the self-scattering cross section
along the solution to the Boltzmann equation, �scatter/m⇡ as a function of pion mass (right axis). All curves are for selected
values of Nc and Nf , for an SU(Nc) (top panel) or an O(Nc) (bottom panel) gauge group with a conserved (left panel)
or broken (right panel) SU(Nf ) or SO(Nf ) flavor symmetry, respectively. The solid horizontal line depicts the perturbative
limit of m⇡/f⇡ ⇠< 2⇡, providing a rough upper limit on the pion mass; the dashed horizontal line depicts the bullet-cluster and
halo shape constraints on the self-scattering cross section, Eq. (16), placing a lower limit on the pion mass. Each shaded region
depicts the resulting approximate range for m⇡ for the corresponding symmetry structure.

below those depicted exhibit a tension between the per-
turbativity regime m⇡/f⇡ ⇠

< 2⇡ and the self-interaction
constraint of Eq. (16).
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Issues in the SIMP w/ hQCD
• Dark flavor sym is not good enough to stabilize dark pion 

(We have to assume dim-5 operator is highly suppressed)


• Dark baryons can make additional contribution to DM of the 
universe (It could produce additional diagrams for SIMP)


• Validity region of ChPT : need to include resonances (dark 
rho meson, dark sigma meson, etc.              this talk)


• How to achieve Kinetic equilibrium with the SM ? (Dark 
sigma meson or adding singlet scalar S may help. Or lifting 
the mass degeneracy of dark pionscan help. Work in 
progress.)



Digression on ChPT + VM
• We consider Gglobal SSB into Hglobal : non Linear sigma model on 

Gglobal/Hglobal is equivalent to linear sigma model on Gglobal X Hlocal 


• Vector meson ~ gauge field for Hlocal

Note for chiral lagrangian with light vector mesons

The Author

September 1, 2017

1 Lagrangians

1.1 Goldstone bosons + vector mesons

We consider QCD like system where global Gglobal = SU(3)L ⇥ SU(3)R is spontaneously

broken into Hglobal = SU(3)V . Then the nonlinear realization on Gglobal/Hglobal is equiva-

lent to linear sigma model with Gglobal ⇥Hlocal.

Consider the following fields with the following transformation properties under global

SU(3)L ⇥ SU(3)R and local SU(3)V :

⇠L(x) ! U(x)⇠L(x)L
†

(1)

⇠R(x) ! U(x)⇠R(x)R
†

(2)

gVµ(x) ! U(x) [@µ � igVµ(x)]U
†
(x) (3)

Dµ⇠L = (@µ � igVµ)⇠L(x) + i⇠L(x)lµ (4)

Dµ⇠R = (@µ � igVµ)⇠R(x) + i⇠R(x)lµ (5)

lµ and rµ can be considered as gauge fields of local SU(3)L ⇥ SU(3)R gauge symmetries

and identified as �, Z,W
±
, etc..

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field U(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

⌃(x) ! L⌃(x)R
†

Note that the ⇡ field is normalzied in such a way that

⇡(x) =
1p
2

0

B@

1p
2
⇡
0
+

1p
6
⌘8 +

1p
3
⌘0 ⇡

+
K

+
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� � 1p

2
⇡
0
+

1p
6
⌘8 +

1p
3
⌘0 K

0

K
�

K0 � 2p
6
⌘8 +

1p
3
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1

CA (6)

1

• CCWZ (1969) 
• Bando, Kugo, Yamawaki, Phys. Rept. 164, 217 (1988)



Vector meson as hidden 
local gauge boson

Note for chiral lagrangian with light vector mesons
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In real hadronic world, there are mixings between ⌘8 and ⌘0, and also between !8 and

!0 with mixing angles ✓p and ✓V , respectively:

⌘ = ⌘8 cos ✓P � ⌘0 sin ✓P (8)

⌘
0

= ⌘8 sin ✓P + ⌘0 cos ✓P (9)

!µ =
1p
3
!8µ +

r
2

3
!0µ (10)

�µ =
2p
6
!8µ � 1p

3
!0µ (11)

In this paper, we will ignore mixing for the time being, and consider ⌘0, ⌘8, !8µ and

!0µ as the basis, and discuss the physics thereof.

The chiral Lagrangian for pions and vector mesons is given by

L = LA + LmLB + Lkin(V ) + �
anom

(⇠L, ⇠R, V, l, r) (12)

LA = �f
2
⇡

4
Tr

h
(Dµ⇠L)⇠
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i
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2
Tr [Fµ⌫F

µ⌫
] (16)

Fµ⌫ = @µV⌫ � @⌫Vµ � ig[Vµ, V⌫ ] (17)

The µ term breaks chiral symmetry explicitly, thereby generating nonzero pion and kaon

masses:

m
2
⇡ = µ(mu +md) (18)

mK± = µ(mu +ms) (19)

m
2
K0 = µ(md +ms) (20)

m
2
⌘8

= µ(????) (21)

m
2
⌘0

= µ() + (2⇡⇤)
2
crude form for ⌘0 (22)

2



Ch Lagrangian (pi,V)
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For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field ⌃(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

LA =
f
2
⇡

4
Tr

h
Dµ⌃D

µ
⌃
†
i

(23)

DµU = @µ⌃� ilµ⌃+ i⌃rµ (24)

This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R

(36)

1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by

�
anom

= �WZW +

4X

i=1

ciLi (37)

3

a~2 and g~6 
in real QCD. 

In Dark QCD,  
we consider  
they are free 



Another useful quantities

�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

Here `V’ is the vector meson associated with 
hidden local gauge symmetry



WZW (gauged)
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TABLE I. The squares of electromagnetic charge radii of
~+, K+, and E (in units of fm ) for diA'erent values of c& and
cz obtained from the Lagrangians X'„and Xz, Eqs. (5) and (6).
The data are taken from Ref. [20] for m+ and K+ and from Ref.
[21] for K .

( c~, cv ) (0,0) (0,0.34) (0.49,0) (0.49,0.34) Expt. data

0.39 0.39 0.39 0.39 0.439+0.03
0.34 0.27 0.28 0.24 0.28+0.07—0.028 +0.0056 —0.049 +0.0001 —0.054+0.026

effective action: in the presence of the anomaly, the
effective action is not gauge invariant, and the current is
not conserved [26—31].
The explicit form of the anomaly in the absence of vec-

tor mesons can be derived in various ways. The key point
is to construct a functional, I ( U =(L gz, 1„,r„), which
transforms under the local G =U(3)I XU(3)~ as

5I Lit( U, l, r)

f d x el (dl) ——d1 (L~—R )24~'

c~ =0.49 and cv=0 are not considered in this paper for
simplicity.
We also note that the charge radius of ~+ is a little

smaller than the actual value. This could be remedied if
we used a smaller value of I =730 MeV. This can beP
understood in the following way: we regarded the p
meson as a fundamental pointhke particle in our formal-
ism. In actuality, this is not true, and p should be con-
sidered as a resonance with m~ scattered in the I =J= 1

state. The constraints from current algebra, unitarity,
and crossing symmetry can be approximately implement-
ed, and one obtains a modified p meson form factor [22].
However, such works have not been done yet for co and P.
So, we ignore such complications arising from the com-
posite nature of vector mesons hereafter, and regard Eqs.
(1) and (2) as the basic Lagrangians for our purposes.
Also, we will freely use Eq. (3) in the following.

C. The %less-Zumino anomaly in the absence of vector mesons

The Lagrangian in Eqs. (1) and (2) without I '"' has a
spurious symmetry (intrinsic parity, Po [23]) which is not
a true symmetry of underlying physics of QCD [24]. The
famous Wess-Zumino (WZ) anomaly [25] removes this
symmetry, and gives a consistent explanation for intrinsic
parity- (Po-) violating processes such as vr +yy, y ~—3rr,
K+K ~3~, etc. Furthermore, the amplitudes for those
Pp-violating processes are related to each other in the
chiral limit, forming another set of low-energy theorems.
Hence, the WZ term is indispensable to describe the
chiral dynamics of the lowest-lying mesons. At the quark
level, the anomaly is a manifestation of the fact that one
cannot retain chiral symmetry in the quantized theory of
fermions coupled to gauge fields [26]. This fact is
rejected in the gauge transformation property of the

(7)

o.=dU U
N,P=U 'dU, C= i-

240m.
(8)

a and 13 transform as U(3)L and U(3)z nonets respective-
ly under the global G =U(3)I XU(3)~. To begin with,
consider the gauge transformation property of Tr(a ).
Under local G =U(3)l XU(3)z transformations,

5U(x) =i [eL(x)U(x) U(x)e~ (—x)],
51(x)=dEI (x)+i [eL (x),1(x)]
5r(x) =deit (x)+i [e~ (x), r(x)],

it changes by

C5f,d'x Tr(a')= —5Ci f,d x Tr(deLa +de~f3 ) .

This can be removed by introducing the term

5Ci f,d x Tr(la +rP ),
whose gauge-transformation property is

which is the result of the calculation at the quark level
[28]. (X, is the number of colors of the quarks. ) This is
the anomaly-matching condition at the fundamental level
and the constituent level. The explicit form can be con-
veniently written in terms of the language of differential
forms [27]:

r« C f——,d x Tra +(covariantization),
where we define

5Ci6,d x Tr la +r =5Ci,d x Tr deLcz +de& +5C d x Tr deL lo, —o.'le+0.' I
—SC dxTrde& r —r + r

+5C d x Tr deL UrU 'cz —uUrU 'a+a UrU

—5Cf,d x Tr[de~(U 'lUP PU '1UP+13 U—'1U)] . (10)

We note that Eq. (9) is canceled by the first term of the right-hand side of Eq. (10). However, there are remaining terms
in Eq. (10) which are not equal to the anomaly condition, Eq. (7). Therefore, we proceed as before by adding terms
whose gauge transformations are canceled by the remainders in Eq. (10), and so on, until we end up with Eq. (7). The
final result is

PYUNGWON KO

r„(U,l„,r„)=CJ,d'x Tr(a')
+5CJ,d x Tr[i(la +rP ) [—(dl 1+1dl)a+(dr r+r dr)P]+(dl dUrU ' d—r dU ' IU)

+(rU 'lUP lU—rU 'a )+—,'[(la) —(rP) ]+i[1a+r P]
+i[(dr r+r dr)U lU (dl—1+1dl)UrU ']+i [1UrU 'la+rU 'lUrP] .

+[r U 'lU —1 UrU '+ —,'(UrU '1) ]],

where M is a five-dimensional manifold whose boundary
is the ordinary Minkowski manifold M . This
6=U(3)L XU(3)R-invariant form of the anomaly was
used in the original paper by Fujiwara et al. [29]. How-
ever, this form of the anomaly is not consistent with
current algebra and modified PCAC in the following
sense. From the above Lagrangian, Eq. (1), we can con-
struct the left-handed and the right-handed currents jL„
and j&„. Then, we find that the axial-vector current J„'"'"
is given by

I„'"'"(x)= f D ~—(x)— e„&Q 3'(x)(3 A~(x) .

If we take the divergence of J„'"'"(x)and use the Euler-
Lagrange equation for vr(x) derived from Eq. (1), we can
show that the axial-vector current for the third com-
ponent of the isospin, A „'""',satisfies

I

gpJ3axial( ) y 2

+(1——,
' ) e„)3()"2 "(x)B A~(x),

where P o(x) is an interpolating pion field appearing in
the calculation in the Lehmann-Symanzik-Zimmermann
(LSZ) formalism. This is not consistent with the modified
PCAC relation [30] which has the coefficient 1 in front of
Q instead of (1——,

' ) =—', . This in turn means that we get
too small a rate for m ~yy when it is calculated by the
current algebra and the modified PCAC in the LSZ for-
malism. To keep the consistency between the effective-
Lagrangian approach and the good old current-algebra
and PCAC calculation of m ~yy in the LSZ formalism,
we should modify the I.R-symmetric anomaly form, Eq.
(11). The correct answer is to keep the conservation of
vector currents, sacrificing that of axial-vector currents
as done by Bardeen [31]. Bardeen's form of the anomaly
satisfies the following condition under the local
G =U(3)L XU(3)R:

51 wz(U, l, r)= J d x (eL—eR ) F~ F~— (F~—A +A—F~A+A F~)——A
24m

L R V 3 A 3 V (12)

where

I wz(U, l, r)=I LR(U, l, r)—I LR(U = 1, l, r) . (13)

This coincides with the original form of Mess and Zumi-
no. If we consider only electromagnetic fields as external
gauge fields, we have l„=r„=eQA„. Since
I LR(U = l, l, r) is antisymmetric under l~r, the two
forms of anomalies, I L~ and I ~z are identical.

D. The W'Z anomaly in the presence of vector mesons

Electromagnetic decays of vector mesons such as
co~~ y, co—+pm, etc. , are all intrinsic parity-violating

V= —,'(1+r), .A =—,'(1 r), —
F~=dV+i(V +A ),
F~ =dA+i(VA+AV) .

For the vector transformation, eL=ez, and the above
anomaly vanishes identically. This in turn ensures the
conservation of the vector currents, as we anticipated.
The minimal solution to this equation is given simply

in terms of I LR(U, l, r) as

I

processes, so that we might be able to describe them in
the effective-Lagrangian approach by including terms
with the Levi-Civita tensor. One can achieve this by add-
ing homogeneous solutions of Eq. (12) to Eq. (13). Since
the newly added terms are homogeneous solutions of the
anomaly equation (i.e., gauge invariant, or 51=0), there
will be no additional anomaly and the anomalous low-
energy theorems remain intact.
The correct form of the WZ anomaly including vector

mesons is conveniently expressed in terms of the follow-
ing gauge-covariant entities [29]:

aL =DgL gL =aL —igI'+ll
aR Dk kR aR ig~++
aL(r) dkL(R) kL(R)

1=4.'1'4, r =OR 'r'4
F~=dV—ig V
F, =gL F, gL =gL(dl il')gL, —
FR =gR FR 4 gR(«Rir )gR
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+5CJ,d x Tr[i(la +rP ) [—(dl 1+1dl)a+(dr r+r dr)P]+(dl dUrU ' d—r dU ' IU)

+(rU 'lUP lU—rU 'a )+—,'[(la) —(rP) ]+i[1a+r P]
+i[(dr r+r dr)U lU (dl—1+1dl)UrU ']+i [1UrU 'la+rU 'lUrP] .

+[r U 'lU —1 UrU '+ —,'(UrU '1) ]],

where M is a five-dimensional manifold whose boundary
is the ordinary Minkowski manifold M . This
6=U(3)L XU(3)R-invariant form of the anomaly was
used in the original paper by Fujiwara et al. [29]. How-
ever, this form of the anomaly is not consistent with
current algebra and modified PCAC in the following
sense. From the above Lagrangian, Eq. (1), we can con-
struct the left-handed and the right-handed currents jL„
and j&„. Then, we find that the axial-vector current J„'"'"
is given by

I„'"'"(x)= f D ~—(x)— e„&Q 3'(x)(3 A~(x) .

If we take the divergence of J„'"'"(x)and use the Euler-
Lagrange equation for vr(x) derived from Eq. (1), we can
show that the axial-vector current for the third com-
ponent of the isospin, A „'""',satisfies

I

gpJ3axial( ) y 2

+(1——,
' ) e„)3()"2 "(x)B A~(x),

where P o(x) is an interpolating pion field appearing in
the calculation in the Lehmann-Symanzik-Zimmermann
(LSZ) formalism. This is not consistent with the modified
PCAC relation [30] which has the coefficient 1 in front of
Q instead of (1——,

' ) =—', . This in turn means that we get
too small a rate for m ~yy when it is calculated by the
current algebra and the modified PCAC in the LSZ for-
malism. To keep the consistency between the effective-
Lagrangian approach and the good old current-algebra
and PCAC calculation of m ~yy in the LSZ formalism,
we should modify the I.R-symmetric anomaly form, Eq.
(11). The correct answer is to keep the conservation of
vector currents, sacrificing that of axial-vector currents
as done by Bardeen [31]. Bardeen's form of the anomaly
satisfies the following condition under the local
G =U(3)L XU(3)R:

51 wz(U, l, r)= J d x (eL—eR ) F~ F~— (F~—A +A—F~A+A F~)——A
24m

L R V 3 A 3 V (12)

where

I wz(U, l, r)=I LR(U, l, r)—I LR(U = 1, l, r) . (13)

This coincides with the original form of Mess and Zumi-
no. If we consider only electromagnetic fields as external
gauge fields, we have l„=r„=eQA„. Since
I LR(U = l, l, r) is antisymmetric under l~r, the two
forms of anomalies, I L~ and I ~z are identical.

D. The W'Z anomaly in the presence of vector mesons

Electromagnetic decays of vector mesons such as
co~~ y, co—+pm, etc. , are all intrinsic parity-violating

V= —,'(1+r), .A =—,'(1 r), —
F~=dV+i(V +A ),
F~ =dA+i(VA+AV) .

For the vector transformation, eL=ez, and the above
anomaly vanishes identically. This in turn ensures the
conservation of the vector currents, as we anticipated.
The minimal solution to this equation is given simply

in terms of I LR(U, l, r) as

I

processes, so that we might be able to describe them in
the effective-Lagrangian approach by including terms
with the Levi-Civita tensor. One can achieve this by add-
ing homogeneous solutions of Eq. (12) to Eq. (13). Since
the newly added terms are homogeneous solutions of the
anomaly equation (i.e., gauge invariant, or 51=0), there
will be no additional anomaly and the anomalous low-
energy theorems remain intact.
The correct form of the WZ anomaly including vector

mesons is conveniently expressed in terms of the follow-
ing gauge-covariant entities [29]:

aL =DgL gL =aL —igI'+ll
aR Dk kR aR ig~++
aL(r) dkL(R) kL(R)

1=4.'1'4, r =OR 'r'4
F~=dV—ig V
F, =gL F, gL =gL(dl il')gL, —
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TABLE I. The squares of electromagnetic charge radii of
~+, K+, and E (in units of fm ) for diA'erent values of c& and
cz obtained from the Lagrangians X'„and Xz, Eqs. (5) and (6).
The data are taken from Ref. [20] for m+ and K+ and from Ref.
[21] for K .

( c~, cv ) (0,0) (0,0.34) (0.49,0) (0.49,0.34) Expt. data

0.39 0.39 0.39 0.39 0.439+0.03
0.34 0.27 0.28 0.24 0.28+0.07—0.028 +0.0056 —0.049 +0.0001 —0.054+0.026

effective action: in the presence of the anomaly, the
effective action is not gauge invariant, and the current is
not conserved [26—31].
The explicit form of the anomaly in the absence of vec-

tor mesons can be derived in various ways. The key point
is to construct a functional, I ( U =(L gz, 1„,r„), which
transforms under the local G =U(3)I XU(3)~ as

5I Lit( U, l, r)

f d x el (dl) ——d1 (L~—R )24~'

c~ =0.49 and cv=0 are not considered in this paper for
simplicity.
We also note that the charge radius of ~+ is a little

smaller than the actual value. This could be remedied if
we used a smaller value of I =730 MeV. This can beP
understood in the following way: we regarded the p
meson as a fundamental pointhke particle in our formal-
ism. In actuality, this is not true, and p should be con-
sidered as a resonance with m~ scattered in the I =J= 1

state. The constraints from current algebra, unitarity,
and crossing symmetry can be approximately implement-
ed, and one obtains a modified p meson form factor [22].
However, such works have not been done yet for co and P.
So, we ignore such complications arising from the com-
posite nature of vector mesons hereafter, and regard Eqs.
(1) and (2) as the basic Lagrangians for our purposes.
Also, we will freely use Eq. (3) in the following.

C. The %less-Zumino anomaly in the absence of vector mesons

The Lagrangian in Eqs. (1) and (2) without I '"' has a
spurious symmetry (intrinsic parity, Po [23]) which is not
a true symmetry of underlying physics of QCD [24]. The
famous Wess-Zumino (WZ) anomaly [25] removes this
symmetry, and gives a consistent explanation for intrinsic
parity- (Po-) violating processes such as vr +yy, y ~—3rr,
K+K ~3~, etc. Furthermore, the amplitudes for those
Pp-violating processes are related to each other in the
chiral limit, forming another set of low-energy theorems.
Hence, the WZ term is indispensable to describe the
chiral dynamics of the lowest-lying mesons. At the quark
level, the anomaly is a manifestation of the fact that one
cannot retain chiral symmetry in the quantized theory of
fermions coupled to gauge fields [26]. This fact is
rejected in the gauge transformation property of the

(7)

o.=dU U
N,P=U 'dU, C= i-

240m.
(8)

a and 13 transform as U(3)L and U(3)z nonets respective-
ly under the global G =U(3)I XU(3)~. To begin with,
consider the gauge transformation property of Tr(a ).
Under local G =U(3)l XU(3)z transformations,

5U(x) =i [eL(x)U(x) U(x)e~ (—x)],
51(x)=dEI (x)+i [eL (x),1(x)]
5r(x) =deit (x)+i [e~ (x), r(x)],

it changes by

C5f,d'x Tr(a')= —5Ci f,d x Tr(deLa +de~f3 ) .

This can be removed by introducing the term

5Ci f,d x Tr(la +rP ),
whose gauge-transformation property is

which is the result of the calculation at the quark level
[28]. (X, is the number of colors of the quarks. ) This is
the anomaly-matching condition at the fundamental level
and the constituent level. The explicit form can be con-
veniently written in terms of the language of differential
forms [27]:

r« C f——,d x Tra +(covariantization),
where we define

5Ci6,d x Tr la +r =5Ci,d x Tr deLcz +de& +5C d x Tr deL lo, —o.'le+0.' I
—SC dxTrde& r —r + r

+5C d x Tr deL UrU 'cz —uUrU 'a+a UrU

—5Cf,d x Tr[de~(U 'lUP PU '1UP+13 U—'1U)] . (10)

We note that Eq. (9) is canceled by the first term of the right-hand side of Eq. (10). However, there are remaining terms
in Eq. (10) which are not equal to the anomaly condition, Eq. (7). Therefore, we proceed as before by adding terms
whose gauge transformations are canceled by the remainders in Eq. (10), and so on, until we end up with Eq. (7). The
final result is

Anomaly Conditions



WZW with vector mesons

For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-

tial field ⌃(x) defined as ⌃(x) ⌘ ⇠
†
L
(x)⇠R(x) = exp[2i⇡(x)/f⇡] with ⇠

†
L
(x) = ⇠R(x) =

exp[i⇡(x)/f⇡]:

LA =
f
2
⇡

4
Tr

h
Dµ⌃D

µ
⌃
†
i

(23)

DµU = @µ⌃� ilµ⌃+ i⌃rµ (24)

This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R

(36)

1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by

�
anom

= �WZW +

4X

i=1

ciLi (37)

3

For simplicity, we will work on the degenerate case first: mu = md = ms = m. Expand Lm

to quartic orders in ⇡ fields and derive the pion/K masses and their quartic self interactions,

which are relevant to 2 ! 2 scattering cross sections.

The Lagrangian LA can be cast into the following form in terms of a new exponen-
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This is nothing but the usual nonlinear �-model Lagrangian.

The vector meson and the pion couplings as well as the vector meson masses are given

by LB:

LB = m
2
V TrVµV

µ � 2igV ⇡⇡Tr (Vµ[@
µ
⇡,⇡]) + ... (25)

m
2
V = ag

2
f
2
⇡ (26)

gV ⇡⇡ =
1

2
ag (27)

In ordinary hadron system, a ' 2 but we can consider it as a free parameter in general.

Before we show the anomalous WZW Lagrangian, it is convenient to define the following

objects (we write the vector fields in terms of forms in this part):

↵̂L = D⇠L · ⇠†
L
= ↵L � igV + il̂ (28)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV + ir̂ (29)

↵L = d⇠L · ⇠†
L
, (30)

↵R = d⇠R · ⇠†
R

(31)

l̂ = ⇠L · ⇠†
L
, (32)

r̂ = ⇠R · ⇠†
R

(33)

FV = dV � igV
2

(34)

F̂L = ⇠L · FL · ⇠†
L
= ⇠L(dl � il

2
)⇠

†
L

(35)

F̂L = ⇠R · FR · ⇠†
R
= ⇠R(dr � ir

2
)⇠

†
R

(36)

1.2 WZW + anomalous interactions involving vector mesons

The anomalous WZW in the presence of light vector mesons are given by

�
anom

= �WZW +

4X

i=1

ciLi (37)

3
�WZW = Eqs.(11) and (13) in my thesis (38)

L1 = TR
⇥
↵̂
3
L↵̂R � ↵̂

3
R↵̂L

⇤
� (⇠L = ⇠R = 1, V = 0, l, r) (39)

L2 = TR [↵̂L↵̂R↵̂L↵̂R]� (⇠L = ⇠R = 1, V = 0, l, r) (40)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L]� (⇠L = ⇠R = 1, V = 0, l, r) (41)

L4 = iTr

h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
� (⇠L = ⇠R = 1, V = 0, l, r) (42)

In the real hadronic world with photon included, one has

�
anom

= �WZ � 15C (L3 + L4 + c1L1 + c2L2)c1�c2=�1 (43)

with

C = �i
Nc

240⇡2

Let us ignore the external gauge fields by setting lµ = rµ = 0 and keep only the pions

and vector mesons Vµ, and discuss pion dynamics including the vector mesons. If we

assume lµ = rµ = 0, then

�WZ = C

Z

M5
d
5
x Tr(↵

5
) with ↵ = dUU

†
. (44)

Also for lµ = rµ = 0, ↵̂L and ↵̂R are simplified as

↵̂L = D⇠L · ⇠†
L
= ↵L � igV (45)

↵̂R = D⇠R · ⇠†
R
= ↵L � igV (46)

1.3 Scalar resonances

It is convenient to define two vector fields from ⇠(x) ⌘ ⇠
†
L
= ⇠R:

⇠(x) ! L⇠(x)U
†
(x) = U(x)⇠(x)R

†
(47)

Aµ(x) ⌘ i

2

h
⇠
†
@µ⇠ � ⇠@µ⇠

†
i

(48)

! U(x)Aµ(x)U
†
(x) (49)

Vµ(x) ⌘ i

2

h
⇠
†
@µ⇠ + ⇠@µ⇠

†
i

(50)

! U(x)Vµ(x)U
†
(x) + U(x)@U

†
(x) (51)

Vµ(x) ! U(x)Vµ(x)U
†
(x) + U(x)@µU

†
(x) (52)

Note that (Vµ�Vµ) transforms homogeneously as U(x)(Vµ�Vµ)U
†
(x), which is a convenient

property for constructing chiral invariant Lagrangians.

4

• Fujiwara, Kugo, Yamawaki et al., Prog. Theo. Phys. 73, 926 (1985)  
• P.Ko, PRD44, 139 (1991) 139 for a useful compact summary
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FIG. 1: Feynman diagrams contributing to 3-to-2 interactions among the dark pions via the vector mesons.

FIG. 2: Thermal averages where bl = 1, mV = 3m⇡

p
1 + ✏,

and m⇡ ⇠ 100 MeV.

width the final thermal average is

h�ijk!mnv
2
iR =

27

32
b
ijkmn

2 (16�

+ 3x3(9Im[e�3/2xzRz
⇤
R

4�(0,�3/2xzR)]

�
2

x2
Re[z⇤

R

2(3xzR � i2)])

(42)

where �(0, a) =

Z 1

a

e
�t

t
dt. In the limit where � !

0, this numerically reduces to the narrow-width thermal

average from Ref. [16] (see Fig. 2). Since degeneracy in

both the pions and vector mesons is assumed, we sum

over all bijkmn

2 ’s to find the coe�cient for h�v2i:

b2 =
25

p
5N2

c
m

5
⇡

8⇡5f10
⇡
((m2

V
� 9m2

⇡
)2 +m

2
V
�2)((m2

V
� 4m2

⇡
)2 +m

2
V
�2)(m2

V
+m2

⇡
)2

⇥

8
>>>>>><

>>>>>>:

64(m2
V
+m

2
⇡
)2((m2

V
� 9m2

⇡
)2 +m

2
V
�2)((m2

V
� 4m2

⇡
)2 +m

2
V
�2)

+240af2
⇡
g
2(c1 � c2)(m2

V
+m

2
⇡
)(2m4

V
�4 +m

2
V
�2(177m4

⇡
� 66m2

⇡
m

2
V
+ 7m4

V
)

+5(m2
V
� 9m2

⇡
)(m2

V
� 4m2

⇡
)(m4

V
� 9m2

⇡
m

2
V
+ 10m5

⇡
))

+225a2f4
⇡
g
4(c1 � c2)2(4m4

V
�4 +m

2
V
�2(329m4

⇡
� 142m2

⇡
m

2
V
+ 29m4

V
)

+25(10m2
⇡
� 9m2

⇡
m

2
V
+m

4
V
)2)

9
>>>>>>=

>>>>>>;

,

(43)

where � is the width of the vector mesons

� =
a
2
g
2
mV

128⇡

✓
1� 4

m
2
⇡

m
2
V

◆3/2

. (44)

While in the usual SM QCD, the !8 primarily decays to

3 pions, the general ChPT Lagrangian allows for !8 !

KK, and the assumed degeneracy allows us to set the

width for each species of vector mesons to be equal.

When solving the Boltzmann equations to find the cor-

rect relic density for the SIMP DM, the vector meson

mass is fixed by a choice in ✏. For a given choice in c1,c2,

and a, and a given m⇡ the correct relic density can be

found by varying f⇡. As discussed previously, the ChPT

begins to break down when m⇡/f⇡ ! 2⇡, so it is con-

venient to parameterize the decay constant as f⇡ = m⇡
2⇡�

where � 2 [0, 1] and the ChPT becomes unreliable as

� ! 1. If mV = 3m⇡

p
1 + ✏ such that near resonance

✏ < 1, then g = 6⇡�
q

1+✏

a
. The relic density is found by

solving Eq. 40 numerically for values of � that produce

⌦h2
⇡ 0.119. The resulting curve of constant relic den-

sity is plotted in Fig. 3, and is demonstrated for the case

where the relic is set entirely by the WZW terms, the

case when the vector mesons are near resonance with the

3

vector meson masses are given by LB :

LB = m
2
V
TrVµV

µ
� 2igV ⇡⇡Tr (Vµ[@

µ
⇡,⇡]) (21)

m
2
V
= ag

2
f
2
⇡

(22)

gV ⇡⇡ =
1

2
ag (23)

In ordinary hadron system a ' 2, but this can be con-

sidered a free parameter in general. Before we show the

anomalous WZW Lagrangian, it is convenient to define

the following objects:

↵̂L = D⇠L · ⇠
†
L
= ↵L � igV + il̂ (24)

↵̂R = D⇠R · ⇠
†
R
= ↵R � igV + ir̂ (25)

↵L = d⇠L · ⇠
†
L
, (26)

↵R = d⇠R · ⇠
†
R

(27)

FV = dV � igV
2 (28)

The anomalous WZW in the presence of light vector

mesons are given by

�anom = �WZW +
4X

i=1

ciLi (29)

L1 = Tr
⇥
↵̂
3
L
↵̂R � ↵̂

3
R
↵̂L

⇤
(30)

L2 = Tr [↵̂L↵̂R↵̂L↵̂R] (31)

L3 = iTr [FV (↵̂L↵̂R � ↵̂R↵̂L)] (32)

L4 = iTr
h
F̂L↵̂L↵̂R � F̂R↵̂R↵̂L

i
. (33)

Let us ignore the external gauge fields by setting lµ =

rµ = 0 and keep only the pions and vector mesons Vµ,

thus L3,4 are zero. Under these assumptions then

�anom = LWZW � 15C (c1L1 + c2L2)c1�c2=�1 (34)

with

C = �i
Nc

240⇡2
, (35)

and LWZW is the familiar Wess-Zumino-Witten term for

pions [10–12]:

LWZW =
2Nc

15⇡2f5
⇡

✏
µ⌫⇢�

Tr[⇡@µ⇡@⌫⇡@⇢⇡@�⇡] (36)

Expanding ↵L,R in terms of ⇡ up to O(g/f3
⇡
) results in

L1 = �
4c1gC

f3
⇡

✏
µ⌫⇢�

Tr[@µ⇡@⌫⇡@⇢⇡V�] (37)

and

L2 =
4c2gC

f3
⇡

✏
µ⌫⇢�

Tr[Vµ@⌫⇡@⇢⇡@�⇡@⇢⇡] (38)

where C is defined in Eq. 35. These new vector meson

terms generate additional 3-to-2 interactions between the

pions, as illustrated in Fig. 1.

An important constraint on the model is the 2-to-

2 scattering cross section. The bullet cluster con-

straints place an upper limit of around 1 cm
2
/g on

�scatter/mDM [6]. In our model this 2-to-2 cross section

can be calculated by the ChPT Lagrangian:

�scatter =
m

2
⇡

192⇡f4
⇡
m

4
V

⇥

(81a4g4f4
⇡
+ 216a2f2

⇡
g
2
m

2
V
+ 154m4

V
)

(39)

where the degenerate pion (vector meson masses) are

given by m⇡ (mV ). In the limit where the vector mesons

decouple, �scatter reduces to the value found in Ref. [8].

The upper bounds on �scatter/m⇡ places a lower bound

on m⇡; in the minimal QCD-like model without vec-

tor mesons, this produces a tension between the require-

ments that m⇡/f⇡ < 2⇡ and the lower bound of m⇡ [8].

Relic Density.—In the SIMP model, where the 3 ! 2

number-changing processes are dominant, the resulting

Boltzmann equation for one species of DM is given by

dnDM

dt
+ 3HnDM = �h�v

2
i3!2(n

3
DM

� n
2
DM

n
eq

DM
).

In the presence of an exact flavor symmetry there are

N⇡ = 8 mass degenerate pions, and suppose n1 = n2 =

. . . = n8 = n, we can define nDM =
P8

i=1 ni. Thus the

resulting Boltzmann equation for the total DM density

is

Y
0
DM

= �
⇢⌃h�v2i

N3
⇡
x5

(Y 3
DM

� Y
2
DM

Y
eq

DM
). (40)

where ⌃h�v2i is the sum of the relevant sub-processes af-

ter thermal averaging, with Y = nDM/s, ⇢ = s
2(m⇡)
H(m⇡)

, and

x = m⇡/T . The SIMP paradigm requires that the dark

sector remains in kinetic equilibrium with the SM [7],

this is accomplished via a dark Higgs [13] or additional

dark gauge bosons such as the Z
0 [14, 15], which are not

discussed further in this work.

In the case of a resonance (mV ⇡ 3m⇡) the thermal av-

erage takes a Breit-Wigner form as discussed in Ref. [16]:

h�ijk!mnv
2
iR =

3

4
⇡x

3
1X

l=0

bl

l!
Gl(zR;x), (41)

with zR = ✏ + i�, � = mV �
9m2

⇡
, and ✏ = m

2
V �9m2

⇡
9m2

⇡
. In

the case of SIMP mesons with a significant vector meson

We choose a small epsilon [say, 0.1 (near resonance) ] 
and a small gamma (NWA)

New diagrams involveng dark vector mesons

⇡+⇡�⇡0 ! ! ! K+K�(K0K0)



Preliminary Results

•The allowed parameter space is in a better shape now


•However, is it sensible at all ?


•Dark sigma can increase further the 2->2 scattering
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Conclusion
• Hidden (dark) QCD models make an interesting possibility 

to study the origin of EWSB, (C)DM


• WIMP scenario is still viable, and will be tested to some 
extent by precise measurements of the Higgs signal 
strength and by discovery of the singlet scalar, which is 
however a formidable task unless we are very lucky


• SIMP scenario using 3->2 scattering via WZW term is 
interesting, but there are a few issues which ask for 
further study (dark resonance could play an important role 
for thermal relic and kinetic contact with the SM sector)


