Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw Work carried out in the framework of the CLICdp collaboration

> 13.09.2019 Scalars 2019

K. Mękała, A.F. Żarnecki

◆□ ▶ < 部 ▶ < E ▶ < E ▶ E = の Q ○</p>
Faculty of Physics, University of Warsaw

Compact Linear Collider (CLIC)

380 GeV \rightarrow focus on studying Higgs boson properties

CLIC can estimate Higgs couplings to most of SM particles with an accuracy of around 1% or better.

K. Mękała, A.F. Żarnecki

Signal

Signature of invisible Higgs decay:

- two jets consistent with hadronic Z decay
- missing energy-momentum consistent with production of invisible massive state (125 GeV)

K. Mękała, A.F. Żarnecki

Background processes considered

Faculty of Physics, University of Warsaw

Technical information

- event samples generated with WHIZARD 2.7.0 (using the VFDM model arXiv:1710.01853)
- CLIC energy spectra for **380** GeV
- CLIC integrated luminosity of 1000 fb⁻¹
- detector simulation and event reconstruction with DELPHES, using (modified) *CLICdet_Stage1* cards

Signature of $e^+e^- \rightarrow \, HZ \rightarrow jj \, + \, \textit{inv}$

Two-jet events without electrons, muons, or isolated photons...

(4日) (日) (日) (日) (日) (日) (日) (日)

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw

Preselection cuts: di-jet mass

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw

Sensitivity to new physics scenarios in invisible Higgs boson decays at CLIC

ъ.

Preselection – efficiency

Event class	Efficiency
Background	0.37%
SM Higgs decays	1.70%
Invisible Higgs decays	47.00%

K. Mękała, A.F. Żarnecki

<ロ ▶ < @ ▶ < E ▶ < E ▶ E| = の Q @ Faculty of Physics, University of Warsaw

Selection – variables

Final event selection based on the multivariate analysis. Variables used as input for Boosted Decision Tree (BDT):

- α_{jj} angle between two jets in LAB frame
- Image: mjj dijet invariant mass
- m^{miss} missing mass
- E_{jj} dijet energy
- p_t^{miss} missing transverse momentum

K. Mękała, A.F. Żarnecki

Limits expected for 1000 fb^{-1} collected at 380 GeV CLIC:

- ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 単 ろくぐ

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw

Results

Limits expected for 1000 fb⁻¹ collected at 380 GeV CLIC: Assuming **no excess** above predicted SM background is observed

K. Mękała, A.F. Żarnecki

< □ > < 団 > < 団 > < 臣 > < 臣 > 王 □ = の Q @ Faculty of Physics, University of Warsaw

Results

Limits expected for 1000 fb⁻¹ collected at 380 GeV CLIC: Assuming **no excess** above predicted SM background is \downarrow CL 95% \downarrow

K. Mękała, A.F. Żarnecki

<
■ ト < 回 ト < 目 ト < 目 ト < 目 ト 三目 の Q () Faculty of Physics, University of Warsaw

Results

Limits expected for 1000 fb⁻¹ collected at 380 GeV CLIC: Assuming **no excess** above predicted SM background is observed U CL **95%** CLICdp preliminary: invisible Higgs boson decays are rarer than **0.86%** of all Higgs boson decays

Previously: 0.94% (350 GeV, 500 fb⁻¹, The European Physical Journal C, 76(2):72)

K. Mękała, A.F. Żarnecki

▶ ▲ @ ▶ ▲ 볼 ▶ ▲ 볼 ▶ 볼| 별 ∽ 익 ় Faculty of Physics, University of Warsaw

The VFDM model

Within the Vector-fermion dark matter model, invisible Higgs boson decays into DM candidates are due to the exchange of the 125 GeV Higgs and the second scalar state; their couplings are parameterized by the mixing angle α .

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw

New scalars

New "dark sector" scalars are expected in Higgs-portal models. If they are light, they can be produced in e^+e^- collisions in the same way as the SM-like Higgs boson: $e^+e^- \rightarrow Z h_2 \rightarrow qq + inv$

K. Mękała, A.F. Żarnecki

New scalars

New "dark sector" scalars are expected in Higgs-portal models. If they are light, they can be produced in e^+e^- collisions in the same way as the SM-like Higgs boson: $e^+e^- \rightarrow Z \ h_2 \rightarrow qq + \textit{inv}$

Assuming:

- domination of invisible decays $(BR(h_2 \rightarrow inv) \approx 100\%)$
- production due to mixing with SM Higgs particle

we can extend our method to search for production of h_2 .

Limits on cross sections for new scalars

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw

The VFDM model

Expected limits on the production cross section can be translated within the VFDM model into limits on the mixing angle α .

K. Mękała, A.F. Żarnecki

▶ ▲ 团 ▶ ▲ 클 ▶ ▲ 클 ▶ 클 I = ∽ Q I Faculty of Physics, University of Warsaw

Conclusions

- Search for invisible Higgs boson decays based on the WHIZARD event generation and fast simulation with DELPHES.
- CLIC running at 380 GeV can constrain the invisible decays of the SM Higgs boson to below 1%.
- Results consistent with the previous study based on full simulation.
- The study can be extended to search for extra scalars.
- Cross section limits can be translated to the limits on new physics model parameters.
- Sensitivity to invisible scalar decays at high energy CLIC (1.5 TeV) still to be studied.

References

A. Ahmed, M. Duch, B. Grzadkowski, and M. Iglicki. Multi-component dark matter: the vector and fermion case. *The European Physical Journal C*, 78(11):905, Nov 2018.

M. Aicheler et al.

A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report.

CERN-2012-007, 2012.

M. J. Boland et al.

Updated baseline for a staged Compact Linear Collider. CERN Yellow Reports: Monographs. CERN, Geneva, Aug 2016.

Model-independent measurement of the $e^+e^-\to$ HZ cross section at a future e^+e^- -linear collider using hadronic Z decays.

The European Physical Journal C, 76(2):72, 2016.

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw

BACKUP

Parameter	Relative precision			S 1.2
	350 GeV 1 ab ⁻¹	+ 1.4 TeV + 2.5 ab ⁻¹	$+ 3 \text{ TeV} + 5 \text{ ab}^{-1}$	C CLICdp C model independent
g _{HZZ}	0.6%	0.6 %	0.6 %	9 1.1 -
ghww	1.0%	0.6%	0.6 %	, Building and Annual Annua
g _{Hbb}	2.1 %	0.7 %	0.7~%	
g _{Hcc}	4.4%	1.9 %	1.4~%	8 1%
$g_{H\tau\tau}$	3.1 %	1.4 %	1.0 %	1
$g_{H\mu\mu}$	-	12.1 %	5.7 %	
g _{Htt}	-	3.0 %	3.0 %	Γ _H cτbtWZgγ
g^{\dagger}_{Hgg}	2.6%	1.4 %	1.0 %	0.9
g [†] _{Hyy}	-	4.8 %	2.3 %	• 350 GeV, 1 ab ⁻¹
$g_{HZ\gamma}^{\dagger}$	-	13.3 %	6.7 %	a + 1.4 TeV, 2.5 ab ⁻¹
Ги	47%	2.6%	25%	0.8 + 3 TeV, 5 ab

(日) (日) (日) (日) (日) (日) (日) (日) (日)

K. Mękała, A.F. Żarnecki

Faculty of Physics, University of Warsaw

Final state	Efficiency	N _{pre}					
Background							
$qq\nu\nu$	23,00%	72135					
$qql\nu$	0,68%	37588					
qq	0,087%	19234					
qqll	0,043%	593					
qqqq	0,0010%	51					
In total:	0,37%	129601					
SM Higgs decays							
$H_{SM} + \nu\nu$	4,60%	2515					
$H_{SM} + II$	0,017%	3					
$H_{SM} + qq$	0,0057%	47					
In total:	1,70%	2565					
Invisible Higgs boson decays							
$H_{inv} + qq$	47,00%	38557					

K. Mękała, A.F. Żarnecki

<ロ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ 三目目 のQ ペ Faculty of Physics, University of Warsaw