Towards an asymptotically safe completion of the Standard Model

Kamila Kowalska

TU Dortmund

based on 1702.01727 and work in progress with A.Bond, G.Hiller and D.Litim

PLANCK 2017

Warsaw, 25 May 2017

Kamila Kowalska (TU Dortmund)

gfet

/ 18

25.05.2017

Asymptotically Safe Standard Model

Motivation

The set of RGEs for gauge $(SU(N_c))$ and Yukawa couplings:

$$\beta_{g} = \frac{d\alpha_{g}}{d\ln\mu} = \alpha_{g}^{2}(-B + C\alpha_{g} - D\alpha_{y}),$$
$$\beta_{y} = \frac{d\alpha_{y}}{d\ln\mu} = \alpha_{y}(E\alpha_{y} - F\alpha_{g})$$

(where $\alpha_g=rac{g^2}{(4\pi)^2}$, $\alpha_y=rac{y^2}{(4\pi)^2}$)

- B > 0 (asymptotic freedom) or B < 0 (asymptotic safety)
- C > 0 if B < 0 in any QFT (proof in Bond, Litim, arXiv:1608.00519)
- D, E, F > 0 for any quantum field theory
- $C' = C \frac{DF}{E} \rightarrow \beta_g = \alpha_g^2 (-B + C' \alpha_g)$

Basics of asymptotic safety

Different types of fixed points possible:

Asymptotically safe extensions of the SM

The setting:

(following Litim, Sannino, JHEP 1412 (2014) 178, arXiv:1406.2337)

 N_F flavors of VL BSM fermions ψ_i

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

 $\psi_i(R_3, R_2, Y)$

 $N_F \times N_F$ scalar singlets S_{ij}

$$\mathcal{L} \sim -y(\bar{\psi}_{Li}S_{ij}\psi_{Rj}+\bar{\psi}_{Ri}S_{ij}^{\dagger}\psi_{Lj})$$

In this talk: we neglect the effects from the scalar potential (three loop effect) and SM Yukawas

Kamila Kowalska (TU Dortmund)

Asymptotically safe extensions of the SM

Case 1:
$$R_3 \neq 0$$
, $R_2 \neq 0$, $Y = 0$

Renormalization group equations

$$\beta_3 \equiv \frac{d\alpha_3}{d\ln\mu} = (-B_3 + C_3 \alpha_3 + G_3 \alpha_2 - D_3 \alpha_y) \alpha_3^2,$$

$$\beta_2 \equiv \frac{d\alpha_2}{d\ln\mu} = (-B_2 + C_2 \alpha_2 + G_2 \alpha_3 - D_2 \alpha_y) \alpha_2^2,$$

$$\beta_y \equiv \frac{d\alpha_y}{d\ln\mu} = (E \alpha_y - F_2 \alpha_2 - F_3 \alpha_3) \alpha_y.$$

where we define

$$\alpha_2 = \frac{g_2^2}{(4\pi)^2}, \qquad \alpha_3 = \frac{g_3^2}{(4\pi)^2}, \qquad \alpha_y = \frac{y^2}{(4\pi)^2}$$

Possible types of fixed points:

case	gauge c	ouplings	BSM Yuk	type	info	
FP_1	$\alpha_3^* = 0$	$\alpha_2^* = 0$	$\alpha_y^* = 0$	$G \cdot G$	non-interacting	
FP ₂	$\alpha_3^* = 0$	$\alpha_2^* > 0$	$\alpha_y^* > 0$	G · GY	partially interacting	
FP_3	$\alpha^*_{3} > 0$	$\alpha_2^* = 0$	$\alpha_y^* > 0$	$GY \cdot G$	partially interacting	
FP ₄	$\alpha_3^* > 0$	$\alpha_2^* > 0$	$\alpha_y^* > 0$	GY · GY	fully interacting	

The existence of a UV fixed point depends on transformation properties under $SU(3)_C \times SU(2)_L$ and N_F .

UV fixed points

An example: **FP**₃ ($\alpha_3^* > 0$, $\alpha_2^* = 0$)

	$R_2 = 1$		$R_2 = 2$		$R_2 = 3$	
R_3	$N_{ m AF}$	$N_{\rm AS}$	$N_{ m AF}$	$N_{\rm AS}$	$N_{ m AF}$	$N_{\rm AS}$
3	10	-	6	-	3	-
6	2	37	1	77	_	116
8	1	95	-	198	-	299
10	-	17	_	34	_	51
15	-	30	_	60	_	90
15'	_	17	_	33	_	50

• AF is lost if $B_3 < 0$

• physicality condition $D_3F_3 - EC_3 > 0$

UV fixed points

Summary of fixed points:

Conclusions

- no partially-intracting UV fixed points with BSM fermions in fundamental reps. only
- large number of N_F needed for AS

•
$$\alpha_3^* \sim \frac{1}{2C_2(R_3)+3C_2(R_2)-5}$$
,
 $\alpha_y^* \sim \frac{1}{N_F}$

UV fixed point should be connected through a RG trajectory with the SM

• partially interacting UV fixed point: one relevant, one irrelevant, one marginal eigendirection \rightarrow 2D critical surface given by $\alpha_{\gamma}(\alpha_{AS})$.

• fully interacting UV fixed point: 1 relevant, 2 irrelevant eigendirection \rightarrow 1D critical surface with $\alpha_y(\alpha_3)$ and $\alpha_2(\alpha_3)$

Benchmark scenarios

model	parameter (R_3, R_2, N_F)	UV $lpha_3^*$	fixed po α_2^*	ints α_y^*	type	info
Α	(1 , 4 , 12)	0	0.2407	0.3385	FP ₂	low scale *
В	(10 , 1 , 30)	0.1287 0.1292	0 0.2769	0.1158 0.1163	FP ₃ FP ₄	low scale* no match
с	(10 , 4 , 80)	0.3317 0.0503 0	0 0.0752 0.8002	0.0995 0.0292 0.1500	FP ₃ FP ₄ FP ₂	low scale* high scale high scale
D	(3 , 4 , 290)	0 0.0416	0.0895 0.0615	0.0066 0.0056	FP ₂ FP ₄	low scale* low scale
E	(3 , 3 , 72)	0.1499	0.2181	0.0471	FP ₄	low scale

* matching at any scale including low (TeV)

Matching at any scale: partially interacting fixed points

Kamila Kowalska (TU Dortmund)

Asymptotically Safe Standard Model

High scale matching:

Kamila Kowalska (TU Dortmund)

Low scale matching at fixed scale: fully interacting fixed point

Kamila Kowalska (TU Dortmund) Asymptotica

No matching (all models with $R_2 = 1$)

Summary of matching conditions:

Conclusions

- partially interacting UV FP can be connected with the SM at any energy ...
- unless a nearby fully interacting FP affects the UV-safe trajectory (high scale)
- fully interacting FP more difficult the match, however ...
- AS predicts a relation between the gauge couplings

Case 2: we add $\mathbf{Y} \neq \mathbf{0}$

There is always a lower bound on the hypercharge, above which α_1 becomes asymptotically free.

It is also possible to make α_1 asymptotically safe.

- Yukawa couplings offer the **ONLY** dynamical mechanism to obtain interacting fixed points in gauge theories.
- To make the SM asymptotically safe new fermions in reps. higher then fundamental are required.
- Matching with the SM possible for certain types of FP and matter content.
- There are experimental signatures to test at the colliders (running of the couplings, precision observables, R-hadrons, diboson searches).

Extra slides

Asymptotic Safety in Gauge-Yukawa theory

Three types of fixed points possible:

• $(\alpha_g^*, \alpha_y^*) = (0, 0)$

Gaussian fixed point, always exists, UV (B > 0) or IR (B < 0).

• $(\alpha_g^*, \alpha_y^*) = (B/C, 0)$

Caswell-Banks-Zaks fixed point, ALWAYS IR fixed point.

Interacting UV fixed point ONLY with Yukawas.

• $(\alpha_g^*, \alpha_y^*) = (\frac{B}{C'}, \frac{BF}{C'E})$, where $C' = C - D_E^F$

Fully interacting gauge-Yukawa fixed point:

- IR (
$$B > 0$$
 and $C' > 0$)
- UV ($B < 0$ and $C' < 0$)

Asymptotic Safety: B < 0 and CE - DF < 0.

Critical exponents:

linearization of the RG flow in vicinity of the FP:

$$\beta_i = \sum_j M_{ij}(\alpha_j - \alpha_j^*) + \mathcal{O}(\alpha_j^2)$$

where stability matrix is defined as $M_{ij} = \partial \beta_i / \partial \alpha_j |_*$.

Properties of the FP (scaling of the couplings near the FP) determined by eigenvalues λ_k of M:

- $Re(\lambda_k) > 0$ irrelevant direction $\rightarrow \delta \alpha_i \sim \mu^{\lambda_k}$ increasing with μ
- $Re(\lambda_k) < 0$ relevant direction $\rightarrow \delta \alpha_i \sim \mu^{\lambda_k}$ decreasing with μ
- $Re(\lambda_k) = 0$ marginal direction $\rightarrow \delta \alpha_i \sim \log(\mu)$

Critical surface:

In the vicinity of the UV fixed point:

$$\alpha_{g}(\mu) = \alpha_{g}^{*} + \sum_{n} c_{n} V_{g}^{n} \left(\frac{\mu}{\Lambda}\right)^{\lambda_{n}}$$
$$\alpha_{y}(\mu) = \alpha_{y}^{*} + \sum_{n} c_{n} V_{y}^{n} \left(\frac{\mu}{\Lambda}\right)^{\lambda_{n}}$$

and V_i - eigenvectors of M.

So for the relevant eigendirection one gets:

$$\alpha_{y}(\alpha_{g}) = \alpha_{y}^{*} + (V_{y}^{1})^{-1}(\alpha_{g} - \alpha_{g}^{*})$$

The UV fixed point can be reached only along a critical direction

Phase diagrams

Asymptotic safety (B < 0 and C' < 0):

Bond, Litim, arXiv:1608.00519

 $\lambda_1 = \frac{B^2}{C'}, \ \lambda_2 = \frac{BF}{C'} \rightarrow$ one relevant and one irrelevant direction NO Landau Poles!

Kamila Kowalska (TU Dortmund)

Asymptotically Safe Standard Model

Experimental signatures

Diboson spectra

if $m_S \leq m_{\psi}$ than loop decays $S \rightarrow gg, \gamma\gamma, ZZ, Z\gamma, WW$

Strong limits from the dijet search, ex. 13 TeV ATLAS $\sigma_{ii} \times A \times BR < 1.3 \text{ pb}$

$$\Gamma_{gg} = \frac{\alpha_s^2 m_5^3}{32\pi^3} \Big| \sum_{i=1}^{n_f} \frac{y S_2(R_3)}{M_{\psi}} A_{1/2}(x) \Big|^2$$

Kamila Kowalska (TU Dortmund)

Asymptotically Safe Standard Model

Experimental signatures

R-hadron searches

if $m_S \geq m_\psi$ and $Y_\psi = 0$ than ψ can be stable ightarrow R-hadrons can be formed

 $\psi\bar{\psi}$, $\psi_6 qq$, $\psi_8 q\bar{q}$, $\psi_{10} qqq$,....

