Axions, dark matter and all that MAD(MAX) stuff

Javier Redondo (Zaragoza U & MPP)

Warsaw Workshop on Non-standard (?) dark matter: multicomponent scenarios and beyond 4th June 2016

The theta angle of the strong interactions

- The value of θ controls matter-antimatter differences in QCD

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Axions

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Axions are necessarily dark matter

- is it a dynamical field? $\theta(t, \mathbf{x})$

Axions are necessarily dark matter

- is it a dynamical field? $\theta(t, \mathbf{x})$

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

Axions are necessarily dark matter

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

- The amount of axion DM produced depends on fa
- large fa, small curvature, oscillations start later->more DM

- small fa, large curvature, oscillations start earlier -> less DM

no preferred value at high Temperature ($T > \Lambda_{QCD}$)

Measured today $|\theta| < 10^{-10}$ (strong CP problem)

below confinement, theta = 0 minimises vacuum energy!

- Peccei-Quinn symmetry, color anomalous, spontaneously broken at f_a $\mathcal{L} = \mathcal{L}_{SM} + i\bar{Q}DQ - (y\bar{Q}_LQ_R\Phi + h.c) - \lambda |\Phi|^4 + \mu^2 |\Phi|^2$

 $\Phi(x) = \rho(x)e^{i\frac{a(x)}{f_a}}$

ENERGY

Theta evolution, Averaged SCENARIO I

 π

 θ

 $-\pi$

Theta evolution, Averaged SCENARIO I

Dark matter density, inhomogeneous at comoving mpc scales

Strings

Axion dark matter (Scenario I)

Axion dark matter (Scenario I)

- Axion DM scenarios

Axion dark matter

Detecting SCI Axions

$$\rho_{\rm aDM} = 0.3 \frac{{\rm GeV}}{{\rm cm}^3}$$

 $\theta_0 = 3.6 \times 10^{-19}$

Detecting Axion (Dark Matter) in the lab

$$\rho_{\rm CDM} \simeq 0.3 \frac{\text{GeV}}{\text{cm}^3} = m_a n_a \simeq \frac{1}{2} m_a^2 f_a^2 \theta^2 \longrightarrow \theta \sim O(10^{-19})$$
velocities in the galaxy
$$v \lesssim 300 \text{ km/s} \sim 10^{-3} c$$
phase space density
$$\frac{n_a}{\frac{4\pi p^3}{3}} \sim 10^{29} \left(\frac{\mu \text{eV}}{m_a}\right)^4$$

occupation number is HUGE! _____ treat it like a classical coherent (NR) field

Roughly...

$$a(t) = a_0 \cos(m_a t)$$

Fourier-transform a(x) $\omega \simeq m_a(1+v^2/2+...)$ $\delta\omega = \frac{m_a v^2}{2}$ $\delta t \sim \frac{1}{\delta\omega} \sim 0.13 \text{ms} \left(\frac{10^{-5} \text{eV}}{m_a}\right)$ $\delta t \sim \frac{1}{\delta\omega} \sim 0.13 \text{ms} \left(\frac{10^{-5} \text{eV}}{m_a}\right)$ $\delta t \sim \frac{1}{\delta\omega} \sim 0.13 \text{ms} \left(\frac{10^{-5} \text{eV}}{m_a}\right)$

Axion Dark matter experiments (target areas) $f_a[\text{GeV}]$ 10^{14} 10^{13} 10^{12} 10^{11} 10^{10} 10⁹ 10⁸ 107 10⁶ 10^{5} 10 \rightarrow not DM **5th forces? QUAX?** → test bench **SCENARIO I** LC CAPP Axion Dark Matter eXperiment (Seattle, Yale...) ADMX

Axion Dark matter experiments (target areas) $f_a[\text{GeV}]$ 10^{14} 10^{13} 10^{12} 10^{11} 10^{10} 10⁹ 10^{8} 107 10⁶ 10^{5} 10 111 **5th forces? QUAX?** → baby born MADMAX Munich Axion Dark MAtter "eXperience" **SCENARIO I** LC CAPP ADMX osc. EDM \rightarrow only one running ADMX-HF 10² 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10 10^{-7} 1

 $m_a[eV]$

Axion DM in a B-field : two photon coupling

$$\mathcal{L}_I = -C_{a\gamma} \frac{\alpha}{2\pi} \frac{a}{f_a} \mathbf{B} \cdot \mathbf{E}$$

- In a static magnetic field, the oscillating axion field generates EM-fields

 $/ \setminus$

Detecting axion DM

- Axion DM, $\theta = \theta_0 \cos(m_a t)$, in a B-field is a source in Maxwell's eq.

- Electric fields $E = 1.3 \times 10^{-12} \text{ V/m} \frac{B_{\text{e}}}{10 \text{ T}} \frac{C_{a\gamma}}{\epsilon}$. (amp independent of mass!)
- Oscillating at a frequency $\omega \simeq m_a$

Radiation from a dielectric interface ...

Radiation from a dielectric interface ...

Radiation from a magnetised mirror : Power

Dish antenna experiment?

Mixed scheme?

If we could add the power emitted by many mirrors...

Many dielectrics : MADMAX at MPP Munich

- Emission has large spatial coherence; adjusting plate separation -> coherence

$$\frac{P}{Area} \sim 2 \times 10^{-27} \frac{W}{m^2} \left(c_{\gamma} \frac{B_{||}}{10T} \right)^2 \left(\times \beta^2(\omega) \text{ boost factor} \right)$$

- Work in progress at Max Planck Institute fur Physik (Conceptual design)

One dielectric

Close to nu0, many layers

boost factor (N=10,40,80; n=3,nu0=20 GHz)

Even larger boosts are possible (small resonant enhancement)

Numerical optimisation of distance between 17 layers n=5 (flat response)

Conceptual paper in preparation:

PREPARED FOR SUBMISSION TO JCAP (ALMOST)

MPP-2016-XXX

Layered dielectric haloscopes: a new way to detect axion dark matter

Alexander J. Millar,^{*a*} Georg G. Raffelt,^{*a*} Javier Redondo,^{*a,b*} Frank D. Steffen^{*a*}

and if a candidate is found ...

Numerical optimisation of distance between 17 layers n=5 (max response)

MPP-2016-XXX

Layered dielectric haloscopes: a new way to detect axion dark matter

Alexander J. Millar,^{*a*} Georg G. Raffelt,^{*a*} Javier Redondo,^{*a,b*} Frank D. Steffen^{*a*}

B. Majorovits

First prototype setup at MPI

Phone Conference with Saclay Magnet Group, Feb. 23 2016

First prototype setup at MPI

Phone Conference with Saclay Magnet Group, Feb. 23 2016

First measurements: sensitivity

Inject fake axion signal with 3.10-21 W power

- Mesurement for one week (integrate signal): Receiver at Room Temp.
 - → Independent "blind" analysis
 - → found > 6σ signal succesfully

→ At LHe: noise level factor 100 better

→ Sensitivity at the level of 10⁻²³ W expected

Excellence Cluster Univers

one Conference with Saclay Magnet Group, Feb. 23 2016

Sensitivity (10 T, 1 m², 5K, 5 years, boost=100)

Further plans

2016:

- Finish first test measurements at room temperature at MPI
- Test noise of preamplifier at LHe temperature
- Find additional collaborators for specific parts of project
- Start design of 10T magnet
- Develope technique to cover frequencies above 30 GHz
- R&D on production of large diameter high-ε discs

2017-2020:

- Demonstrate low noise performance, operation with many discs, scalability to 1m diameter, work in ~10 T environment
- Build prototype with preamp in LHe in cryostat and resonator in magnetic field

2020:

Start building full scale experiment

Conclusions

- Strong CP problem and dark matter motivate <u>Axions</u>
- Most predictive model (N=1) mass~ 0.1 meV (fa ~ 10^11 GeV)
- Many experimental efforts, solid player missing in that range
- MW emission from interfaces is weak, make layered haloscope
- Munich Axion Dark MAtter eXperiment

SMASH : Standard Model Axion See-saw Hidden scalar inflation