Sneutrino Dark Matter in the BLSSM

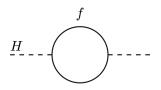
Simon J. D. King

Scalars 2017

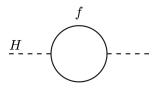
December 2, 2017

Southampton

Outline


- 2 DM Review in MSSM & BLSSM
- 3 Fermi-LAT Results

In collaboration with L. Delle Rose, S. Khalil, S. Kulkarni, C. Marzo, S. Moretti, C.S. Ün


Motivations

• Hierarchy Problem

Motivations

• Hierarchy Problem

Dark Matter

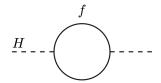


Figure: Chandra X-ray Observatory

Simon J. D. King

Motivations

• Hierarchy Problem

• Dark Matter

Non-vanishing Neutrino Masses

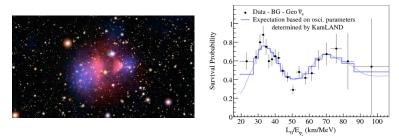
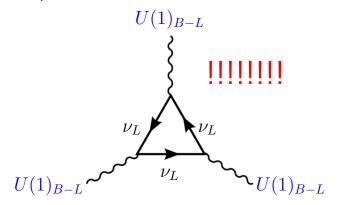
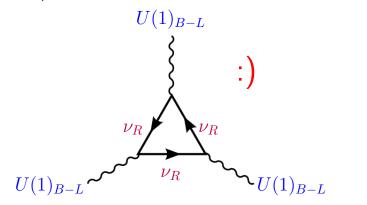



Figure: Chandra X-ray Observatory // KamLAND experiment, 0801.4589

Simon J. D. King


Explaining the BLSSM - "B-L"

- SM has exact B-L conservation
- Promote accidental, global symmetry to local. SM gauge group now extended to: $G_{B-L} = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- anomaly cancellation require SM singlet fermion (right-handed neutrinos)

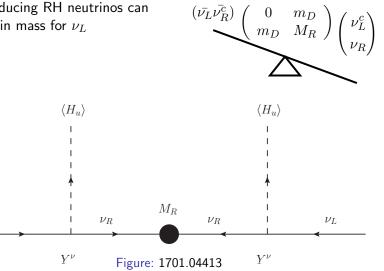
Explaining the BLSSM - "B-L"

- SM has exact B-L conservation
- Promote accidental, global symmetry to local. SM gauge group now extended to: $G_{B-L} = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- anomaly cancellation require SM singlet fermion (right-handed neutrinos)

Explaining the BLSSM - "SSM"

Chiral Superfield		Spin 0	Spin 1/2	G_{B-L}
Quarks/Squarks, (x3 generations)	\hat{Q} \hat{U} \hat{D}	$ \begin{array}{c} (\tilde{u}_L \tilde{d}_L) \equiv \tilde{Q}_L \\ \tilde{u}_R^* \\ \tilde{d}_R^* \end{array} $	$(u_L d_L) \ ar{u_R} \ ar{d_R}$	$(3, 2, \frac{1}{6}, \frac{1}{6}) (\mathbf{\overline{3}}, 1, -\frac{2}{3}, -\frac{1}{6}) (\mathbf{\overline{3}}, 1, \frac{1}{3}, -\frac{1}{6})$
Leptons/Sleptons, (x3 generations)	\hat{L} \hat{E}	$ (\tilde{\nu}_L \tilde{e}_L) \equiv \tilde{L}_L \\ \tilde{e}_R^* $	$(u_L e_L) \\ e_R^-$	$ \begin{array}{c} (1,2,-\frac{1}{2},-\frac{1}{2}) \\ (1,1,1,\frac{1}{2}) \end{array} $
Higgs/Higgsinos	\hat{H}_u	$(H_u^+ H_u^0)$	$(\tilde{H}_u^+ \tilde{H}_u^0) \equiv \tilde{H}_u$	(1, 2, $\frac{1}{2}$, 0)
	\hat{H}_d	$(H^0_d H^d)$	$(\tilde{H}^0_d\tilde{H}^d)\equiv\tilde{H}_d$	(1, 2, $-\frac{1}{2}$, 0)
Vector Superfields		Spin 1/2	Spin 1	G_{B-L}
Gluino, gluon		$ ilde{g}$	g	(8 , 1 , 0,0)
Wino/W bosons		$\tilde{W}^{\pm} \ \tilde{W}^0$	$W^{\pm}W^{0}$	(1 , 3 , 0, 0)
Bino / B boson		$ ilde{B}^0$	B^0	(1 1 , 0, 0)

Explaining the BLSSM - "SSM"

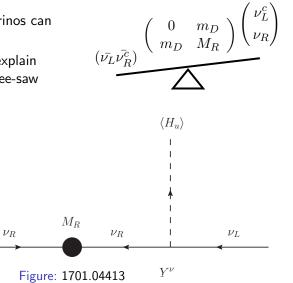

• Content in addition to MSSM:

Chiral Superfield	Spin 0	Spin 1/2	G_{B-L}	
RH Sneutrinos / Neutrinos (x3) Bileptons/Bileptinos	$egin{array}{c c} \hat{ u} & \hat{\eta} & \hat{ar{\eta}} & ar{\eta$	$egin{array}{c} ilde{ u}_R^* & \ \eta & \ ar{\eta} & \ a$	$egin{array}{c} u_R \ ilde{\eta} \ ilde{ ilde{\eta}} \ ilde{ ilde{ ilde{\eta}}} \end{array}$	$(1, 1, 0, \frac{1}{2}) (1, 1, 0, -1) (1, 1, 0, 1)$
Vector Superfields		Spin 1/2	Spin 1	G_{B-L}
BLino / B' boson	\tilde{B}'^0	B'^0	(1 1 , 0, 0)	

- Three extra RH neutrinos + SUSY partner (from anomaly cancellation condition)
- Two extra Higgs (for breaking gauged $U(1)_{B-L}$)
- One B' + SUSY partners (from broken $U(1)_{B-L}$)

Non-vanishing Neutrino Masses I

- ν_L have mass!
- Introducing RH neutrinos can explain mass for ν_L


 ν_L

Non-vanishing Neutrino Masses I

 $\langle H_u \rangle$

 Y^{ν}

- ν_L have mass!
- Introducing RH neutrinos can explain mass for ν_L
- Large RH mass can explain small LH mass in a see-saw mechanism

 ν_L

Non-vanishing Neutrino Masses II

• ... However, this leads to B - L violation, as in $0\nu 2\beta$ -decay

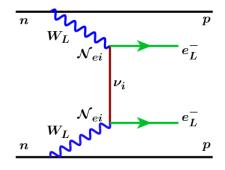


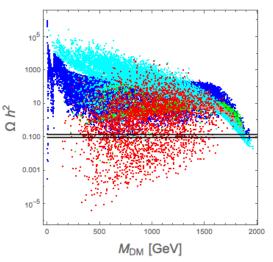
Figure: 1301.4784

• In BLSSM, gauge symmetry is broken with a Higgs mechanism

BLSSM Review

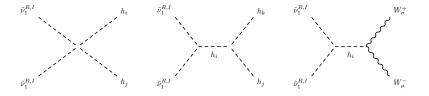
• Superpotential:

$$W = \mu H_u H_d + Y_u^{ij} Q_i H_u u_j^c + Y_d^{ij} Q_i H_d d_j^c + Y_e^{ij} L_i H_d e_j^c + Y_{\nu}^{ij} L_i H_u N_i^c + Y_N^{ij} N_i^c N_j^c \eta_1 + \mu' \eta_1 \eta_2$$

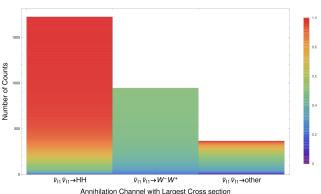

- $\bullet\,$ Type-I see-saw mechanism, RH neutrinos have $\lesssim\,$ TeV mass
- $M_{Z'}$ fixed at 4 TeV, from LEP-II EWPOs and LHC di-lepton searches
- Complete universality at GUT scale, $g_{bl} = g_1 = g_2 = g_3$, $\tilde{g} = 0$. From RGE evolution, at EW scale, $\tilde{g} \simeq -0.1$ and $g_{bl} \simeq 0.5$

DM Review in MSSM

- LSP stable from R-parity (ad-hoc)
- Allowed Candidates: 104 Bino (\tilde{B}^0) • LH Sneutrino $(\tilde{\nu}_L)$ (Z interactions LEP) 100 Ωh² • Higgsino / Wino (Direct Detection LUX) 500 1000 1500 M_{DM} [GeV]


DM Review in BLSSM

- Natural R-parity: $R = (-1)^{3(B-L)+2S}$. If B L broken by Higgs with even B L charge, then Z_2 remains unbroken
- Allowed candidates:
- Bino (\tilde{B}^0)
- Sneutrino $(\tilde{\nu}_R^*)$
- Bileptino $(\tilde{\eta}, \tilde{\bar{\eta}})$
- BLino (\tilde{B}'^0)

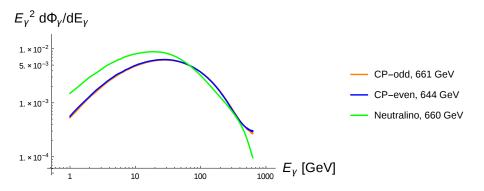

RH Sneutrino Interactions

- RH sneutrinos and RH anti-sneutrinos mix, $\tilde{\nu}_R$ and $\tilde{\nu}_R^*$ no longer mass eigenstates due to $\Delta L = 2$ operator, in $M_N N^c N^c$ mass term
- Physical mass states are either CP-even or CP-odd. Either can be lightest, so both are valid LSP candidates

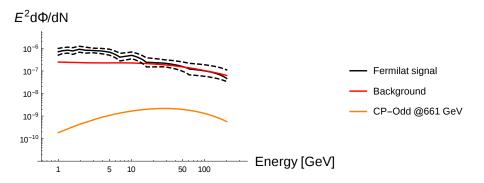
Sneutrino Interactions - Continued

- Mostly annihilate to heavy CP-even Higgs
- $\bullet\,$ Otherwise annihilate to W^+W^- pair if HH disallowed by mass

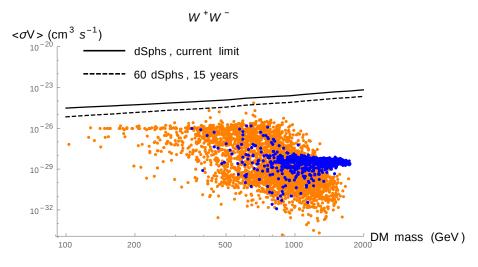
CP-odd Sneutrino


Fermi-LAT

- Indirect detection: annihilation of sneutrino DM in centre of galaxy producing charged products, which radiate photons
- $\tilde{\nu}_R \tilde{\nu}_R \rightarrow W^+ W^-$


Photon Flux Distribution: Scalar vs Fermionic

• Shape of observed spectrum can differentiate DM candidates depending on spin


Fermi-LAT: Background

• Limiting factor is energy cut-off

Fermi-LAT: Current Status & Future Prospects

- Future indirect-detection experiments can detect sneutrino DM!
- Integrated flux over all energy range CP-odd CP-even

Conclusions

- The BLSSM ...
 - Solves the hierarchy problem
 - predicts light, non-vanishing left-handed neutrino masses
 - offers much larger parameter space than the MSSM
- Future indirect-detection experiments will probe sneutrino DM