Studies on giant resonances and other collective modes

Adam Maj, Mateusz Krzysiek

Department of Atomic Nucleus Structure, Institute of Nuclear Physics PAN in Krakow

Our team (IFJ PAN Kraków)

prof. dr hab. Adam Maj

dr hab. Maria Kmiecik, prof. IFJ

dr inż. Michał Ciemała

dr inż. Mateusz Krzysiek (from 2017 – post-doc at ELI-NP)

mgr inż. Barbara Wasilewska (PhD student)

Areas of expertise regarding ELI-NP

Scientific

- **collective modes of excitation**
- ☐ reactions mechanisms

Technical

- ☐ Advanced <u>simulations</u> of detectors response (GEANT4, FLUKA)
 - and reaction mechanisms (GEMINI++, CASCADE, FRESCO)
- \square Scintillation detectors (BaF₂, LaBr₃, NaI, phoswich type)
- **☐** Analog and digital <u>electronics</u>
- ☐ DAQ (also with GUI) and analysis software

Protons and neutrons may oscillate

Oscillations of almost all n and p **Giant Resonances**

	$\Delta T = 0$	Δ T = 1	
$\Delta L = 0$	ISGMR	IVGMR	
Δ L = 1	ISGDR	IVGDR	
Δ L = 2	ISGQR	IVGQR	

Different GRs according to multipolarity, and isospin quantum numbers

Can "neutron skin" oscillate as well?

Oscillations of almost all n and p **Giant Resonances**

Can "neutron skin" oscillate as well?

Pygmy Dipole Resonance

Oscillations of almost all \boldsymbol{n} and \boldsymbol{p}

Giant Resonances

Oscillations of almost all n and p

Can "neutron skin" oscillate as well?

Giant Resonances

Can be studied by measuring emitted

γ rays and/or neutrons

Spectrum of electric dipole (E1) strength

Why PDR is important?

1) Contribution of PDR in r-process nucleosynthesis

Cross section of radiative neutron capture rate related to PDR

Goriely S., Phys. Lett. B 436 (1998) 10.

Synthesis of nuclei heavier than iron

2) Analogy between neutron skin in atomic nucleus and neutron star

- ☐ Neutron skin thickness correlated with PDR strength

 Carbone et al. Phys. Rev. C 81, 041301(R) (2010)
- Neutron skin thickness correlated with symmetry energy of EoS

Brown B. Alex, Phys. Rev. Lett. 85, 5296 (2000)

Properties of neutron stars

The same effect in different nuclei

Question: how would heavy ions excite?

<u>Inelastic scattering of ¹⁷O @ 20 MeV/u on ⁹⁰Zr, ¹²⁴Sn, ¹⁴⁰Ce, ²⁰⁸Pb</u>

LNL-Legnaro, spokepersons: Maria Kmiecik (Krakow), Fabio Crespi (Milan)

Idea of experiment:

- ☐ Inelastic scattering of heavy ions for the first time to study PDR *TRACE array*
- Coincidence measurement of γ rays with high
 resolution and efficiency *AGATA* and *HECTOR+*

Why ¹⁷O?

■ Low neutron separation Energy (4.1 MeV) – no background from projectile excitation

M. Krzysiek, Ph.D. Thesis, 2016

Gamma detection:

HECTOR+: 9 large volume LaBr₃: Ce

- Scintillation detectors
- ☐ High efficiency for high energy
- ☐ Good Energy resolution

AGATA Demonstrator: 5 triple clusters

Germanium detectors (HPGe)

Algorithms:

- ☐ Pulse Shape Analysis (PSA)
- ☐ Tracking

Inelastic scattering ¹⁷0 @ 20 MeV/u

Particle detection:

TRACE: 2 ΔE-E Si detectors

60 pixels each (5 x 12)

Pixel area: 4 x 4 mm²

Active area: $20 \times 50 \text{ mm}^2$

Thickness: $\Delta E - 200 \text{ um}$

E – 1 mm

Identification matrix of reaction products (for each pixel)

Results - gamma decay of PDR

Spectrum measured with AGATA

General excitation mechanism similar to (α,α')

- □ Detailed analysis revealed some differences in excitation mechanism between ($^{17}O,^{17}O'$) and (α,α')
- ☐ Some excitations present in high-energy part

Angular distributions of y rays

Thanks to position sensitivity of AGATA and TRACE

DWBA (Distorted Wave Born Approximation) calculations

- > only Coulomb
- > Coulomb + nuclear (standard form factor)
- > Coulomb + nuclear (microscopic form factor)

Fraction of ISEWSR exhausted by PDR:

Sum in all region: 2.03(26)%

- low-energy part: **1.42(22)%**

high-Energy part: **0.61(14)%**

Sum of all discrete states: 0.44(12)%

M. Krzysiek et al., Phys. Rev. C 93, 044330 (2016)

Inelastic scattering of ¹⁷O @ 20 MeV/u to study PDR for different nuclei: ⁹⁰Zr , ¹²⁴Sn, ²⁰⁸Pb and ¹⁴⁰Ce

Nucleus	Selection	Energy range [MeV]	ISEWSR [%]	B(E1)↑ [10 ⁻³ e ² fm ²]
⁹⁰ Zr	in peaks	6.3 - 6.9	4.0(6)	87
¹²⁴ Sn	in peaks	5.5 - 9.0	2.2(3)	228
¹²⁴ Sn	total	5.5 - 9.0	7.8(7)	228
¹⁴⁰ Ce	in peaks	4.1 - 7.8	0.44(12)	307
¹⁴⁰ Ce	total	4.1 - 7.8	2.03(26)	307
²⁰⁸ Pb	in peaks	4.8 - 7.3	9.0(1.5)	1084

- ☐ Increase of isovector part with mass of nucleus
- □ No such correlation for isoscalar part
- ☐ Influence of nucleus structure shell closure

⁽¹⁾ F.C.L. Crespi et al., Phys. Rev. C 91, 024323 (2015). (2) L. Pellegri et al., PLB 738 (2014) 519-523 (3) M. Krzysiek et al., Phys. Rev. C 93, 044330 (2016)

⁽⁴⁾ F.C.L. Crespi et al. Phys. Rev. Lett. 113 (2014) 012501

Other studies of our group and perspectives

Inelastic scattering of fast protons - Adjustment of energy and scattering angle - selectivity for spin and parity

RCNP Osaka

- ☐ GRAND Raiden protons detection
- □ CAGRA (HPGe) γ-rays detection

CAGRA + GR campaign:

- \circ "Study of the Structure of the PDR States in 90,94 Zr, 120,124 Sn, 206,208 Pb via the (p, p' γ) and (α , α ' γ) Reactions"
- ο "Study of the Structure of the PDR States in ⁶⁴Ni via the $(p,p'\gamma)$ and $(\alpha,\alpha'\gamma)$ Reactions"

Inelastic scattering of fast protons - Adjustment of energy and scattering angle - selectivity for spin and parity

RCNP Osaka

- ☐ GRAND Raiden protons detection
- \square CAGRA (HPGe) γ -rays detection

CAGRA + GR campaign:

- ο "Study of the Structure of the PDR States in 90,94 Zr, 120,124 Sn, 206,208 Pb via the (p, p' γ) and (α,α'γ) Reactions"
- o "Study of the Structure of the PDR States in 64 Ni via the $(p,p'\gamma)$ and $(\alpha,\alpha'\gamma)$ Reactions"

CCB Kraków

- ☐ KRATTA Array protons detection
- □ HECTOR+LaBr₃ (scintillation det.) γ-rays detection

CCB campaign:

"The gamma decay from high-lying states and giant resonances excited in 208 Pb and 90 Zr via (p, p' γ) reaction at 140 MeV bombarding Energy"

Other studies of our group and perspectives – ELI-NP

Gamma beams at ELI-NP - Produced in Compton backscattering of laser beam on accelerated electrons

Beam properties:

Energy range up to E_{γ} = 19.5 MeV

Bandwidth: ~0.1 %

Intensity: $10^{13} \gamma/s$

Physics cases with gamma beams

ELI-NRF (Nuclear Resonance Fluorescence)

ELI-GANT (Gamma Above Neutron Threshold)

Gamma beams at ELI-NP - Produced in Compton backscattering of laser beam on accelerated electrons

Beam properties:

Energy range up to $E_v = 19.5 \text{ MeV}$

Bandwidth: ~0.1 %

Intensity: $10^{13} \gamma/s$

Physics cases with gamma beams

ELI-NRF (Nuclear Resonance Fluorescence)

ELI-GANT (Gamma Above Neutron Threshold)

MeV] A. Tamii, Eur. Phys. J. A (2014) 50: 28

Detection systems for ELIGANT

ELIGANT-GN

16 LaBr₃ + 16 CeBr₃ - gamma detection

Liquid (BC501A) scintillators – fast neutrons (E<1MeV)

⁶Li glass (GS20) scintillators – fast neutrons (E>1MeV)

ELIGANT-TN

³He proportional counters - thermal neutrons

ELIGANT-TNH

high-efficiency 4π

ELIGANT-TNF

flat-efficiency 4π

Detection systems for ELIGANT

ELIGANT-GN

16 LaBr₃ + 16 CeBr₃ - gamma detection

Liquid (BC501A) scintillators – fast neutrons (E<1MeV)

⁶Li glass (GS20) scintillators – fast neutrons (E>1MeV)

"Day 1" experiments

- o Ground-state γ decay of GDR in ²⁰⁸Pb
- o Exclusive neutron decays of GDR, PDR, and MDR

ELIGANT-TN

³He proportional counters – thermal neutrons

ELIGANT-TNH

high-efficiency 4π

"Day 1" experiments

p-proces nucleosynthesis:

- \circ ¹⁸⁰Ta(γ ,n)¹⁷⁹Ta
- \circ 138La(γ ,n)137La

ELIGANT-TNF

flat-efficiency 4π

"Day 1" experiments

New compilation:

 159 Tb(γ ,xn) dla x=1-2

Nuclear Structure of GDR/PDR/MDR

"Ground-state γ decay of GDR in ²⁰⁸Pb"

"Exclusive neutron decays of GDR, PDR, and MDR"

Excitation energy is fixed with great precision (σ =0.2%) UNIQUE FEATURE

- ☐ Study of the neutron and γ decay of the GDR-PDR
- ☐ Measurement of the absolute values of B(E1) and B(M1)
- \Box Measurement of the absolute values of the neutron and γ branching ratio

Summary:

- ☐ Giant and pygmy resonances are very important tools to study the bulk properties of atomic nuclei
- ☐ It is of high importance to use different probes: protons, alphas, heavyions and gammas
- ☐ ELI-NP in Bucharest will be a very important facility in this type of studies
- ☐ The group from IFJ PAN Krakow is already involved in preparation of the gamma experiments in ELI-NP