On pair-instability supernovae and dark matter

Djuna Lize Croon (IPPP Durham) PLANCK, May 2023 djuna.l.croon@durham.ac.uk | djunacroon.com

Binary mergers in LIGO/Virgo O1-3

Binary mergers in LIGO/Virgo O1-3

Features in the mass distribution

Lower mass gap PDB MS 10^{3} BGP $M_{\rm low}^{\rm gap}$ $\mathrm{d}\mathcal{R}/\mathrm{d}m~[\mathrm{Gpc}^{-3}~\mathrm{yr}^{-1}~M_\odot^{-1}]$ 10^{2} 10^{1} 100 10^{-1} 9 10 3 8 $m [M_{\odot}]$ The LISO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration, 15 PhyseRev. X 13, 011048, March 2023

Is the lower mass gap physical?

Rachel Gray's talk, PONT'23

Features in the mass distribution

Late evolution of BH progenitor stars

 $M_{\rm in} = 120 {
m M}_{\odot}$

The danger zone: pair-instability

Barkat, Rakavy, Sack PRL (1967) Rakavy, Shaviv, ApJ (1967)

The high temperatures of stellar cores mean electronpositron pairs can be created from photons: $\gamma \gamma \rightarrow e^+ e^-$

The danger zone: pair-instability

Barkat, Rakavy, Sack PRL (1967) Rakavy, Shaviv, ApJ (1967)

^{γ} ^{e^+} The high temperatures of stellar cores mean electronpositron pairs can be created from photons: $\gamma\gamma \rightarrow e^+e^-$

Unstable, because:

The photons give the star outward pressure

The electron-positron pairs imply extra gravity but no pressure

 \rightarrow the core starts to collapse

Evolution of old population-III stars

Pair instability

in a nutshell

Pair instability

in a nutshell

2. Explosive burning of oxygen (a burning product of helium) gets ignited

Pair instability

in a nutshell

3a. Photodisintegration instability triggers immediate BH collapse

Initial star mass

 $M_{\rm in}\gtrsim 200\,{\rm M}_\odot$

 $M_{\rm in}\gtrsim90\,{\rm M}_\odot$

3b. Explosive oxygen burning unbinds all material in the star: PISN

Adapted from Renzo et al [2002.05077]

Pair-instability and black hole populations

Pair-instability and black hole populations

See also Talbot & Trane, arXiv:1801.02699

Pair-instability and black hole populations

Does this explain the peak in the data?

Pair-instability and black hole populations

Does this explain the peak in the data? Stellar evolution simulations put the PPISN mass gap at $\sim 45-60\,M_{\odot}$

Nuclear physics Particularly sensitive to ${}^{12}C(\alpha,\gamma){}^{16}O$

 $\cdot 1\sigma$

70

Farmer, Renzo, de Mink, Fishbach, Justham, ApJL arXiv:2006.06678 [astro-ph.HE]

 $\sigma_{
m C12}$

New particles...

- May be produced in the star and *free stream out*

New particles...

- May be produced in the star and *free stream out*
- May be produced in the star and *get trapped*

New particles...

- May be produced in the star and *free stream out*
- May be produced in the star and get trapped
- May collect in the star and annihilate in the core

New particles...

- May be produced in the star and *free stream out*
- May be produced in the star and get trapped
- May collect in the star and annihilate in the core
- May modify other rates in the star

New particles...

- May be produced in the star and *free stream out*
- May be produced in the star and get trapped
- May collect in the star and annihilate in the core

- May modify other rates in the star

Gravity: the BHMG is a test of G_N in stellar cores

Straight, Sakstein, Baxter, arXiv: 2009.10716

Most new effects shift the mass gap up

Sakstein, DC, McDermott, Straight, Baxter, PRL, arXiv:2009.01213 [gr-qc]

Most new effects shift the mass gap up

Sakstein, DC, McDermott, Straight, Baxter, PRL, arXiv:2009.01213 [gr-qc]

Assumption: homologous transformation r' = yr

Assumption: chemically homogeneous star

• Energy generation $\epsilon \propto
ho^n T^{
u}$

• Opacity $\kappa \propto
ho^s T^p$

Assumption: homologous transformation r' = yr

The stellar structure equations are homologous for stars of a given chemical composition

Assumption: chemically homogeneous star

- Energy generation $\epsilon \propto
 ho^n T^{
 u}$
- Opacity $\kappa \propto
 ho^s T^p$

• Conservation of mass:
$$\frac{dM}{dr} = 4\pi r^2 \rho$$

• Hydrostatic equilibrium: $\frac{dp}{dr} = -\frac{GM\rho}{r^2}$
• Thermal equilibrium: $\frac{dL}{dr} = 4\pi r^2 \epsilon \rho$
• Radiative transfer: $\frac{dT}{dr} = -\frac{3\kappa\rho L}{16\pi r^2 T^3}$

Assumption: homologous transformation r' = yr

Assumption: chemically homogeneous star

- Energy generation $\epsilon \propto
 ho^n T^{
 u}$
- Opacity $\kappa \propto \rho^s T^p$
- Extra energy means that energy generation is modified:
 - $\begin{aligned} \epsilon &= \epsilon_{\rm nuc} \epsilon_{\rm grav} \epsilon_{\rm neutrino} + \epsilon_{\rm DM} \equiv \left(1 \sum \delta\right) \epsilon_{\rm nuc} \text{ with} \\ \delta &\equiv \delta_{\rm grav} + \delta_{\rm neutrino} \delta_{\rm DM} \end{aligned}$

Assumption: homologous transformation r' = yr

Assumption: chemically homogeneous star

- Energy generation $\epsilon \propto
 ho^n T^{
 u}$
- Opacity $\kappa \propto
 ho^s T^p$
- Extra energy means that energy generation is modified:

$$\begin{aligned} \epsilon &= \epsilon_{\rm nuc} - \epsilon_{\rm grav} - \epsilon_{\rm neutrino} + \epsilon_{\rm DM} \equiv \left(1 - \sum \delta\right) \epsilon_{\rm nuc} \text{ with} \\ \delta &\equiv \delta_{\rm grav} + \delta_{\rm neutrino} - \delta_{\rm DM} \end{aligned}$$

- Equating L'(r') from radiative transfer and energy generation equations, $y = \left(1 - \sum \delta\right)^{\frac{1}{3s+p+3n+\nu}}$

$$\frac{\delta R}{R} = \frac{-\sum \delta}{3s + p + 3n + \nu}, \quad \frac{\delta L}{L} = \frac{-(3s + p)\sum \delta}{3s + p + 3n + \nu}, \quad \frac{\delta T}{T} = \frac{\sum \delta}{3s + p + 3n + \nu}$$

$$\frac{\delta R}{R} = \frac{-\sum \delta}{3s + p + 3n + \nu}, \quad \frac{\delta L}{L} = \frac{-(3s + p)\sum \delta}{3s + p + 3n + \nu}, \quad \frac{\delta T}{T} = \frac{\sum \delta}{3s + p + 3n + \nu}$$

Post-MS evolution of a high mass star: $\kappa \approx \text{constant}$ due to electron scattering $\rightarrow s = 0, p = 0$

CNO cycle: $\nu = 17$, n = 1Tripple- α : $\nu = 40$, n = 2

$$\frac{\delta R}{R} = \operatorname{sign}(\delta), \quad \frac{\delta L}{L} = 0, \quad \frac{\delta T}{T} = -\operatorname{sign}(\delta)$$

For injection: radius increases, temperature decreases For new losses: radius decreases, temperature increases

Stellar cooling and the BHMG Enhanced losses \rightarrow faster evolution \rightarrow larger C/O at HD

Stellar cooling and the BHMG Enhanced losses \rightarrow faster evolution \rightarrow larger C/O at HD

Larger C/O at HD \rightarrow greater progenitors collapse \rightarrow larger black holes

Maybe it is natural to look at energy injection...

New particles...

- May be produced in the star and *free stream out*
- May be produced in the star and *get trapped*
- May collect in the star and annihilate in the core

- May modify other rates in the star

Gravity: the BHMG is a test of G_N in stellar cores

Straight, Sakstein, Baxter, arXiv: 2009.10716

Recent claim: (P)PISN can be avoided altogether by DM annihilation in Pop-III stars Freese and Ziegler, arXiv:2212.13903

Dark matter in stars

• Distribution:

Gould & Raffelt, ApJ, 1990

• local thermal equilibrium
$$\left(\frac{n_{\rm DM}(r)}{n_{\rm DM}(0)}\right)_{\rm LTE} = \left(\frac{T(r)}{T(0)}\right)^{3/2} e^{-\int_0^r d\tilde{r} \frac{\alpha(\tilde{r})dT/d\tilde{r}(r) + m_{\rm DM}g(\tilde{r})}{T(\tilde{r})}}$$

• isothermal $\left(\frac{n_{\rm DM}(r)}{n_{\rm DM}(0)}\right)_{\rm ISO} = \frac{e^{-(r/r_{\rm DM})^2}}{r_{\rm DM}^3 \pi^{3/2}}, \quad r_{\rm DM} = \sqrt{\frac{3kT_c}{2\pi G_N \rho_c m_{\rm DM}}}$

Spergel & Press, ApJ, 1985

Dark matter in stars

• Distribution:

Gould & Raffelt, ApJ, 1990

• local thermal equilibrium
$$\left(\frac{n_{\rm DM}(r)}{n_{\rm DM}(0)}\right)_{\rm LTE} = \left(\frac{T(r)}{T(0)}\right)^{3/2} e^{-\int_0^r d\tilde{r} \frac{\alpha(\tilde{r})dT/d\tilde{r}(r) + m_{\rm DM}g(\tilde{r})}{T(\tilde{r})}}$$

• isothermal $\left(\frac{n_{\rm DM}(r)}{n_{\rm DM}(0)}\right)_{\rm ISO} = \frac{e^{-(r/r_{\rm DM})^2}}{r_{\rm DM}^3 \pi^{3/2}}, \quad r_{\rm DM} = \sqrt{\frac{3kT_c}{2\pi G_N \rho_c m_{\rm DM}}}$

Spergel & Press, ApJ, 1985

Dark matter in stars

Maximum injection (without depletion): annihilation equilibrium

$$N_{\rm DM} = \sqrt{\Gamma_{\rm cap}} N_{\rm DM}^2 / \Gamma_{\rm ann} \equiv \sqrt{C_{\rm cap}} / C_{\rm ann}$$

• Energy injection then depends on the capture rate: $\epsilon_{\rm DM} = C_{\rm cap} \frac{\bar{n}_{\rm DM}^2(r)}{\rho(r)} \quad \text{where} \quad \bar{n}_{\rm DM}(r) = \frac{n_{\rm DM}(r)}{N_{\rm DM}}$

• If all DM is captured,

$$C_{\rm cap} = \Phi \pi R^2 = \pi R^2 v_{\rm DM} \sqrt{\frac{8}{3\pi}} \left[1 + \frac{3}{2} \left(\frac{v_{\rm esc}}{v_{\rm DM}} \right)^2 \right] \frac{\rho_{\rm DM} f_{\rm cap}}{m_{\rm DM}}$$

Preliminary results: reduced C/O in cores

*Paxton et al, arXiv:1710.08424 [astro-ph.SR]

Preliminary results: reduced C/O in cores

*Paxton et al, arXiv:1710.08424 [astro-ph.SR]

DC & Sakstein, 2023

Preliminary results: O¹⁶ transport

DC & Sakstein, 2023

Preliminary results: O¹⁶ transport

Helium depletion

DC & Sakstein, 2023

Preliminary results: O¹⁶ transport

back to the core

Preliminary results: grid of results

 $M_i(M_{\odot})$

Preliminary results: grid of results

 $M_i(M_{\odot})$

To conclude,

- A peak in the black hole mass function is found at $\,\sim 35\,M_\odot$
- Pair-instability supernovae predicts a peak in the mass function at $\sim 45-50\,M_{\odot}$
- New physics?
 - Novel loss channels shift the peak upwards
 - Preliminary results: dark matter annihilation tends to exacerbate pair-instability, but does not shift the peak
- The mystery remains...

Community survey about the Jan 7 postdoc deadline:

Thank you!

...ask me anything you like!

djuna.l.croon@durham.ac.uk | djunacroon.com

Helium burning rates as a function of T

Pérez de los Heros, Symmetry, arXiv:2008.11561

Upper end of the mass gap

Photodisintegration: rapid absorption of high energy photons

Photodisintegration leads to decrease in Γ_1 and therefore a contraction

Upper end of the mass gap

Photodisintegration: rapid absorption of high energy photons

Photodisintegration leads to decrease in Γ_1 and therefore a contraction

In very high mass stars: oxygen burning can no longer keep up with contraction due to photodisintegration

No pulsations, immediate collapse into black holes