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1. The t–channel singularity in small angle scattering (almost solved).

2. The s–channel singularity near threshold (a way for solution is seen).

3. The perturbative QFT with unstable particles for the observable

processes (unsolved)
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1. t-channel singularity

The process: K−p → π0 + X
with no strange particles in the final state, at s ≫ M2

K and small

momentum transfer k (M2
X = sx).

k2 ≡ (p1−p3)
2 = tm(x)−2|p1||p3| sin2(θ/2), tm = x

1− x

[
M2

K(1− x)−m2
π

]
,(

tmmax = (MK −Mπ)2 at x = Mn
MK

)
.

The diagram gives the factor

(
1

k2 −m2
π

)2
in the matrix element M squared. Since
tm > m2

π, the integration over k2 results

in a divergent cross section
tmax∫
tmin

|M|2dk2.

-
p(p2)

K−
(p1)- -

π0
(p3)
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This paradox originates from the instability of the kaon decaying into

the π0π− system: the point k2 = m2
π corresponds to a real decay.

R.F. Peierls, PRL 6 (1961) 641 first considered such a problem for

processes πρ → ρπ, etc.

Recent analyses (for µ+µ− → Weν with Meν < mµ):

I.F. Ginzburg, DESY 95-168 (1995); Nucl. Phys. B (Proc. Suppl.)

51A (1996) 85:

K. Melnikov, V.G. Serbo. Phys. Rev. Lett. 76 (1996) 3263; Nucl.

Phys. B 483 (1997) 67; & G.L. Kotkin. Phys. Rev. D54 (1996)

3289;

...
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The divergence is eliminated if one takes into account the fact that,

because the kaon is unstable,

the kaon initial state differs from the standard plane wave.

The result depends on the relation between two lengths, a and cτ :

Here a – transverse size of the beam, τ = 1/Γ –
particle lifetime.

We consider two asymptotic cases.



• The case a ≫ cτ

For demonstration of idea, we start with the kaon rest frame, where
we set its 4–momentum as p = (MK − iΓ/2,0,0,0). If we fix k2, the
energy of the produced pion p03,r = (M2

K +M2
π − k2)/2MK.

The new value k2new ≡ (p1 − p3)
2 = M2

K − iMKΓ+M2
π + iΓp03,r

⇒ k2 − iγ ; γ =
Γ(M2

K−M2
π+k2)

2MK
. One can now calculate the cross

section of the process in the standard way. At s ≫ M2
K:

dσ =
|M|2dk2

4(4π)3s2
; |M|2 ∼

|MKππ|2|Mπp|2

(k2 −m2
π)

2 + γ2
⇒

σ ∼
|MKππ|2|Mπp|2

γ

(
∝

ΓK|Mπp|2

γ

)
≈ σπp .
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If we start from the lab frame, where the kaon has a definite 3–
momentum p⃗ and a complex energy E =

√
M2

K − iMKΓ+ p⃗2, we ob-
tain a similar result but with another energy distribution of produced
pions.

Final result depends on the method of kaon beam preparation!
This very result can be obtained by considering initial kaon as a super-
position of plane waves corresponding to stable particles of different
masses with the Breit–Wigner spectral density. In this way denom-
inators of the matrix element and its conjugate under the integral
correspond to different masses, and the second order pole disappear.
The result looks as a complete decay of the kaon prior to interaction
with the target BUT
It goes in parallel with the standard interactions (conserving strangeness).
We integrated here over the entire space–time irrespective to the size
of the interaction region. The space scale of the phenomena is cτ ,
where τ = ~/Γ is the kaon time of life.
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• The case a ≪ cτ

Melnikov, Serbo, Kotkin (prepared for µ+µ− → Weν with Meν < mµ)

At a ≪ cτ the kaon width is inessential in calculations.

The kaons and protons in the initial states are not plane waves but

wave packets with some distribution over momenta

|pi⟩ →
∫

d3Pi

(2π)3/2
Φi(P⃗i)|Pi⟩ (i = 1,2).

When we calculate the cross section, we sum over final states. One

can use an arbitrary complete set of states. We use plane waves

|p3⟩, ...
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|M|2 = 1
(2π)6

∫ ∏
i=1,2 d

3Pid
3P ′

iΦ(Pi)Φ
∗(P ′

i)×
M(P1, P2; p3, ...)M∗(P ′

1, P
′
2; p3, ...)×

δ(P1 + P2 − P ′
1 − P ′

2)δ(P1 + P2 − p3 − ...).
The same final state is obtained from different initial states.
Next we write the identity (εi ≡ P0

i ):

2πδ(
∑

Pi −
∑

P ′
i) = δ(

∑
P⃗i −

∑⃗
P ′
i)
∫
dteit(

∑
p0i −

∑
p
′0
i ).

The phase averaging results in density matrices for the kaons and
protons in the beams: ⟨Φ(Pi)Φ(P ′

i) exp[it(εi − ε′i)]⟩ = ρ(P⃗i, P⃗
′
i , t).

After the change of variables pi = (Pi + P ′
i)/2, ℓi = (Pi − P ′

i)/2 we
switch to the mixed representation of the density matrix — Wigner

function n(p, r, t): ρ(P⃗i, P⃗
′
i , t)d

3Pid
3P ′

i =
∫
n(p⃗i, r⃗i, t)e

2iℓ⃗ir⃗id
3pid

3ℓid
3ri

(2π)3/2
.

In the quasi–classical limit the Wigner function coincides with the
density in the phase space. This is the point when the known distri-
butions of particles within the beams enter the result.
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Near the pole

⟨|M|2⟩ ∼
∫
n1(p1, r, t)n2(p2, r, t)e

2iℓrd3r d3ℓd3p

× |MKπn|2|Mpπ|2

[(k − ℓ)2 −m2
π][(k + ℓ)2 −m2

π]
.

We have

n1(r,p, t)=n1z(z − v1t)n1⊥(r⊥)n1p(p) ;
n2(r,p, t)=n2z(z + v2t)n2⊥(r⊥)n2p(p) ;
(vi are velocities of the colliding particles).

The integration over the longitudinal coordinates and time results in

δ–functions. In the integration over transverse variables we have only

linear form in ℓ⊥ near the pole.
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The final result is written via the transverse size of the beam

a and the kaon lifetime

σeff =
πa

2
ΓKπp =

πa

2cτ
σπp .



The discussed divergence is regularized. For large bunches the reg-

ulator is the proper width of unstable particle, for small bunches the

size of bunch becomes the regulator of divergence.

*****************************

One can ask: Perhaps, rescatterings with, e.g., two–pion exchange

are essential?

The answer is: NO.

In this case we have integration over loop virtuality, and the pion

momenta in the diagram and its conjugate enter with uncorrelated.

It gives regularization of the initial divergence.
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This effect was considered in detail for the process µ−µ+ → eν̄W for

the case when the effective mass of eν̄ system is less than muon mass.

These results could be applied to the process Kp → πX (a ≪ cτ in

both cases). For the processes like ρπ → πρ (discussed in 1960’s)

a ≫ cτ .

cτ
µ± 800m
π± 7.8m
K± 3.7m

cτ
Σ− 4.3cm
Σ+ 2.4cm
K0

S 2.7cm

For µ±, π±, K± size of beam a ≪ cτ .

For former beams of Σ− at CERN size of beam a = 3.7cm was close

to cτ . It is interesting to study this case.
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2. The s-channel singularity

Consider a toy example: decay of scalar nucleus U to scalar U ′ +

scalar neutron, U → U ′ + n, with some lifetime T .

Then consider a

scattering process

γ + U → U ′ + n at

small photon energy

ω. Denoting photon

momentum as k, we

have an amplitude of the process:

M = A
(pU + k)2 −M2

U

+ B

(pU ′ − k)2 −M
′2
U

= A
2pU · k − B

2pU ′ · k ∝ 1
ω
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The cross section dσ =
1

I
|M|2dΓ ∝ 1

ω3dΓ.

Here I ∝ ω is the total photon flux and Γ is the final phase space.

For Compton scattering at ω → 0, Γ → ω3 ⇒ cross section is finite.

In our case, to the contrary, at ω → 0 we have Γ → Γdecay ⇒ total

cross section diverges as 1/ω3!
At the first glance, this is terrible.

The atmosphere is opaque due to small admixture of C14!
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Idea for the solution of the paradox

Since M ∝ 1/ω is large, one must to take into account processes with
2 photons,

γ + γ + U → U ′ + n, γ + U → U ′ + n+ γ, etc.
In the contribution of additional photons, an extra factor appears,
which is proportional their energy per the characteristic size of pro-
cess ∝ F2 (F is electromagnetic field strength). Summation over
multiphoton contributions must regularize the amplitude as

1
ω → 1

ω2 + cF2

It is not done up to now.
These effects can be essential at very low X, process of type of
g + t → W + b and in earliear Universe.
The experience with nonlinear QED (large coherent F) can be useful
here.
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3. Unstable particles in the final

state or in loops

An example: process e+e− → W+W− cannot be observed in
pure form. The observable is, e.g. e+e− → W+W− → (µ+ν)(µ−ν̄).
Its description contains integration over the lepton phase space. With
the standard propagators of EW theory, this integral diverges since it
includes the region where the denominator in the integrand
|k2 − M2

W + iε|2 is 0. To avoid this divergence, the W propagator
is usually changed by inserting the full W -width

1
k2 −M2

W + iε
→ 1

k2 −M2
W + iΓMW

.

In more refined approaches the entire polarization operator is added
(having in mind partial summation of perturbation series).

However, this procedure is not harmless.
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Using the experimental width Γexp in this ansatz violates unitarity

in the tree approximation.
With Γexp, the cross section calculated for the W bosons in the final
state can differs from the sum over all partial channels. To avoid this
difficulty, e.g. in the tree-level calculations one should use the value
of width obtained in this very approximation.
The simple insertion of width in the propagator violates gauge invariance.
This very final state can be obtained from another intermediate state,
e.g.

e+e− → γZ → (µ+µ−)(νν̄)
Example: In the standard SM calculations (no width in denominator)
with evident dependence on the gauge parameter ξ, separate diagrams
give some fractions depending on ξ. In the entire amplitude these
fractions are joined in one fraction with common denominator, the ξ
dependence disappear in this sum. Changing some denominators by
adding different widths (ΓW or ΓZ, etc.) destroys this compensation.
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We meet here a series of fundamental difficulties

1. The standard perturbation theory contains new type of di-

vergences in addition to the UV and IR. Perhaps, it breaks its self-

consistency?

The answer is: NO (F.Tkachov)

The idea: The observable quantities are not amplitudes but their

squares integrated with some weight. Therefore, one can consider

amplitude as generalized function (distribution) and define what e.g.

1/(k2 − M2)2 means near the pole. With this definition, the pertur-

bation theory becomes well-defined and gauge invariant. Therefore,

this theory can be considered as self-consistent.

Unfortunately, this approach gives nothing for the practical solution

of the problem.
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2. In the perturbation theory we have two parameters — coupling

constant g, assumed to be small, and parameter g
eff
r ≈ g(|pi|/∆E)

(where ∆E ∝ (Q2−M2) is the distance to peak). Near the resonance

peak g
eff
r become large. That give inaccuracies ∼ Γ/M in the quanti-

ties like total cross sections and strong inaccuracies in the description

of the process near peak. Therefore,

The new form of perturbation theory is neces-
sary that gives regular description both far from
resonance and near the resonance peak.
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In the standard QFT language the goal is to obtain the gauge invari-
ant resummation of the standard perturbation theory. This problem
at tree and one loop levels was considered by
Veltman, Sirlin, Stuart, Oldenborgh, Denner, Dittmayer, Papavassil-
iou,....
The complete solution at the tree and 1-loop level is given by
W. Beenakker, F.A. Berends, A.P. Chapovsky. hep-ph/9909472.

However, the obtained recipes become extremely complex and differ-
ent from each other at the multiloop level. However, the answer will
be necessary for description of future experiments with high statis-
tics, e.g., processes like γγ → W+W− at s ≫ M2

W , well-observable at
photon colliders.

I don’t hope that an unambiguous recipe for the two loops can be
constructed in this way.
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3. The standard EW theory is the QFT, based on the complete set

of the asymptotical states for the fundamental particles. It is the base

for the construction of perturbation theory with the standard particle

propagators. BUT THE FUNDAMENTAL PARTICLES OF
THEORY (W , Z, H) ARE UNSTABLE.
THE QFT WITH UNSTABLE FUNDAMENTAL PARTI-
CLES HAS NOT BEEN CONSTRUCTED SO FAR

In particular, the space of states is covered entirely by all states of

stable particles. Adding unstable particles overfills this space. How-

ever, when we consider higher order diagrams, their imaginary parts

contain unstable intermediate W–bosons, for example. They should

not contribute to the unitarity in the fundamental approach.
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Without such a theory, a precise description of EW processes is

impossible.

For me, in solving this problem

breaking of gauge invariance in calculations is
not the main effect but is the signal on an un-
satisfactory state of the theory. This signal
should be used as a test when constructing a
satisfactory scheme.
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My goal is to inform the physical community that this problem transforms

from a theoretical problem of pure QFT to the problem whose solution

will be necessary for precise description of the EW data.
****************************

Note: experiments with production of gauge bosons or t–quarks offer
the first domain in particle physics where this problem becomes very
important. It is clear that the small parameter here is Γ/M . For
muons this parameter is too small to speak of observable effects.
In hadron physics some phenomenological ansatz is necessary, which
would hide a possible effect.

****************************

I hope that a specific way of constructing the EW theory together with
gauge invariance would help in solving the problem for this specific
case.
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FANTASY

• The proper procedure of quantization is considered now as an alge-

braic problem independent of stability of the objects (Faddeev).

• When constructing S–matrix, we use some integrations by parts. We

usually omit the surface items arising in this procedure (at t, x → ∞).

With unstable particles these terms cannot be neglected (since wave

function grows at t → −∞ — in the opposite case the analyticity in

x–space is broken).

Perhaps, some residual surface items should be added into the effec-

tive Lagrangian of theory a la ghosts etc. items in the Faddeev—

Popov—De Witt method.
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